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Thurston’s algorithm
The general case

Structure of the set of tilings

Weights, heights and flips
Thin out a simply connected domain

Triangular cells ↔ directed graph:

↔
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Thurston’s algorithm
The general case

Structure of the set of tilings

Weights, heights and flips
Thin out a simply connected domain

Dimer (lozenge) tiling ↔ weighted edges (black: 1, red: −2):

↔

Note: directed closed paths have weight 0.
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Thurston’s algorithm
The general case

Structure of the set of tilings

Weights, heights and flips
Thin out a simply connected domain

Weighted edges (black: 1, red: −2) ↔ heights of vertices:

↔
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Thurston’s algorithm
The general case

Structure of the set of tilings

Weights, heights and flips
Thin out a simply connected domain

Proposition

A vertex of maximum height locally enforces weights:

incoming edges have positive weights (black edges)

outcoming edges have negative weights (red edges)
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Thurston’s algorithm
The general case

Structure of the set of tilings

Weights, heights and flips
Thin out a simply connected domain

proposition

A tileable domain admits a tiling whose vertices of max. height are
on the boundary.

proof: flip:

2 1

2

1

1

2

3

O. Bodini, T. Fernique Planar Dimer Tilings



Thurston’s algorithm
The general case

Structure of the set of tilings

Weights, heights and flips
Thin out a simply connected domain

proposition

A tileable domain admits a tiling whose vertices of max. height are
on the boundary.

proof: flip:
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Thurston’s algorithm
The general case

Structure of the set of tilings

Binary counters and heights
Relaxation: real counters

Intuitively:

lozenge tilings: constrained enough for deriving the whole
from the boundary

dimer tilings: holes/irregularities can “hide” information to
the boundary
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Thurston’s algorithm
The general case

Structure of the set of tilings

Binary counters and heights
Relaxation: real counters

Consider a set of polygonal cells
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Thurston’s algorithm
The general case

Structure of the set of tilings

Binary counters and heights
Relaxation: real counters

Suppose it is bipartite  gears-like orientation of cells

O. Bodini, T. Fernique Planar Dimer Tilings



Thurston’s algorithm
The general case

Structure of the set of tilings

Binary counters and heights
Relaxation: real counters

This allows to define a directed graph.
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Thurston’s algorithm
The general case

Structure of the set of tilings

Binary counters and heights
Relaxation: real counters
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Binary counter: 0-1 weight function δ s.t. δ(cell) = 1
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Thurston’s algorithm
The general case

Structure of the set of tilings

Binary counters and heights
Relaxation: real counters

Trival bijection with dimer tilings.
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Thurston’s algorithm
The general case

Structure of the set of tilings

Binary counters and heights
Relaxation: real counters
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Height function: hδ : v 7→ min{δ(p) | p : v∗  v}, for a fixed v∗.
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Thurston’s algorithm
The general case

Structure of the set of tilings

Binary counters and heights
Relaxation: real counters

But heights do not more locally enforce weights!
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Thurston’s algorithm
The general case

Structure of the set of tilings

Binary counters and heights
Relaxation: real counters
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Counter: real weight function ψ s.t. ψ(cell) = 1.
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Thurston’s algorithm
The general case

Structure of the set of tilings

Binary counters and heights
Relaxation: real counters

Proposition

One can compute a counter in linear time (using a spanning tree).

Theorem

If ψ is a counter, then one defines a binary counter by:

δ : (v , v ′) 7→ ψ(v , v ′)− (hψ(v ′)− hψ(v)).
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Thurston’s algorithm
The general case

Structure of the set of tilings

Binary counters and heights
Relaxation: real counters

Algorithm

1 construct a counter ψ in time O(n);

2 compute hψ in time O(n ln3 n) (SSSP for a planar graph);

3 derive a binary counter in time O(n).
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Lozenge tilings of simply connected domains are connected by flips.
Which notion of flip for general dimer tilings?
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In terms of binary counter:
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Thurston’s algorithm
The general case

Structure of the set of tilings

Generalized flips
A distributive lattice

Definition (Flip)

Let A be vertices strongly connected by edges of weight 0 and s.t.

all its incoming edges have weight 0;

all its outcoming edges have weight 1.

Then, a flip on A exchanges these weights (0 ↔ 1).
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