A Self-Simulating Tileset

Thomas Fernique

Goal

We define step by step

- ► a finite set \(\tau\) of decorated squares, where every edge is endowed with a (red,green,blue) triple of indices,
- ▶ a bijection ϕ from 3 × 3 squares of τ -tiles to τ -tiles,

Goal

We define step by step

- ► a finite set \(\tau\) of decorated squares, where every edge is endowed with a (red,green,blue) triple of indices,
- a bijection ϕ from 3 × 3 squares of τ -tiles to τ -tiles, such that:
 - ► there exist *τ*-tilings,
 - every τ -tiling can be uniquely partitioned into 3 \times 3 squares,
 - applying ϕ on these 3 × 3 squares (+scaling) yields a τ -tiling.

Step 1: macro-tiles

Start with tiles T_1, \ldots, T_9 .

Step 1: macro-tiles

Start with tiles T_1, \ldots, T_9 . Endow each edge with a red index enforcing the tiles to assemble into *macro-tiles* aligned along a grid.

Step 1: macro-tiles

Start with tiles T_1, \ldots, T_9 . Endow each edge with a red index enforcing the tiles to assemble into *macro-tiles* aligned along a grid.

Step 2: rings and macro-macro-tiles

A green index $i \in \{1, \dots, 9\}$ runs along a *ring* in every macro-tile.

Step 2: rings and macro-macro-tiles

Further green indices force rings to order as T_i 's in a macro-tile. (X_i denotes the red index on the X-edge of T_i , X = N, W, S, E)

Step 3: the network

A network carries green/blue indices from the central tile to ports.

Step 3: the network

A *network* carries green/blue indices from the central tile to *ports*. Off the network, each blue index replicates the red one.

Step 3: the network

Duck Lemma The green/blue indices of every $T_i \neq T_5$ determine the red indices.

Interlude: the map ϕ

 ϕ maps the green indices forcing ring ordering onto red indices and copies the green/blue indices from network branches.

Interlude: the map ϕ

 ϕ maps the green indices forcing ring ordering onto red indices and copies the green/blue indices from network branches.

Interlude: the map ϕ

 ϕ maps a tiling onto a tiling. Does it map a τ -tiling onto a τ -tiling? The indices on the network will have to be chosen so that it holds.

When a ring along which runs *j* crosses an *X*-branch, it checks that the pair carried by the branch is allowed on the *X*-edge of T_j .

For e.g. a North-branch:

When a ring along which runs *j* crosses an *X*-branch, it checks that the pair carried by the branch is allowed on the *X*-edge of T_j .

For e.g. a North-branch:

▶ $j \in \{1,3\} \rightsquigarrow \{M, P, 14, 25, 36, 47, 58, 69\} \times \{M\};$

When a ring along which runs *j* crosses an X-branch, it checks that the pair carried by the branch is allowed on the X-edge of T_j .

For e.g. a North-branch:

▶ $j \in \{1,3\} \rightsquigarrow \{M, P, 14, 25, 36, 47, 58, 69\} \times \{M\};$ ▶ $j \in \{4, 6, 7, 9\} \rightsquigarrow \{1, \dots, 9\} \times \{N_j\};$

When a ring along which runs j crosses an X-branch, it checks that the pair carried by the branch is allowed on the X-edge of T_j .

For e.g. a North-branch:

- ▶ $j \in \{1,3\} \rightsquigarrow \{M, P, 14, 25, 36, 47, 58, 69\} \times \{M\};$
- $\blacktriangleright \ j \in \{4, 6, 7, 9\} \rightsquigarrow \{1, \ldots, 9\} \times \{N_j\};$
- ▶ $j \in \{2, 5, 8\} \rightsquigarrow \text{every pair already defined on any North-edge!}$

When a ring along which runs j crosses an X-branch, it checks that the pair carried by the branch is allowed on the X-edge of T_j .

For e.g. a North-branch:

▶ $j \in \{1,3\} \rightsquigarrow \{M, P, 14, 25, 36, 47, 58, 69\} \times \{M\};$ ▶ $j \in \{4, 6, 7, 9\} \rightsquigarrow \{1, \dots, 9\} \times \{N_i\};$

▶ $j \in \{2, 5, 8\} \rightsquigarrow every pair already defined on any North-edge!$

This yields $2 \times 8 + 4 \times 9 + 3 \times (2 \times 8 + 4 \times 9) = 208$ decorated T_2 . Together with $T_{4,6,8}$ (208 each) and $T_{1,3,7,9}$ (9 each): 868 tiles. Step 5: synchronizing network branches

Pairs on X- and Y-branches could be allowed on X- and Y-edges of different decorated T_i . The branches have to be synchronized.

Step 5: synchronizing network branches

This is done by allowing on T_5 the pairs of every non-central tile.

Step 5: synchronizing network branches

This is done by allowing on T_5 the pairs of every non-central tile. This double the number of tiles: there are thus 1736 τ -tiles in all.

 ϕ maps any τ -macro-tile with *i* on the ring onto a decorated T_i . But why should it be a τ -tile?

The decorated T_j the central tile is derived from (Step 5) is in τ . We claim that it is one and the same tile, except if i = 5.

When the ring intersects an X-branch of the network, it forces the green/blue pair to be allowed on some decorated T_i (Step 4).

The green/blue indices of $T_{i\neq 5}$ determine *i* (Duck lemma) $\rightsquigarrow i = j$.

For i = 5, ϕ simply maps the macro-tile onto its central tile!

Whatever *i* on the ring, ϕ thus maps the τ -macro-tile onto a τ -tile. It is moreover a bijection: the inverse function is straightforward.

In particular, applying *ad infinitum* ϕ^{-1} to any τ -tile yields arbitrarily large τ -patches, hence a τ -tiling by compacity.

In particular, applying *ad infinitum* ϕ^{-1} to any τ -tile yields arbitrarily large τ -patches, hence a τ -tiling by compacity.

