A Self-Simulating Tileset

Thomas Fernique

Goal

We define step by step

- a finite set τ of decorated squares, where every edge is endowed with a (red,green,blue) triple of indices,
- a bijection ϕ from 3×3 squares of τ-tiles to τ-tiles,

Goal

We define step by step

- a finite set τ of decorated squares, where every edge is endowed with a (red,green,blue) triple of indices,
- a bijection ϕ from 3×3 squares of τ-tiles to τ-tiles,
such that:
- there exist τ-tilings,
- every τ-tiling can be uniquely partitioned into 3×3 squares,
- applying ϕ on these 3×3 squares (+ scaling) yields a τ-tiling.

Step 1: macro-tiles

Start with tiles T_{1}, \ldots, T_{9}.

Step 1: macro-tiles

Start with tiles T_{1}, \ldots, T_{9}. Endow each edge with a red index enforcing the tiles to assemble into macro-tiles aligned along a grid.

Step 1: macro-tiles

Start with tiles T_{1}, \ldots, T_{9}. Endow each edge with a red index enforcing the tiles to assemble into macro-tiles aligned along a grid.

Step 2: rings and macro-macro-tiles

A green index $i \in\{1, \ldots, 9\}$ runs along a ring in every macro-tile.

Step 2: rings and macro-macro-tiles

Further green indices force rings to order as T_{i} 's in a macro-tile. (X_{i} denotes the red index on the X-edge of $T_{i}, X=N, W, S, E$)

Step 3: the network

A network carries green/blue indices from the central tile to ports.

Step 3: the network

A network carries green/blue indices from the central tile to ports. Off the network, each blue index replicates the red one.

Step 3: the network

Duck Lemma

The green/blue indices of every $T_{i} \neq T_{5}$ determine the red indices.

Interlude: the map ϕ

ϕ maps the green indices forcing ring ordering onto red indices and copies the green/blue indices from network branches.

Interlude: the map ϕ

ϕ maps the green indices forcing ring ordering onto red indices and copies the green/blue indices from network branches.

Interlude: the map ϕ

ϕ maps a tiling onto a tiling. Does it map a τ-tiling onto a τ-tiling? The indices on the network will have to be chosen so that it holds.

Step 4: ring/network intersections

When a ring along which runs j crosses an X-branch, it checks that the pair carried by the branch is allowed on the X-edge of T_{j}.

For e.g. a North-branch:

Step 4: ring/network intersections

When a ring along which runs j crosses an X-branch, it checks that the pair carried by the branch is allowed on the X-edge of T_{j}.

For e.g. a North-branch:

- $j \in\{1,3\} \rightsquigarrow\{M, P, 14,25,36,47,58,69\} \times\{M\} ;$

Step 4: ring/network intersections

When a ring along which runs j crosses an X-branch, it checks that the pair carried by the branch is allowed on the X-edge of T_{j}.

For e.g. a North-branch:

- $j \in\{1,3\} \rightsquigarrow\{M, P, 14,25,36,47,58,69\} \times\{M\}$;
- $j \in\{4,6,7,9\} \rightsquigarrow\{1, \ldots, 9\} \times\left\{N_{j}\right\}$;

Step 4: ring/network intersections

When a ring along which runs j crosses an X-branch, it checks that the pair carried by the branch is allowed on the X-edge of T_{j}.

For e.g. a North-branch:

- $j \in\{1,3\} \rightsquigarrow\{M, P, 14,25,36,47,58,69\} \times\{M\}$;
- $j \in\{4,6,7,9\} \rightsquigarrow\{1, \ldots, 9\} \times\left\{N_{j}\right\}$;
$\triangleright j \in\{2,5,8\} \rightsquigarrow$ every pair already defined on any North-edge!

Step 4: ring/network intersections

When a ring along which runs j crosses an X-branch, it checks that the pair carried by the branch is allowed on the X-edge of T_{j}.

For e.g. a North-branch:

- $j \in\{1,3\} \rightsquigarrow\{M, P, 14,25,36,47,58,69\} \times\{M\} ;$
- $j \in\{4,6,7,9\} \rightsquigarrow\{1, \ldots, 9\} \times\left\{N_{j}\right\}$;
$\triangleright j \in\{2,5,8\} \rightsquigarrow$ every pair already defined on any North-edge!
This yields $2 \times 8+4 \times 9+3 \times(2 \times 8+4 \times 9)=208$ decorated T_{2}. Together with $T_{4,6,8}$ (208 each) and $T_{1,3,7,9}$ (9 each): 868 tiles.

Step 5: synchronizing network branches

Pairs on X - and Y-branches could be allowed on X - and Y-edges of different decorated T_{j}. The branches have to be synchronized.

Step 5: synchronizing network branches

This is done by allowing on T_{5} the pairs of every non-central tile.

Step 5: synchronizing network branches

This is done by allowing on T_{5} the pairs of every non-central tile. This double the number of tiles: there are thus 1736τ-tiles in all.

Back to the map ϕ

ϕ maps any τ-macro-tile with i on the ring onto a decorated T_{i}. But why should it be a τ-tile?

Back to the map ϕ

The decorated T_{j} the central tile is derived from (Step 5) is in τ. We claim that it is one and the same tile, except if $i=5$.

Back to the map ϕ

When the ring intersects an X-branch of the network, it forces the green/blue pair to be allowed on some decorated T_{i} (Step 4).

Back to the map ϕ

The green/blue indices of $T_{i \neq 5}$ determine i (Duck lemma) $\rightsquigarrow i=j$.

Back to the map ϕ

For $i=5, \phi$ simply maps the macro-tile onto its central tile!

Back to the map ϕ

Whatever i on the ring, ϕ thus maps the τ-macro-tile onto a τ-tile. It is moreover a bijection: the inverse function is straightforward.

Back to the map ϕ

In particular, applying ad infinitum ϕ^{-1} to any τ-tile yields arbitrarily large τ-patches, hence a τ-tiling by compacity.

Back to the map ϕ

In particular, applying ad infinitum ϕ^{-1} to any τ-tile yields arbitrarily large τ-patches, hence a τ-tiling by compacity.

