A Self-Simulating Tileset
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Goal

We define step by step

> a finite set 7 of decorated squares, where every edge is
endowed with a (red,green,blue) triple of indices,

P a bijection ¢ from 3 x 3 squares of 7-tiles to 7-tiles,
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Goal

We define step by step

> a finite set 7 of decorated squares, where every edge is
endowed with a (red,green,blue) triple of indices,

P a bijection ¢ from 3 x 3 squares of 7-tiles to 7-tiles,
such that:
> there exist 7-tilings,
> every 7-tiling can be uniquely partitioned into 3 x 3 squares,

» applying ¢ on these 3 x 3 squares (+scaling) yields a 7-tiling.
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Step 1: macro-tiles
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Start with tiles T4, ...
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Step 1: macro-tiles
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Start with tiles Tq,..., To. Endow each edge with a red index
enforcing the tiles to assemble into macro-tiles aligned along a grid.
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Step 1: macro-tiles
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Start with tiles Tq,..., To. Endow each edge with a red index

enforcing the tiles to assemble into macro-tiles aligned along a grid.
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Step 2: rings and macro-macro-tiles

A green index i € {1,...,9} runs along a ring in every macro-tile.
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Step 2: rings and macro-macro-tiles

Further green indices force rings to order as T;'s in a macro-tile.
(X; denotes the red index on the X-edge of T;, X = N, W, S E)
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Step 3: the network
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A network carries green/blue indices from the central tile to ports.

4/8



Step 3: the network
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A network carries green/blue indices from the central tile to ports.
Off the network, each blue index replicates the red one.
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Step 3: the network
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Duck Lemma

determine the red indices.

The green/blue indices of every T; # Ts

4/8



Interlude: the map ¢
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¢ maps the green indices forcing ring ordering onto red indices
and copies the green/blue indices from network branches.

5/8
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¢ maps the green indices forcing ring ordering onto red indices
and copies the green/blue indices from network branches.
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Interlude: the map ¢
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¢ maps a tiling onto a tiling. Does it map a 7-tiling onto a 7-tiling?
The indices on the network will have to be chosen so that it holds.
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Step 4: ring/network intersections

When a ring along which runs j crosses an X-branch, it checks
that the pair carried by the branch is allowed on the X-edge of T;.

For e.g. a North-branch:
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Step 4: ring/network intersections

When a ring along which runs j crosses an X-branch, it checks
that the pair carried by the branch is allowed on the X-edge of T;.

For e.g. a North-branch:

> j e {1,3} ~ {M,P,14,25 36,47,58,69} x {M};
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Step 4: ring/network intersections

When a ring along which runs j crosses an X-branch, it checks
that the pair carried by the branch is allowed on the X-edge of T;.

For e.g. a North-branch:
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Step 4: ring/network intersections

When a ring along which runs j crosses an X-branch, it checks

that the pair carried by the branch is allowed on the X-edge of T;.

For e.g. a North-branch:

> j€{4,6,7,9} ~ {1.....9} x {N;}:

» j €{2,5,8} ~ every pair already defined on any North-edge!
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Step 4: ring/network intersections

When a ring along which runs j crosses an X-branch, it checks
that the pair carried by the branch is allowed on the X-edge of T;.

For e.g. a North-branch:

> j€{4,6,7,9} ~ {1.....9} x {N;}:

» j €{2,5,8} ~ every pair already defined on any North-edge!

This yields 2 x 844 x 9+ 3 x (2 x 844 x 9) = 208 decorated T».
Together with T8 (208 each) and T137,9 (9 each): 868 tiles.
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Step 5: synchronizing network branches

Pairs on X- and Y-branches could be allowed on X- and Y-edges
of different decorated T;. The branches have to be synchronized.
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Step 5: synchronizing network branches

This is done by allowing on Ts the pairs of every non-central tile.

7/8



Step 5: synchronizing network branches

This is done by allowing on Ts the pairs of every non-central tile.
This double the number of tiles: there are thus 1736 7-tiles in all.
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Back to the map ¢

¢ maps any T-macro-tile with 7 on the ring onto a decorated T;.

But why should it be a 7-tile?

8/8



Back to the map ¢
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The decorated T the central tile is derived from (Step 5) is in 7.
We claim that it is one and the same tile, except if i = 5.
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Back to the map ¢

it forces the

When the ring intersects an X-branch of the network,

green/blue pair to be allowed on some decorated T; (Step 4).
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Back to the map ¢
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Duck lemma

(

The green/blue indices of Tj.5 determine i
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Back to the map ¢

For i =5, ¢ simply maps the macro-tile onto its central tile!
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Back to the map ¢
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Whatever i on the ring, ¢ thus maps the 7-macro-tile onto a 7-tile.
It is moreover a bijection: the inverse function is straightforward.
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Back to the map ¢

In particular, applying ad infinitum ¢! to any 7-tile yields
arbitrarily large 7-patches, hence a 7-tiling by compacity.
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Back to the map ¢
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In particular, applying ad infinitum ¢! to any 7-tile yields
arbitrarily large 7-patches, hence a 7-tiling by compacity.
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