
Generation and Reognition of Digital Planesusing Multi-dimensional Continued FrationsThomas FerniqueLIRMM, Univ. Montpellier 2, CNRS161 rue Ada 34392 Montpellier - Frane,fernique�lirmm.frAbstrat. This paper extends, in a multi-dimensional framework, pat-tern reognition tehnis for generation or reognition of digital lines.More preisely, we show how the onnetion between hain odes of di-gital lines and ontinued frations an be generalized by a onnetionbetween tilings and multi-dimensional ontinued frations. This leads toa new approah for generating and reognizing digital hyperplanes.IntrodutionDisrete (or digital) geometry deals with disrete sets onsidered to be digitizedobjets of the Eulidean spae. A hallenging problem is to deompose a hugeompliated disrete set into elementary ones, whih ould be easily stored andfrom whih one an easily reonstrut the original disrete set. Good andidatesfor suh elementary disrete sets are digitizations of Eulidean hyperplanes, inpartiular arithmeti disrete hyperplanes (see [1, 7, 9℄). We thus need e�ientalgorithms whih generate arbitrarily big pathes of suh digitizations from givenparameters and, onversely, reognize parameters from given digitizations.In the partiular ase of digitizations of lines, among other tehnis, so-alledlinguisti tehnis provide a nie onnetion with words theory and ontinuedfrations. Let us brie�y detail this. A digital line made of horizontal or vertialunit segments an be oded by a two-letter word, alled hain ode or Free-man ode. For example, if a horizontal (resp. vertial) unit segment is odedby 0 (resp. 1), then a segment of slope 1 an be oded by a word of the form
10 . . . 10 = (10)k. Then, basi transformations on words orrespond to basi op-erations on slopes of the segments they ode. For example, replaing eah 0 by
01 and eah 1 by 0 in the previous word leads to the word (001)k, whih odesa segment of slope 1/2. Many algorithms use this approah for both reogni-tion and generation of digital lines, and ontinued fration expansions of slopesof segments turn out to play a entral role there (see e.g. [11℄ or referenes in [8℄).In higher dimensions, there are also various tehnis for generation or reog-nition of digital hyperplane as, for example, linear programming, omputationalgeometry or preimage tehnis (see e.g. [4℄ and referenes therein). However,



2these approahes do not extend the onnetion between words theory and on-tinued frations. The aim of this paper is to introdue an approah whih doesit. Suh an approah extends the ase of so-alled stepped surfaes (whih arepartiular in�nite digitizations), studied in [3℄.The paper is organized as follows. In Se. 1, we introdue binary funtions,whih an be seen as unions of faes of unit hyperubes. Among them, theones alled stepped planes ([12℄) play for Eulidean hyperplanes the role playedby hain odes for Eulidean lines. We also introdue dual maps ([2, 6℄), whihgeneralize the basi transformations on hain odes mentioned above. Then,in Se. 2, we brie�y desribe the Brun algorithm, whih is one of the existingmulti-dimensional ontinued fration algorithms (see [10℄). The Brun algorithmomputes so-alled Brun expansions of real vetors. We also introdue partiulardual maps whih allow the Brun algorithm to at over stepped planes. This leads,in Se. 3, to a method for obtaining a fundamental domain of a stepped plane,that is, a binary funtion whih su�es to generate by periodiity the wholestepped plane (Th. 2). In Se. 4, we desribe a method to ompute so-alled Brunexpansions of stepped planes, by grabing information from loal on�gurations(namely runs). Atually, the Brun expansion of a stepped plane is nothing butthe Brun expansion of its normal vetor. So, the interest of this method is that itan be naturally extended to binary funtions, leading to de�ne, in Se. 5, Brunexpansions of binary funtions. We �nally use this extended notion of Brunexpansion, in Se. 6, to desribe a reognition algorithm whih deides whethera given binary funtion is a stepped plane or not (Th. 3).1 Stepped planes and dual mapsWe here �rst introdue our basi digital objets, namely binary funtions andstepped planes. Formally, it is onvenient to onsider the set of funtions from
Zd × {1, . . . , d} to Z, denoted by Fd. Then, we de�ne:De�nition 1. A binary funtion is a funtion in Fd whih takes values in {0, 1}.The size of a binary funtion B, denoted by |B|, is the ardinality of its support,that is, the subset of Zd × {1, . . . , d} where B takes value one. We denote by Bdthe set of binary funtions. For x ∈ Zd and i ∈ {1, . . . , d}, we all fae of type
i loated in x the binary funtion denoted by (x, i∗) whose support is {(x, i)}.Note that binary funtions (resp. funtions of Fd) an be seen as sums of faes(resp. weighted sums of faes). Let us now provide a geometri interpretation ofbinary funtions. Let (e1, . . . , ed) denote the anonial basis of Rd. The geometriinterpretation of a fae (x, i∗) is the losed subset of Rd de�ned by (see Fig. 1):

{x + ei +
∑

j 6=i

λjej | 0 ≤ λj ≤ 1}.This subset is a hyperfae of the unit ube of Rd whose lowest vertex is x. Then,the geometri interpretation of a binary funtion, that is, of a sum of faes, is



3the union of the geometrial interpretations of these faes (see Fig. 3).
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xFig. 1. Geometrial interpretations of faes (x, i∗), for i = 1, 2, 3 (from left to right).Among binary funtions, we are espeially interested in so-alled stepped planes :De�nition 2. Let α ∈ Rd
+\{0} and ρ ∈ R. The stepped plane of normal vetor

α and interept ρ ∈ R, denoted by Pα,ρ, is the binary funtion de�ned by:
Pα,ρ(x, i) = 1 ⇔ 〈x|α〉 < ρ ≤ 〈x + ei|α〉,where 〈|〉 is the anonial dot produt. We denote by Pd the set of stepped planes.Fig. 2 depits the geometrial interpretation of a stepped plane. It is nothard to hek that the verties of a stepped plane Pα,ρ, that is, the integers ve-tors whih belong to its geometrial interpretation, form a standard arithmetidisrete plane of parameters (α, ρ) (see [1, 7, 9℄). Moreover, one heks that theorthogonal projetion along e1 + . . .+ed maps the geometrial representation ofa stepped plane onto a tiling of Rd−1 whose tiles are projetions of geometrialrepresentations of faes (see also Fig. 2).Let us now introdue the main tool of this paper, namely dual maps, whihat over binary funtions and stepped planes. First, let us reall some baside�nitions and notations. We denote by Fd the free group generated by thealphabet {1, . . . , d}, with the onatenation as a omposition rule and the emptyword as unit. An endomorphism of Fd is a substitution if it maps any letterto a non-empty onatenation of letters with non-negative powers. The parikhmapping is the map f from Fd to Zd de�ned on w ∈ Fd by:

f(w) = (|w|1, . . . , |w|d),where |w|i is the sum of the powers of the ourenes of the letter i in w. Then,the inidene matrix of an endomorphism σ of Fd, denoted by Mσ, is the d× dinteger matrix whose i-th olumn is the vetor f(σ(i)). Last, an endomorphismof Fd is said to be unimodular if its inidene matrix has determinant ±1.Example 1. Let σ be the endormorphism of F3 de�ned by σ(1) = 12, σ(2) = 13and σ(3) = 1. Note that σ is a substitution (often alled Rauzy substitution).One omputes, for example, σ(1−12) = σ(1)−1σ(2) = 2−11−113 = 2−13, and
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Fig. 2. Geometrial interpretation of the stepped plane P(24,9,10),0 (highlighted origin).This an be seen either as faes of unit ubes, or as a lozenge tiling of the plane.
f(2−13) = e3 − e2. This substitution is unimodular sine its inidene matrix(below) has determinant 1:

Mσ =





1 1 1
1 0 0
0 1 0



 .We are now in a position to de�ne dual maps :De�nition 3. The dual map of a unimodular endomorphism σ of Fd, denotedby E∗
1 (σ), maps any funtion F ∈ Fd to the funtion E∗

1 (σ)(F) de�ned by:
E∗

1 (σ)(F) : (x, i) 7→
∑

j|σ(i)=p·j·s

F(Mσx + f(p), j)−
∑

j|σ(i)=p·j-1·sF(Mσx + f(p)− ej , j).Note that the value of E∗
1 (σ)(F) in (x, i) is �nite sine it depends only onthe values of F over a �nite subset of Zd × {1, . . . , d}. This yields that E∗

1 (σ) isan endomorphism of Fd.Example 2. The dual map of the substitution σ introdued in Ex. 1 satis�es:
E∗

1 (σ) :







(0, 1∗) 7→ (0, 1∗) + (0, 2∗) + (0, 3∗),
(0, 2∗) 7→ (−e3, 1

∗),
(0, 3∗) 7→ (−e3, 2

∗).The image of any funtion of Fd, that is, of a weighted sum of faes, an thenbe easily omputed by linearity. Fig. 3 illustrates this.The following theorem, proved in [3℄, onnets dual maps and stepped planes:Theorem 1 ([3℄). Let σ be a unimodular endomorphism of Fd. Let α ∈ Rd
+\{0}and ρ ∈ R. If M⊤

σ α ∈ Rd
+, then the image of the stepped plane Pα,ρ by E∗

1 (σ) isthe stepped plane PM⊤
σ α,ρ. Otherwise, this image is not a binary funtion1.1 See Def. 1.



5
Fig. 3. Ation of the dual map of Ex. 2 on faes (left) and on a binary funtion (right).Let us stress that the image of a binary funtion is not neessarily binary (unlike here).Note that, although the image by E∗

1 (σ) of a stepped plane is a steppedplane, the image of eah fae of this stepped plane is a weighted sum of faes(in partiular, not neessarily binary). Note also that if σ is a substitution, then
M⊤

σ α ∈ Rd
+ holds for any α ∈ Rd

+\{0}: the image of a stepped plane by thedual map of a substitution is thus always a stepped plane.2 Brun expansions of real vetorsWe here reall the Brun algorithm (see e.g. [10℄) and use dual maps to onnetit with normal vetors of stepped planes (reall Def. 2).De�nition 4. The Brun map T is the map from [0, 1]d\{0} to [0, 1]d de�nedon α = (α1, . . . , αd) by:
T (α1, . . . , αd) =

(

α1

αi
, . . . ,

αi−1

αi
,

1

αi
−

⌊

1

αi

⌋

,
αi+1

αi
, . . . ,

αd

αi

)

,where i = min{j | αj = ||α||∞}. Then, the Brun expansion of a vetor α ∈ [0, 1]dis the sequene (an, in)n≥0 of N∗ × {1, . . . , d} de�ned, while T n(α) 6= 0, by:
an =

⌊

||T n(α)||−1
∞

⌋ and in = min{j | 〈T n(α)|ej〉 = ||T
n(α)||∞}.Let us stress that, in the d = 1 ase, the Brun map T is nothing but thelassi Gauss map, and if (an, in)n≥0 is the Brun expansion of α ∈ [0, 1], then

(an)n is the ontinued fration expansion of α, while, for all n, in = 1.Example 3. The Brun expansion of (3/8, 5/12) is (2, 2), (1, 1), (2, 2), (4, 1), (1, 2).Let us mention that, as in the ase of ontinued frations, it turns out that avetor has a �nite Brun expansion if and only if it has only rational entries. Letus now give a matrix viewpoint of the Brun map T . For (a, i) ∈ N× {1, . . . , d},one introdues the following (d+ 1)× (d+ 1) symmetri matrix:
Ba,i =









a 1
Ii−1

1 0
Id−i









, (1)



6where Ip stands for the p × p identity matrix. Then, onsider a vetor α =
(α1, . . . , αd) ∈ [0, 1]d\{0}. A simple omputation shows that, with i = min{j | αj =
||α||∞} and a = ⌊α−1

i ⌋, one has:
(1,α) = ||α||∞Ba,i(1, T (α)), (2)where, for any vetor u, (1,u) stands for the vetor obtained by adding to ua �rst entry equal to 1. Note that Ba,i is invertible. Thus, one an rewrite theprevious equation as follows:
(1, T (α)) = ||α||−1

∞ B−1
a,i (1,α). (3)To onlude this setion, let us show that this matrix viewpoint allows toonnet Brun expansions with the stepped planes and dual maps introdued inthe previous setion. Let us introdue Brun substitutions :De�nition 5. Let a ∈ N∗ and i ∈ {1, . . . , d}. The Brun substitution βa,i is theendomorphism of Fd+1 de�ned by:

βa,i(1) = 1a· (i+ 1), βa,i(i+ 1) = 1, ∀j /∈ {1, i+ 1}, βa,i(j) = j.One heks that βa,i is unimodular and has Ba,i for inidene matrix.2 Note alsothat βa,i is invertible, sine one omputes:
β−1

a,i (1) = (i+ 1), β−1
a,i (i+ 1) = (i+ 1)−a· 1, ∀j /∈ {1, i+ 1}, β−1

a,i (j) = j.

Fig. 4. Ation on faes of the dual maps E∗

1 (β4,1) (top) and E∗

1 (β3,2) (bottom).One then an onsider dual maps of Brun substitutions (see Fig. 4), and onededues from Th. 1 that Eq. (2) and (3) respetively yield:
E∗

1 (βa,i)(P||α||∞(1,T (α)),ρ) = P(1,α),ρ, (4)
P||α||∞(1,T (α)),ρ = E∗

1 (β−1
a,i )(P(1,α),ρ). (5)2 Let us reall that Ba,i is the symmetri matrix de�ned Eq. (1).



73 Generation of stepped planesWe here show how dual maps and Brun expansions an be used to easily generatearbitrarily big pathes of a stepped plane (that is, binary funtions less or equalto it), provided that its normal vetor has rational entries. Indeed, one proves:Theorem 2. Let α ∈ [0, 1]d ∩Qd with the �nite Brun expansion (an, in)0≤n≤N (Proof in Appendix)and ρ ∈ R. Let ρ′ = ρ/||Ba0,i0 × . . . × BaN ,iN
e1||∞ and D(1,α),ρ be the binaryfuntion de�ned by:

D(1,α),ρ = E∗
1 (βa0,i0) ◦ . . . ◦ E

∗
1 (βaN ,iN

)(⌊ρ′⌋e1, 1
∗),and L(1,α),ρ be the lattie of rank d of Zd+1 de�ned by:

L(1,α),ρ = B−1
a0,i0

. . . B−1
aN ,iN

d+1
∑

k=2

Zek.Then, the geometrial interpretation of the stepped plane P(1,α),ρ is the union ofall the translations along L(1,α),ρ of the geometrial interpretation of D(1,α),ρ.Example 4. Fig. 5 shows the generation of the binary funtion D(1,3/8,5/12),0 bythe dual maps of the Brun substitutions assoiated with the Brun expansion ofthe vetor (3/8, 5/12) (reall Ex. 3). One also omputes:
L(1,3/8,5/12),0 = Z(e1 + 4e2 − 6e3) + Z(2e1 − 2e2 − 3e3).Thus, aording to Th. 2, the geometrial interpretation of the rational steppedplane P(1,3/8,5/12),0 = P(24,9,10),0 (see Fig. 2) is the union of all the translationsalong L(1,3/8,5/12),0 of the geometrial interpretation of D(1,3/8,5/12),0.

Fig. 5.Generation of D(1,3/8,5/12),0 by appliations of the dual maps E∗

1(β1,2), E∗

1 (β4,1),
E∗

1 (β2,2), E∗

1 (β1,1) and E∗

1 (β2,2) (from left ro right � highlighted origin). Aording toTh. 2, the stepped plane P(1,3/8,5/12),0 an be generated by translating D(1,3/8,5/12),0 .Note that, in terms of funtions, one has D(1,α),ρ ≤ P(1,α),ρ. This means thatthe geometrial interpretation of D(1,α),ρ is inluded in the one of P(1,α),ρ. Toonlude this setion, let us mention that one an show that D(1,α),ρ has minimalsize: suh a piee of P(1,α),ρ is alled a fundamental domain of P(1,α),ρ.



84 Brun expansions of stepped planesWe here show how Brun expansions of normal vetors of stepped planes an bediretly omputed on stepped planes relying on the notion of run:De�nition 6. An (i, j)-run of a binary funtion B is a maximal sequene ofontiguous faes of type i, aligned with the diretion ej , whose geometri inter-pretation is inluded in the one of B.For example, the stepped plane depited on Fig. 2 has (1, 2)-runs and (1, 3)-runs of size 2 or 3, and (3, 2)-runs of size 1 or 2 (see also Fig. 6 in the general aseof a binary funtion). The in�mum and the supremum of the sizes (Reall Def. 1)of the (i, j)-runs of a binary funtion B are respetively denoted by a−i,j(B) and
a+

i,j(B). The following proposition shows that runs ontain information aboutthe normal vetor of a stepped plane:Proposition 1. Let α = (α1, . . . , αd) ∈ Rd
+\{0} and ρ ∈ R. Then, for αj 6= 0:(Proof in Appendix)

a−i,j(Pα,ρ) = max(⌊αi/αj⌋, 1) and a+
i,j(Pα,ρ) = max(⌈αi/αj⌉, 1).In partiular, let us show that runs ontain enough information to omputeBrun expansions of normal vetors of so-alled expandable stepped planes:De�nition 7. A stepped plane P ∈ Pd+1 is said to be expandable if one has:

max
1≤i≤d

a+
i+1,1(P) = 1 and min

1≤i≤d
a−1,i+1(P) <∞.In this ase, we de�ne:

i(P) = min
1≤i≤d

{i | max
1≤j≤d

a+
j+1,i+1(P) ≤ 1} and a(P) = a−1,i(P)+1(P).Note that one easily dedues from Prop. 1 that a stepped plane is expandableif and only if its normal vetor is of the form (1,α), with α ∈ [0, 1]d\{0}.Moreover, one then has:

i(P(1,α),ρ) = min{i | αi = ||α||∞} and a(P(1,α),ρ) = ⌊||α||−1
∞ ⌋. (6)This leads to the following de�nition:De�nition 8. Let T̃ be the map de�ned over expandable stepped planes by:

T̃ (P) = E∗
1 (β−1

a(P),i(P))(P).In partiular, T̃ has values in Pd+1. More preisely, Eq. (4) yields:
T̃ (P(1,α),ρ) = P(1,T (α)),ρ. (7)Thus, the Brun expansion of a vetor α an be omputed on a stepped plane P ofnormal vetor (1,α), sine it is nothing but the sequene (a(T̃ n(P)), i(T̃ n(P)))n.By abuse, this Brun expansion is alled Brun expansion of the stepped plane P .



95 Brun expansions of binary funtionsHere, we show that runs allow to de�ne Brun expansions not only of steppedplanes but also of binary funtions, although the latter do not have normalvetors. We �rst need to re�ne Def. 6 (see Fig. 6):De�nition 9. Let R be an (i, j)-run of a binary funtion B. Thus, there is avetor x ∈ Zd and an interval I of Z (not neessarily �nite) suh that:
R =

∑

k∈I

(x + kej , i
∗).This run is right-losed if I has a right endpoint b suh that B(x + bej , j

∗) = 1,and left-losed if I has a left endpoint a suh that B(x+(a−1)ej+ei, j
∗) = 1. Theterms losed, open, right-open and left-open are then de�ned as for intervals.

Fig. 6. This binary funtion has every type of (1, 3)-runs: left-losed, right-losed,losed and open (framed runs, from left to right). It is moreover reognizable, with
(a, i) = (2, 2) (see de�nition below).Then, as we previously de�ned Brun expansions of expandable stepped planes,we will here restrit to reognizable binary funtions:De�nition 10. A binary funtion B ∈ Bd+1 is reognizable if it satis�es thetwo following onditions. First, it shall exist i ∈ {1, . . . , d} suh that:

a+
1,i+1(B) ≥ 2 and min

1≤j≤d
a+

i+1,j+1(B) ≥ 2.Let i(B) denotes the smallest suh i. Seond, B shall have losed (1, i(B) + 1)-runs, with the smallest one having size a+
1,i(B)+1(B) − 1. Let a(B) denotes thissize.Let us explain this de�nition. Assume that B ≤ P(1,α),ρ, for α ∈ Rd

+ and
ρ ∈ R. Then, it is not hard to dedue from Prop. 1 that the �rst reognizabilityondition ensures that the i(B)-th entry of α is smaller than 1 and greater thanall the other entries, while the seond reognizability ondition ensures that
P(1,α),ρ has (1, i(B))-runs of two di�erent sizes, with the smallest size being equalto a(B). In other words, reognizability ensures α ∈ [0, 1]d, i(B) = i(P(1,α),ρ)and a(B) = a(P(1,α),ρ). Thus, the formula de�ning T̃ over stepped planes (Def.8) an still be used to de�ne T̃ over reognizable binary funtions. This leads tode�ne the Brun expansion of a reognizable binary funtion B as the sequene
(a(T̃ n(B)), i(T̃ n(B)))n, for n suh that T̃ n(B) is a reognizable binary funtion.



106 Reognition of stepped planesWe are here interested in the following reognition problem: given a binary fun-tion B ∈ Bd+1 whose size |B| is �nite, deide whether the following onvexpolytope of Rd+1 is empty or not:
P (B) = {(α, ρ) ∈ [0, 1]d\{0} × R | B ≤ P(1,α),ρ}.The idea is that if the map T̃ previously de�ned would satisfy, for any B ∈ Bd+1:

0 ≤ B ≤ P ⇔ 0 ≤ T̃ (B) ≤ T̃ (P), (8)then, P (B) would be not empty if and only if omputing the sequene (T̃ n(B))n≥0would lead to a binary funtion of the form ∑

x∈X(x, 1∗), with the vetors of Xhaving all the same �rst entries (suh a binary funtion is easily reognizable).But Eq. (8) does not always hold. The �rst problem is that T̃ is de�ned onlyover expandable stepped planes and reognizable binary funtions. However, thisproblem turns out to generally appear only for binary funtions whose size issmall, beause their runs do not ontain enough information. The seond problemseems more tedious: the image by T̃ of a reognizable binary funtion less than orequal to a stepped plane P is neither neessarily less than or equal to T̃ (P), noreven always a binary funtion. Let us �rst onsider this problem. We introduethree rules ating over binary funtions (see Fig. 7, and also Fig. 8, left):De�nition 11. Let a ∈ N∗ and i ∈ {1, . . . , d}. The rule φa,i left-extends anyright-losed and left-open (1, i+ 1)-run into a run of size a; the rule ψa,i right-loses any right-open (1, i + 1)-run of size greater than a; the rule χi removesany left-losed and right-open (1, i+ 1)-run.
χ

2
ψ

2,2
φ

2,2Fig. 7. The rules φ2,2, ψ2,2 and χ2 (dashed edges represent missing faes).The following proposition then shows that one an replae any reognizablebinary funtion B by a reognizable binary funtion B̃ whih satis�es Eq. (8)under an additional hypothesis:Proposition 2. Let B ∈ Bd+1 be a reognizable binary funtion and B̃ be the(Proof in Appendix) binary funtion obtained by suessively applying φa(B),i(B), ψa(B),i(B) and χi(B).Then, for any stepped plane P ∈ Pd+1, one has B ≤ P if and only if B̃ ≤ P.Moreover, if B̃ does not have open (1, i(B) + 1)-runs, then one has:
0 ≤ B̃ ≤ P ⇔ 0 ≤ T̃ (B̃) ≤ T̃ (P).
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Fig. 8. The reognizable binary funtion B of Fig. 6 is transformed by applying therules of Fig. 7 into a binary funtion B̃ (left) suh that 0 ≤ B ≤ P ⇔ 0 ≤ B̃ ≤ P .Here, sine B̃ does not have open (1, 3)-run, its image by T̃ (right) is suh that, for anystepped plane P , one has: 0 ≤ B̃ ≤ P ⇔ 0 ≤ T̃ (B̃) ≤ P .Thus, we still have the problem that a binary funtion B is not always reog-nizable (Def. 10), while the seond problem is now that B̃ an have problematiopen runs. However, it is expeted that, in pratie, both not reognizable bi-nary funtions and problemati open runs have rather small sizes. Hene, it isworth onsidering a hybrid algorithm. Given a reognizable binary funtion B,we ompute B̃, remove problemati open runs and apply the map T̃ . We iteratethis up to obtain an unreognizable binary funtion. Then, we use an alreadyexisting algorithm (e.g. a preimage algorithm, see [4℄) to reognize this binaryfuntion and, �nally, to re�ne the reognition by onsidering the previously re-moved open runs. More preisely, onsider the following algorithm, where XReois an algorithm whih omputes the set P (B) and B′
a,i is the (d + 2) × (d + 2)blok matrix whose �rst blok is Ba,i and the seond the 1× 1 identity matrix:HybridBrunReo(B)1. n ← 0;2. B0 ← B;3. while Bn is reognizable do4. (an, in) ← (a(Bn), i(Bn));5. ompute B̃n;6. Ln ← open runs of B̃n;7. Bn+1 ← E∗

1 (β−1
an,in

)(B̃n − Ln);8. n ← n+ 1;9. end while;10. Pn ← XReo(Bn);11. for k = n− 1 downto k=0 do12. Pk ← B′
ak,ik

Pk+1;13. Pk ← Pk ∩ XReo(Lk);14. end for;15. return P0;One shows:Theorem 3. The algorithm HybridBrunReo with a binary funtion B of �nitesize as input returns the set P (B) in �nite time.



12 To onlude, let us disuss the omputational ost of the above algorithm.Let us �rst fous on the �Brun� stage of the algorithm, that is, on lines 3�9.One an show that eah step of this stage an be performed in time O(|Bn|)and that the size |Bn| of Bn stritly dereases. Thus, the whole stage an beperformed in quadrati time (in the size of B). However, let us stress that (|Bn|)ngenerally dereases with an exponential rate (this is the ase, for example, forany stepped plane), so that this stage is expeted, in pratie, to be performedin near linear time. Let us now onsider the �orretion� stage of the algorithm,that is, lines 10�14. Note that the sum of sizes of inputs of XReo is less than
|B|. Thus, assuming that XReo works in time no more than quadrati (thisholds; for example, for a preimage algorithm, see [4℄), the bound given for the�rst stage still holds. We also need to ompute intersetions of onvex polytopes.The omplexity of suh operations is not trivial in higher dimensions, but letus stress that the intersetion of k onvex polytopes of R3 an be omputed intime O(m ln k), where m stands for the total size of these polytopes (see [5℄).Moreover, let us reall that the �rst unreognizable Bn as well as the sum of sizesof the Lk's are expeted to be muh smaller than B. In onlusion, theoretialtime omplexity bounds are probably muh bigger than the pratial e�ieny ofthis algorithm, so that further expriments shall be performed in order to betterunderstand the omputational ost of this hybrid algorithm.Referenes1. E. Andres, Le plan disret, Pro. of Disrete Geometry for Computer ImageryDGCI'93 (1993), pp. 45�61.2. P. Arnoux, S. Ito, Pisot substitutions and Rauzy fratals, Bull. Bel. Math. So. SimonStevin 8 (2001), pp. 181�207.3. V. Berthé, Th. Fernique, Brun expansions of stepped surfaes, preprint (2008).4. V. Brimkov, D. C÷urjolly, Computational aspets of Digital plane and hyperplanereognition, in pro. of IWCIA'06, LNCS 4040 (2006), pp. 543�562.5. B. Chazelle, An optimal algorithm for interseting three-dimensional onvex polyhe-dra, SIAM J. Comput. 21 (1992), pp. 671�696.6. H. Ei, Some properties of invertible substitutions of rank d and higher dimensionalsubstitutions, Osaka Journal of Mathematis 40 (2003), pp. 543�562.7. J. Françon, Disrete ombinatorial surfaes, Graphial Models & Image Proessing57 (1995), pp. 20�26.8. R. Klette, A. Rosenfeld, Digital straightness�a review, Ele. Notes in Theoret. Com-put. Si. 46 (2001).9. J.-P. Reveillès, Calul en nombres entiers et algorithmique, Ph. D Thesis, Univ.Louis Pasteur, Strasbourg (1991).10. F. Shweiger, Multi-dimensional ontinued frations, Oxford Siene Publiations,Oxford Univ. Press, Oxford (2000).11. A. Troesh, Interprétation géométrique de l'algorithme d'Eulide et reonnaissanede segments, Theor. Comput. Si. 115 (1993), pp. 291�320.12. L. Vuillon, "Combinatoire des motifs d'une suite sturmienne bidimensionelle," The-oret. Comput. Si. 209 (1998), pp. 261�285.



13AppendixTheorem 2. Let α ∈ [0, 1]d ∩Qd with the �nite Brun expansion (an, in)0≤n≤Nand ρ ∈ R. Let D(1,α),ρ be the binary funtion de�ned by:
D(1,α),ρ = E∗

1 (βa0,i0) ◦ . . . ◦ E
∗
1 (βaN ,iN

)(⌈ρ⌉e1, 1
∗),and L(1,α),ρ be the lattie of rank d of Zd+1 de�ned by:

L(1,α),ρ = B−1
a0,i0

. . . B−1
aN ,iN

d+1
∑

k=2

Zek.Then, the geometrial interpretation of the stepped plane P(1,α),ρ is the union ofall the translations along L(1,α),ρ of the geometrial interpretation of D(1,α),ρ.Proof. On the one hand, one easily heks that translations of the geometrialinterpretation of (⌈ρ⌉e1, e
∗
1) along the lattie Ze2 + . . . + Zed+1 yield the geo-metrial interpretation of the stepped plane P(1,0),ρ. On the other hand, if D isa binary funtion suh that the translations along a lattie L of its geometrialinterpretation yield the geometrial interpretation of a stepped plane P , then,for any unimodular substitution σ, Th.1 yields that E∗

1 (σ)(D) is a binary fun-tion whose geometrial interpretation, translated along the lattie M−1
σ L, yieldsthe geometrial interpretation of the stepped plane E∗

1 (σ)(P). The result followsby onsidering the unimodular substitution σ = βaN ,iN
◦ . . . ◦ βa0,i0 . ⊓⊔Proposition 1. Let α = (α1, . . . , αd) ∈ Rd

+\{0} and ρ ∈ R. Then, for αj 6= 0:
a−i,j(Pα,ρ) = max(⌊αi/αj⌋, 1) and a+

i,j(Pα,ρ) = max(⌈αi/αj⌉, 1),where the �oor and the eiling of x ∈ R are respetively denoted by ⌊x⌋ and ⌈x⌉.Proof. Let x ∈ Zd and I ⊂ Z suh that the following binary funtion is an
(i, j)-run of Pα,ρ:

R =
∑

k∈I

(x + kej , i
∗).Assume that I ontains an interval [a, b], of length b− a+ 1. Then, one has:

Pα,ρ(x + aej , i) = 1 ⇒ 〈x|α〉+ aαj < ρ ≤ 〈x|α〉+ aαj + αi,

Pα,ρ(x + bej , i) = 1 ⇒ 〈x|α〉+ bαj < ρ ≤ 〈x|α〉+ bαj + αi.One dedues:
(b− a)αj < ρ− 〈x|α〉 ≤ αi,that is, for αj 6= 0:

b− a+ 1 <
αi

αj
+ 1.



14This thus gives an upper bounds of the length of I. Let us now assume that
I = [a, b]. Then, one has:

Pα,ρ(x + aej , i) = 1 ⇒ 〈x|α〉+ (a− 1)αj < 〈x|α〉+ aαj < ρ,and one dedues:
Pα,ρ(x + (a− 1)ej , i) = 0 ⇒ ρ > 〈x|α〉+ (a− 1)αj + αi.Similarly, one shows:

ρ ≤ 〈x|α〉+ (b+ 1)αj + αi.Finally, one has:
(a− 1)αj + αi < ρ− 〈x|α〉 ≤ (b + 1)αj ,that is, for αj 6= 0:

b− a+ 1 >
αi

αj
− 1.This thus gives a lower bounds of the length of I. In onlusion, we shown:

αi

αj
− 1 < a−i,j(Pα,ρ) ≤ a

+
i,j(Pα,ρ) <

αi

αj
+ 1.The result follows (reall that, by de�nition, runs are non-empty). ⊓⊔Proposition 2. Let B be a reognizable binary funtion of Bd+1 and B̃ thebinary funtion obtained by suessively applying φa(B),i(B), ψa(B),i(B) and χi(B).Then, for any stepped plane P ∈ Pd+1, one has B ≤ P if and only if B̃ ≤ P.Moreover, if B̃ does not have open (1, i(B) + 1)-run, then one has :

0 ≤ B̃ ≤ P ⇔ 0 ≤ T̃ (B̃) ≤ T̃ (P).Proof. Let B be a reognizable binary funtion. Assume that there is a steppedplane P suh that B ≤ P . Thus, any left-open and right-losed (1, i+1)-run of Bis less or equal to a losed (1, i+1)-run of P . Sine suh a run has length at least
a(P) = a(B), this yields that φa(B),i(B)(B) is still less or equal to P . Conversely,if φa(B),i(B)(B) is less or equal to P , then B also sine B ≤ φa(B),i(B)(B). Thisshows that B ≤ P if and only if φa(B),i(B)(B) ≤ P . One similarly proeeds for
ψa,i et χi, so that, �nally, B ≤ P if and only if B̃ ≤ P .Let us now assume that B̃ does not have open (1, i(B)+1)-run. It is not hardto see that B̃ an be written as the image by E∗

1 (βa,i) of a binary funtion, say
B̃′ (atually, this is what led the de�nition of rules φa,i, ψa,i and χi). It is alsoeasily seen that B̃ is, as B, reognizable. In partiular, T̃ (B̃) = E∗

1 (β−1
a(B),i(B))(B̃)is a binary funtion. Now, assume that there is a stepped plane P suh that

B̃ ≤ P and T̃ (P) ≥ 0. Let us introdue the binary funtion C = P − B̃. The fatthat both P and B̃ are images by E∗
1 (βa,i) of binary funtions yields that it is



15also the ase for C. So, one has: C = E∗
1 (βa,i)(C

′), for some binary funtion C′.Hene, by applying T̃ = E∗
1 (β−1

a(P),i(P)) on P , one obtains:
T̃ (P) = T̃ (B̃) + T̃ (C) = T̃ (B̃) + C′ ≥ T̃ (B̃) = B̃′ ≥ 0.Thus, we shown that one has, for any stepped plane P :

0 ≤ B̃ ≤ P ⇒ 0 ≤ T̃ (B̃) ≤ T̃ (P).Conversely, assume that 0 ≤ T̃ (B̃) ≤ T̃ (P) for some stepped plane P . It iseasily seen that the subset of positive funtions of F is stable under dual mapsof substitutions. Thus, sine βa(P),i(P) is a subsitution, applying E∗
1 (βa(P),i(P))yields 0 ≤ B̃ ≤ P . This onludes the proof. ⊓⊔Theorem 3. The algorithm HybridBrunReo with a binary funtion B as inputreturns the set P (B) in �nite time.Proof. Let us �rst shows that the algorithm �nishes, by proving that |Bn+1| isless than |Bn| (so that, eventually, Bn is not a reognizable binary funtion).Let us respetively denote f(Bn), f(B̃n − Ln) and f(Bn+1) by (x1, . . . , xd+1),

(y1, . . . , yd+1) and (z1, . . . , zd+1), where f maps any binary funtion of �nite sizeonto the integer vetor whose i-th entry ounts the number of faes of type i inthis binary funtion. One heks that the ation of dual maps yields:






z1 = yin+1,
zin+1 = y1 − anyin+1,
zj = yj .We also easily dedue from the de�nition of B̃:







y1 = x1 + axin+1 − x
′
1,

yin+1 = xin+1 + 1
an+1x

′′
1 ,

yj = xj ,where x′1 (resp. x′′1 ) is the sum of the sizes of the (1, in + 1)-runs extended by
φan,in

(resp. ψan,in
). One then omputes:

|Bn+1| =

d+1
∑

j=1

zj =

d+1
∑

j=1

xj +
1− an

an + 1
x′′1 − x

′
1 = |Bn|+

1− an

an + 1
x′′1 − x

′
1.Sine an ≥ 1, one has |Bn+1| ≤ |Bn|, with the inegality being strit exept if

x′1 = 0. But x′1 = 0 would mean that there is no right-losed (1, in +1)-run, andthus that Bn would not be reognizable. Thus, x′1 6= 0, and one has |Bn+1| < |Bn|.Let us now prove the orretion of the algorithm. We proeed by indutionon the number of steps of the �Brun� stage, that is, lines 3�9. If n = 0, this



16follows from the (assumed) orretion of XReo. Assume that the result holdsfor n. One heks:
((1,α), ρ) ∈ P (B0)⇔ 0 ≤ B0 ≤ P(1,α),ρ

⇔ 0 ≤ B̃0 ≤ P(1,α),ρ

⇔ 0 ≤ B̃0 − L0 ≤ P(1,α),ρ et 0 ≤ L0 ≤ P(1,α),ρ

⇔ 0 ≤ B1 ≤ PB−1

a0,i0
(1,α),ρ et ((1,α), ρ) ∈ XReo(L0)

⇔ (B−1
a0,i0

(1,α), ρ) ∈ P (B1) et ((1,α), ρ) ∈ XReo(L0)Note that this is Prop. 2 whih ensures that we an go from the �rst to theseond lines and from the third one to the fourth one (by applying E∗
1 (β−1

a0,i0
)).Finally, one has:

P (B0) = B′
a0,i0P (B1) ∩ XReo(L0).The orretion of the algorithm follows by indution. ⊓⊔


