A Characterization of flip-accessibility for rhombus tilings of the whole plane

O. Bodini, T. Fernique, E. Rémila

LATA'07 (Tarragona)

2 Stepped surfaces and shadows

3 Characterization of flip-accessibility

Rhombus tilings and flips	Stepped surfaces and shadows	Characterization of flip-accessibility
00000	000000	000000
Rhombus tilings		

$$\vec{v}_1, \ldots, \vec{v}_d$$
 in $\mathbb{R}^2 \rightsquigarrow$ rhombus tiles $T_{ij} = \{\lambda \vec{v}_i + \mu \vec{v}_j \mid \lambda, \mu \in [0, 1]\}.$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

æ

In physics: models micro-arrangements of atoms (\simeq stable).

Rhombus tilings and flips ○●○○○○	Stepped surfaces and shadows	Characterization of flip-accessibility 000000
Rhombus tilings		

Rhombus tilings of a polygon P: partitions by translated T_{ij} 's.

In physics: models macro-arrangements of atoms (\simeq unstable).

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Rhombus tilings

Stepped surfaces and shadows $_{\rm OOOOOO}$

 $\begin{array}{c} Characterization \ of \ flip-accessibility \\ 000000 \end{array}$

Rhombus tilings of the whole plane: \mathbb{R}^2 instead of a polygon *P*.

In physics: models (quasi)crystals, that is, (a)periodic material.

Rhombus tilings and flips ○○○●○○	Stepped surfaces and shadows	Characterization of flip-accessibility 000000
Flips		

Flip: local exchange between the two possible tilings of a hexagon.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

In physics: models local rearrangement of inter-atomic links.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Theorem (Kenyon, 1993)

If T and T' are rhombus tilings of a polygon P, then one can transform T into T' by performing a finite sequence of flips.

 \rightsquigarrow Notion of *flip-accessibility*.

(日)、(型)、(E)、(E)、(E)、(Q)

Theorem (Kenyon, 1993)

If T and T' are rhombus tilings of a polygon P, then one can transform T into T' by performing a finite sequence of flips.

→ Notion of *flip-accessibility*.

Does not hold for tilings of \mathbb{R}^2 considering only *finite* sequences.

(日)、(型)、(E)、(E)、(E)、(Q)

Extended notion of flip-accessibility for rhombus tilings of \mathbb{R}^2 :

Definition

A tiling \mathcal{T}' is *flip-accessible* from a tiling \mathcal{T} if there is a sequence $(\mathcal{T}_n)_{n\geq 0}$ of tilings such that $\mathcal{T}_0 = \mathcal{T}$, \mathcal{T}_{n+1} is obtained from \mathcal{T}_n by performing a flip, and $\lim_{n\infty} d(\mathcal{T}_n, \mathcal{T}') = 0$,

where *d* distance over rhombus tilings of \mathbb{R}^2 defined by:

$$d(\mathcal{T},\mathcal{T}') = \inf\{2^{-r} \mid \mathcal{T} \cap B(\vec{0},r) = \mathcal{T}' \cap B(\vec{0},r)\}.$$

Extended notion of flip-accessibility for rhombus tilings of \mathbb{R}^2 :

Definition

A tiling \mathcal{T}' is *flip-accessible* from a tiling \mathcal{T} if there is a sequence $(\mathcal{T}_n)_{n\geq 0}$ of tilings such that $\mathcal{T}_0 = \mathcal{T}$, \mathcal{T}_{n+1} is obtained from \mathcal{T}_n by performing a flip, and $\lim_{n\infty} d(\mathcal{T}_n, \mathcal{T}') = 0$,

where *d* distance over rhombus tilings of \mathbb{R}^2 defined by:

$$d(\mathcal{T},\mathcal{T}') = \inf\{2^{-r} \mid \mathcal{T} \cap B(\vec{0},r) = \mathcal{T}' \cap B(\vec{0},r)\}.$$

Does it make tilings of \mathbb{R}^2 flip-accessible? Not always...

2 Stepped surfaces and shadows

Stepped surfaces and shadows $_{\odot OO \odot OO}$

 $\begin{array}{c} Characterization \ of \ flip-accessibility \\ 000000 \end{array}$

・ロト・日本・モート モー うへぐ

Stepped surfaces

 $\begin{array}{ll} (\vec{e}_1, \ldots, \vec{e}_d) \text{ canonical basis of } \mathbb{R}^d \rightsquigarrow d\text{-dim. viewpoint of tilings:} \\ \text{tile } \vec{x} + T_{ij} & \rightsquigarrow & \text{unit face } (\vec{x}, t_{ij}) = \{\lambda \vec{e}_i + \mu \vec{e}_j \mid \lambda, \mu \in [0, 1]\}; \\ \text{tiling} & \rightsquigarrow & \text{sort of rugged surface made of unit faces.} \end{array}$

Rhombus	tilings	and	flips

Stepped surfaces and shadows ${\color{red}\bullet}{\color{black}\circ\hspace{-0.5em}\circ\hspace{-0.5em}\circ\hspace{-0.5em}\circ\hspace{-0.5em}\circ}$

 $\begin{array}{c} Characterization \ of \ flip-accessibility \\ 000000 \end{array}$

Stepped surfaces

 $\begin{array}{ll} (\vec{e}_1, \ldots, \vec{e}_d) \text{ canonical basis of } \mathbb{R}^d \rightsquigarrow d\text{-dim. viewpoint of tilings:} \\ \text{tile } \vec{x} + T_{ij} & \rightsquigarrow & \text{unit face } (\vec{x}, t_{ij}) = \{\lambda \vec{e}_i + \mu \vec{e}_j \mid \lambda, \mu \in [0, 1]\}; \\ \text{tiling} & \rightsquigarrow & \text{sort of rugged surface made of unit faces.} \end{array}$

Especially natural when d = 3, using coloured tiles.

Stepped surfaces

More precisely, let $\Psi : \mathbb{R}^d \to \mathbb{R}^2$ be defined by:

$$\Psi : (x_1,\ldots,x_d) = \sum_{i=1}^{i=d} x_i \vec{v}_i.$$

Definition

Stepped surface S: set of unit faces homeomorphic by Ψ to \mathbb{R}^2 .

Then, $\{\Psi(\vec{x}, t_{ij}) \mid (\vec{x}, t_{ij}) \in S\}$ is a rhombus tiling of \mathbb{R}^2 .

Rhombus tilings and flips	Stepped surfaces and shadows	Characterization of flip-accessibility
	00000	

Stepped surfaces

Conversely, following principles introduced by Thurston (1990), we define a *height function* h from the vertices of a tiling \mathcal{T} to \mathbb{Z}^d by:

$$(ec{x}, ec{x} + ec{v}_i) ext{ edge of } \mathcal{T} \ \Leftrightarrow \ h(ec{x} + ec{v}_i) - h(ec{x}) = ec{e}_i.$$

 $\{(h(\vec{x}), t_{ij}) \mid \vec{x} + T_{ij} \in \mathcal{T}\}$ homeo. to \mathcal{T} by $\Psi \rightsquigarrow$ stepped surface.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Projection π_i : removes the *i*-th entry of a real vector.

k-shadows of a stepped surface: images by k such projections.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Projection π_i : removes the *i*-th entry of a real vector.

k-shadows of a stepped surface: images by *k* such projections.

(日)、(型)、(E)、(E)、(E)、(Q)

Projection π_i : removes the *i*-th entry of a real vector.

k-shadows of a stepped surface: images by *k* such projections.

 $k \leq d - 3 \rightsquigarrow d$ -dim. stepped surface charac. by its k-shadows.

Stepped surfaces and shadows $\circ \circ \circ \circ \bullet \circ$

 $\begin{array}{c} Characterization \ of \ flip-accessibility \\ 000000 \end{array}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

(d-2)-shadows (or *shadows*) are subsets of \mathbb{R}^2 :

Stepped surfaces and shadows $\circ \circ \circ \circ \circ \circ \circ$

 $\begin{array}{c} Characterization \ of \ flip-accessibility \\ 000000 \end{array}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(d-2)-shadows (or *shadows*) are subsets of \mathbb{R}^2 :

Note: different stepped surfaces can have identical shadows.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Note also: by performing flips, shadows never increase...

but can decrease. Thus, flip-accessibility \Rightarrow inclusion of shadows.

2 Stepped surfaces and shadows

3 Characterization of flip-accessibility

Characterization

Main result: the previous necessary condition is sufficient:

Theorem

A tiling \mathcal{T}' is flip-accessible from a tilings \mathcal{T} iff the shadows of the former are (respectively) included in the shadows of the latter.

Thus, flip-accessibility does not always hold (and is not symmetric).

Rhombus	tilings	and	flips

Stepped surfaces and shadows

Characterization of flip-accessibility

Characterization

うくぐ

Stepped surfaces and shadows

Characterization of flip-accessibility $\circ \circ \bullet \circ \circ \circ$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ ● のへで

Characterization

Ex: slice of $\mathbb{R}^d \rightsquigarrow$ canonical projection tiling (Penrose etc.). Shadows equal to $\mathbb{R}^2 \Rightarrow$ "source" for flip-accessibility:

Rhombus tilings and flips 000000	Stepped surfaces and shadows	Characterization of flip-accessibility $\circ \circ \circ \bullet \circ \circ$
Sketch of the proof		

Main tool: *de Bruijn sections* of a stepped surface S:

$$S_{i,k} = \{((x_1,\ldots,x_d),t_{ij}) \in \mathcal{S} \mid x_i = k\}.$$

Idea: $\mathcal{S} \xrightarrow{flips} \mathcal{S}'$ by moving unit face $S_{i,x_i} \cap S_{j,x_j}$ to $S'_{i,x_i} \cap S'_{j,x_j}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Sketch of the proof

Stepped surfaces and shadows

Characterization of flip-accessibility $\circ \circ \circ \circ \circ \circ \circ$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Moving $S_{i,x_i} \cap S_{j,x_i}$ by $\vec{e}_k \Leftrightarrow$ moving it over S_{k,x_k} :

Stepped surfaces and shadows

Characterization of flip-accessibility $\circ \circ \circ \circ \circ \bullet$

Sketch of the proof

Moving
$$(\vec{x}, t_{ij}) = S_{i,x_i} \cap S_{j,x_j}$$
 by \vec{e}_k

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Stepped surfaces and shadows

Characterization of flip-accessibility $\circ \circ \circ \circ \circ \bullet$

Sketch of the proof

Moving $(\vec{x}, t_{ij}) = S_{i,x_i} \cap S_{j,x_j}$ by $\vec{e}_k \rightsquigarrow de Bruijn triangle F_k(\vec{x}, t_{ij})$:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Stepped surfaces and shadows

Characterization of flip-accessibility $\circ \circ \circ \circ \circ \bullet$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Sketch of the proof

Stepped surfaces and shadows

Characterization of flip-accessibility $\circ \circ \circ \circ \circ \bullet$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Sketch of the proof

Stepped surfaces and shadows

Characterization of flip-accessibility $\circ \circ \circ \circ \circ \bullet$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Sketch of the proof

Stepped surfaces and shadows

Characterization of flip-accessibility $\circ \circ \circ \circ \circ \bullet$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Sketch of the proof

Stepped surfaces and shadows

Characterization of flip-accessibility $\circ \circ \circ \circ \circ \bullet$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Sketch of the proof

Stepped surfaces and shadows

Characterization of flip-accessibility $\circ \circ \circ \circ \circ \bullet$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Sketch of the proof

Stepped surfaces and shadows

Characterization of flip-accessibility $\circ \circ \circ \circ \circ \bullet$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Sketch of the proof

Stepped surfaces and shadows

Characterization of flip-accessibility $\circ \circ \circ \circ \circ \bullet$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Sketch of the proof

Stepped surfaces and shadows

Characterization of flip-accessibility $\circ \circ \circ \circ \circ \bullet$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Sketch of the proof

Stepped surfaces and shadows

Characterization of flip-accessibility $\circ \circ \circ \circ \circ \bullet$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Sketch of the proof

Stepped surfaces and shadows

Characterization of flip-accessibility $\circ \circ \circ \circ \circ \bullet$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Sketch of the proof

Stepped surfaces and shadows

Characterization of flip-accessibility $\circ \circ \circ \circ \circ \bullet$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Sketch of the proof

Some motivations for studying flip-accessibility in rhombus tilings:

Physics:

Model growth of (quasi)crystals, in particular study defects.

Combinatorics:

Minimal "complexity" of aperiodic tilings (c.f. Nivat or Pleasants).

Discrete geometry and number theory: Recognize discrete plane by performing multi-dim. continued fraction expansions of stepped surfaces.