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Quasi
.

disjoint compact sets called tiles.

by interior-

Tiling: covering of R”
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Quasiperiodici
.

A tiling is quasiperiodic if each pattern reoccurs uniformly.
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A method to define quasiperiodic tilings: substitutions.
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A method to define quasiperiodic tilings: substitutions.
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Cut and projection

Another method: discretize linear subspaces of higher dim. spaces.
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Quasicrystals (1982)

Quasicrystal: quasiperiodic material (aperiodic order).
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Quasicrystals (1982)

Can stabilization be explained by short-range energetic interaction?
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Dimension 1

Consider bi-infinite words over a finite alphabet A.

@ Subshift: the words avoiding a set F of forbidden finite words.
@ Subshift of finite type (SFT): F can be chosen to be finite.
@ Sofic subshift: letter-to-letter image of an SFT.
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@ alternating a's and b's?
@ at most one b?
@ exactly one b?

@ runs of b’s all of the same length?
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Dimension 1

Consider bi-infinite words over a finite alphabet A.

@ Subshift: the words avoiding a set F of forbidden finite words.
@ Subshift of finite type (SFT): F can be chosen to be finite.
@ Sofic subshift: letter-to-letter image of an SFT.

Examples: the words over A = {a, b} with

@ alternating a's and b's? SFT
@ at most one b? Sofic not SFT
@ exactly one b? Not a subshift

@ runs of b’s all of the same length? Not sofic
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Proposition
Any non-empty sofic subshift contains a periodic word.
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Higher dimensions

Proposition
Any non-empty sofic subshift contains a periodic word.

Tiling space: higher dimensional extension of subshift.

Conjecture (Wang, 1960)

Any non-empty sofic tiling space contains a periodic tiling.

~ Algorithm to decide whether a given tile set does tile.
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Theorem (Berger, 1964)

There is a non-empty sofic 2D tiling space without periodic tilings.

Explicit construction based on substitutions (play puzzle!).
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Undecidability

Theorem (Berger, 1964)

There is a non-empty sofic 2D tiling space without periodic tilings.

Explicit construction based on substitutions (play puzzle!).

Theorem (Berger, 1964)

There is no algorithm to decide whether a tile set tiles the plane.

Proof sketch:
e simulate computation by square tiles (2D ~ space x time);
@ run computation eveywhere for longer and longer time;
@ rely on the undecidability of the Halting problem.
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Penrose again

L
s

It does not mean that it cannot be proven for a given tile set!
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Method comparison

Can we compare the methods to generate quasiperiodic tiling?
@ substitutions (and S-adic extension);
@ cut and projection;

@ local rules.



Some issues
°

Method comparison

Can we compare the methods to generate quasiperiodic tiling?
@ substitutions (and S-adic extension);
@ cut and projection;

@ local rules.
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Some issues
°

Method comparison

Can we compare the methods to generate quasiperiodic tiling?
@ substitutions (and S-adic extension);
@ cut and projection;

@ local rules.

Do exist other methods, e.g., for Jeandel-Rao tile sets?

Some results:
o Kari-Culik is not substitutive (Monteil);
@ substitution = local rules (Mozes, Goodman-Strauss, F.-Ollinger);
@ for cuts: computable < local rules (F.-Sablik);

@ some algebraic cuts = substitution (Harriss, Arnoux-Ito, F.,...).



Some issues
°

Growth

Dead ends: the existence of tilings does not mean it is easy to tile!
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Works in some cases (quadratic cuts in R*, work in progress).
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Maxing rules
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How to tile with as few square tiles as possible?
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Maxing rules

Lozenges only cannot tile the plane. Squares are needed!
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Maxing rules

Squares transfer information between lozenges.
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Maxing rules

Square minimization yields aperiodicity (Ammann-Beenker tilings).
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Maxing rules
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Which other aperiodic tilings can be described this way? Penrose?
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Sphere packings

Find k different spheres in R"” whose densest packing is aperiodic.



Sphere packings

For k =1, n¢{2,3,8,24}. Maybe for some n > 107
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Good candidates to prove maximimal density: compact packings.
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Good candidates to prove maximimal density: compact packings.
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Sphere packings

For 2 discs (9 cases), 3 discs (164 cases) or 2 balls (1 case):
The densest compact packings always contain a periodic packing.
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