Aperiodic Order

Thomas Fernique Laboratoire d'Informatique de Paris Nord CNRS & Univ. Paris 13

Quasiperiodicity 0000	Local rules 0000	Some issues
Outline		

Quasiperiodicity	Local rules	Some iss

Outline

Local rules

The good, the bad and the ugly

Tiling: covering of \mathbb{R}^n by interior-disjoint compact sets called tiles.

Quasiperiodicity •••• Local rules

The good, the bad and the ugly

A tiling is periodic if it is invariant by a translation.

Quasiperiodicity •••• Local rules

The good, the bad and the ugly

It is aperioric otherwise.

Quasiperiodicity •••• Local rules

The good, the bad and the ugly

A tiling is quasiperiodic if each pattern reoccurs uniformly.

Quasiperiodic	ity
0000	

Substitutions

Quasiperiodicity	1
0000	

Substitutions

Quasiper	iodicity
0000	

Substitutions

Quasiperi	odicity
0000	

Substitutions

Quasip	erio	dicity	
0000			

Substitutions

Quasipe	riodio	ity
0000		

Substitutions

Quasipo	erio	dici	ty
0000			

Cut and projection

Another method: discretize linear subspaces of higher dim. spaces.

 $\begin{array}{c} \mathsf{Quasiperiodicity} \\ \circ \circ \bullet \circ \end{array}$

Local rules

Some issues

Local rules

Some issues

Quasicrystals (1982)

Quasicrystal: quasiperiodic material (aperiodic order).

Local rules

Some issues

Quasicrystals (1982)

Can stabilization be explained by short-range energetic interaction?

Qua	isipe	dic	ity

Dimension 1

Consider bi-infinite words over a finite alphabet \mathcal{A} .

- \bullet Subshift: the words avoiding a set ${\mathcal F}$ of forbidden finite words.
- Subshift of finite type (SFT): \mathcal{F} can be chosen to be finite.
- Sofic subshift: letter-to-letter image of an SFT.

Dimension 1

Consider bi-infinite words over a finite alphabet \mathcal{A} .

- Subshift: the words avoiding a set \mathcal{F} of *forbidden* finite words.
- Subshift of finite type (SFT): \mathcal{F} can be chosen to be finite.
- Sofic subshift: letter-to-letter image of an SFT.

Examples: the words over $\mathcal{A} = \{a, b\}$ with

- alternating a's and b's?
- at most one b?
- exactly one b?
- runs of b's all of the same length?

Dimension 1

Consider bi-infinite words over a finite alphabet \mathcal{A} .

- Subshift: the words avoiding a set \mathcal{F} of *forbidden* finite words.
- Subshift of finite type (SFT): \mathcal{F} can be chosen to be finite.
- Sofic subshift: letter-to-letter image of an SFT.

Examples: the words over $\mathcal{A} = \{a, b\}$ with

alternating a's and b's?
at most one b?
exactly one b?
runs of b's all of the same length?
Not a subshift

Higher dimensions

Proposition

Any non-empty sofic subshift contains a periodic word.

Higher dimensions

Proposition

Any non-empty sofic subshift contains a periodic word.

Tiling space: higher dimensional extension of subshift.

Higher dimensions

Proposition

Any non-empty sofic subshift contains a periodic word.

Tiling space: higher dimensional extension of subshift.

Conjecture (Wang, 1960)

Any non-empty sofic tiling space contains a periodic tiling.

 \rightsquigarrow Algorithm to decide whether a given tile set does tile.

Undecidability

Theorem (Berger, 1964)

There is a non-empty sofic 2D tiling space without periodic tilings.

Explicit construction based on substitutions (play puzzle!).

Undecidability

Theorem (Berger, 1964)

There is a non-empty sofic 2D tiling space without periodic tilings.

Explicit construction based on substitutions (play puzzle!).

Theorem (Berger, 1964)

There is no algorithm to decide whether a tile set tiles the plane.

Undecidability

Theorem (Berger, 1964)

There is a non-empty sofic 2D tiling space without periodic tilings.

Explicit construction based on substitutions (play puzzle!).

Theorem (Berger, 1964)

There is no algorithm to decide whether a tile set tiles the plane.

Proof sketch:

- simulate computation by square tiles (2D \simeq space \times time);
- run computation eveywhere for longer and longer time;
- rely on the undecidability of the Halting problem.

Penrose again

It does not mean that it cannot be proven for a given tile set!

Qua	isip	dici	ity

Outline

Quasiperiodicity 0000	Local rules 0000	Some issues
Method comparison		

Can we compare the methods to generate quasiperiodic tiling?

- substitutions (and S-adic extension);
- cut and projection;
- Iocal rules.

Quasiperiodicity 2000	Local rules 0000	Some issues
Method comparison		

Can we compare the methods to generate quasiperiodic tiling?

- substitutions (and S-adic extension);
- cut and projection;
- Iocal rules.

Do exist other methods, e.g., for Jeandel-Rao tile sets?

Can we compare the methods to generate quasiperiodic tiling?

- substitutions (and S-adic extension);
- cut and projection;
- Iocal rules.

Do exist other methods, e.g., for Jeandel-Rao tile sets?

Some results:

- Kari-Čulik is not substitutive (Monteil);
- substitution \Rightarrow local rules (Mozes, Goodman-Strauss, F.-Ollinger);
- for cuts: computable \Leftrightarrow local rules (F.-Sablik);
- some algebraic cuts \Rightarrow substitution (Harriss, Arnoux-Ito, F.,...).

Qua	asip	erio	dic	ity

Growth

Dead ends: the existence of tilings does not mean it is easy to tile!

Quasiperiodicity	Local rules	Some issues
0000	0000	○●○○
Growth		

Quasiperiodicity	Local rules	Some issues
0000	0000	○●○○
Growth		

Quasiperiodicity	Local rules	Some issues
0000	0000	○●○○
Growth		

Qua	isipe	dic	ity

Growth

Growth

Works in some cases (quadratic cuts in \mathbb{R}^4 , work in progress).

Quasip	erioc	licity	

Maxing rules

How to tile with as few square tiles as possible?

Qua	asip	erio	dic	

Maxing rules

Lozenges only cannot tile the plane. Squares are needed!

Maxing rules

Squares transfer information between lozenges.

Quasip	eriod	licity	

Maxing rules

The possible tilings discretize the planes of a hyperbola in Gr(4, 2).

Qua	sipe	rio	ty

Maxing rules

The possible tilings discretize the planes of a hyperbola in Gr(4, 2).

Qua	sipe	rio	ty

Maxing rules

Square minimization yields aperiodicity (Ammann-Beenker tilings).

Quasiperiodicity	Local rules	Some issues
0000	0000	○○●○
Maxing rules		

Which other aperiodic tilings can be described this way? Penrose?

Sphere packings

Find k different spheres in \mathbb{R}^n whose densest packing is aperiodic.

Sphere packings

For k = 1, $n \notin \{2, 3, 8, 24\}$. Maybe for some $n \ge 10$?

Sphere packings

Qua	asip	erio	ity
	00		

Sphere packings

Local rules

Some issues

Sphere packings

Qua	asip	erio	dic	ity

Sphere packings

Sphere packings

Sphere packings

For 2 discs (9 cases), 3 discs (164 cases) or 2 balls (1 case): The densest compact packings always contain a periodic packing.