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The good, the bad and the ugly

Tiling: covering of Rn by interior-disjoint compact sets called tiles.
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The good, the bad and the ugly

A tiling is periodic if it is invariant by a translation.
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The good, the bad and the ugly

It is aperioric otherwise.
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The good, the bad and the ugly

A tiling is quasiperiodic if each pattern reoccurs uniformly.
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A method to define quasiperiodic tilings: substitutions.
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A method to define quasiperiodic tilings: substitutions.
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Cut and projection

Another method: discretize linear subspaces of higher dim. spaces.
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Quasicrystals (1982)

Quasicrystal: quasiperiodic material (aperiodic order).
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Quasicrystals (1982)

Can stabilization be explained by short-range energetic interaction?
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Dimension 1

Consider bi-infinite words over a finite alphabet A.

Subshift: the words avoiding a set F of forbidden finite words.

Subshift of finite type (SFT): F can be chosen to be finite.

Sofic subshift: letter-to-letter image of an SFT.

Examples: the words over A = {a, b} with

alternating a’s and b’s?

SFT

at most one b?

Sofic not SFT

exactly one b?

Not a subshift

runs of b’s all of the same length?

Not sofic
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Higher dimensions

Proposition

Any non-empty sofic subshift contains a periodic word.

Tiling space: higher dimensional extension of subshift.

Conjecture (Wang, 1960)

Any non-empty sofic tiling space contains a periodic tiling.

 Algorithm to decide whether a given tile set does tile.
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Undecidability

Theorem (Berger, 1964)

There is a non-empty sofic 2D tiling space without periodic tilings.

Explicit construction based on substitutions (play puzzle!).

Theorem (Berger, 1964)

There is no algorithm to decide whether a tile set tiles the plane.

Proof sketch:

simulate computation by square tiles (2D ' space × time);

run computation eveywhere for longer and longer time;

rely on the undecidability of the Halting problem.
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Penrose again

It does not mean that it cannot be proven for a given tile set!
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Method comparison

Can we compare the methods to generate quasiperiodic tiling?

substitutions (and S-adic extension);

cut and projection;

local rules.

Do exist other methods, e.g., for Jeandel-Rao tile sets?

Some results:

Kari-Čulik is not substitutive (Monteil);

substitution ⇒ local rules (Mozes, Goodman-Strauss, F.-Ollinger);

for cuts: computable ⇔ local rules (F.-Sablik);

some algebraic cuts ⇒ substitution (Harriss, Arnoux-Ito, F.,. . . ).
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Growth

Dead ends: the existence of tilings does not mean it is easy to tile!
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Idea: add a tile only where there is no choice (intuitive & realist).
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Growth

Works in some cases (quadratic cuts in R4, work in progress).
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Maxing rules

How to tile with as few square tiles as possible?
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Maxing rules

Lozenges only cannot tile the plane. Squares are needed!
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Maxing rules

Squares transfer information between lozenges.



Quasiperiodicity Local rules Some issues

Maxing rules

The possible tilings discretize the planes of a hyperbola in Gr(4, 2).
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Maxing rules

The possible tilings discretize the planes of a hyperbola in Gr(4, 2).
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Maxing rules

Square minimization yields aperiodicity (Ammann-Beenker tilings).
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Maxing rules

Which other aperiodic tilings can be described this way? Penrose?
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Sphere packings

Find k different spheres in Rn whose densest packing is aperiodic.
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Sphere packings

For k = 1, n /∈ {2, 3, 8, 24}. Maybe for some n ≥ 10?
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Sphere packings

For 2 discs (9 cases), 3 discs (164 cases) or 2 balls (1 case):
The densest compact packings always contain a periodic packing.
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