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1 Precision issue

What does the following program?

a=1.0

while a+1-a==1:

a=a*2

It stops after a finite number of iterations because only finitely many
real numbers are machine-representable (see, e.g., norm IEEE 754).

2 Interval arithmetic

Principle:

1. represent every real number by a machine-representable interval
which contains it;

2. perform computations so that the result of f(I1, . . . , Ik) is a machine-
representable interval which contains {f(x1, . . . , xn) | xi ∈ Ii}.

For example, the result of [1, 2] + [3, 4] can be [4, 6] (optimal) or, e.g.,
[3, 7] (not optimal). Some other optimal examples:

[1, 2]− [3, 4] = [−3,−1]

[1, 2]× [3, 4] = [3, 8]

[−1, 2]× [−3, 4] = [−6, 8].

Finding the optimal interval may be not that simple, e.g., sin([1, 2])?
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3 Equivalent expressions

Often we want to use interval arithmetic to evaluate as precisely as possible a
function f in a real number x. However, there are infinitely many different
equivalent expressions for f . For example, if we evaluate f(x) = x− x in
[1, 2] with interval arithmetic:

f([1, 2]) = [1, 2]− [1, 2] = [−1, 1].

Here f can clearly be simplified - and every computer algebra software do it
automatically - but it may not be that easy. In general, computer algebra
software use heuristics to simplify expressions, but it is not clear what is
the best expression for evaluation with interval arithmetic. The usual rule
of thumb is to minimize the number of occurrences of variables. For
example, the simple following rewriting saves two variable occurrences:

x + xy + y −→ (x + 1)(y + 1)− 1.

For x = y = [1, 2] both expression yield [3, 8]. For x = y = [−2,−1] the
former yields [−3, 2] while the latter yields [−1, 0].

4 Checking inequalities

The “classic” usage of interval arithmetic is to bound real numbers by small
interval. However, it can also be interesting, to use the large intervals to
handle a continuum of numbers. For example, can you prove that the
following function is positive over [1, 2]?

f : x→ arctan(ln(1 + x))

sin(x)
√

3− cos7(x)
.

If you plot f , you “sees” that it is clearly positive and seem even to above
0.4. But this is not a proof. . . Do you really want to compute the derivative
and find its roots?

Actually, it suffices to compute f([1, 2]) with your favourite interval arith-
metic software. For example, SageMath yields the interval [0.349, 0.573],
which allows to conclude on the positivity over [1, 2]. Let us stress that this
interval is very likely to be not optimal (its “quality” depends on the software
implementation).
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5 Interval recursive subdivision

How to prove that the previous function f is larger than 0.4 over [1, 2], as
suggested by the plot? Since f([1, 2]) = [0.349, 0.573] contains 0.4, we cannot
yet conclude. Idea: halve the interval to increase the precision:

6 Infinite recursion

How to prove that a function f with f(0) = 0 is nonnegative over [0, 1]? For
any ε > 0, f([0, ε]) will (usually) strictly contain 0, so that the recursion
will be infinite around 0. Idea: use the Mean value theorem (Lagrange
theorem):

∀x > 0, ∃c ∈ [0, x], f(x) = f(0) + xf ′(c).

Namely, ∀x ∈ [0, ε]:

f(x) = xf ′(c) ⊂ [0, ε]× f ′([0, ε]).

This latter interval thus contains the optimal f([0, ε]). If f ′(0) > 0, then there
exists ε > 0 small enough such that f ′([0, ε]) has a positive left endpoint.
This ensures that f is nonnegative1 over [0, ε]. An explicit value of ε can
be found by dichotomy.

If f ′(0) = 0, use the Taylor theorem at a larger order.
Remark: this may also be used to improve the precision for small

enough intervals: on the one (bad) hand f ′ has usually more variables than
f , on the other (good) hand we multiply f ′([0, ε]) by the small interval [0, ε].

1Actually positive except in 0.
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