Checking Complicated Inequalities over Compact Sets with Interval Arithmetic

Thomas Fernique

1 Precision issue

What does the following program?

```
a=1.0
while a+1-a==1:
    a=a*2
```

It stops after a finite number of iterations because only finitely many real numbers are machine-representable (see, e.g., norm IEEE 754).

2 Interval arithmetic

Principle:

1. represent every real number by a machine-representable interval which contains it;
2. perform computations so that the result of $f\left(I_{1}, \ldots, I_{k}\right)$ is a machinerepresentable interval which contains $\left\{f\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in I_{i}\right\}$.

For example, the result of $[1,2]+[3,4]$ can be $[4,6]$ (optimal) or, e.g., $[3,7]$ (not optimal). Some other optimal examples:

$$
\begin{aligned}
{[1,2]-[3,4] } & =[-3,-1] \\
{[1,2] \times[3,4] } & =[3,8] \\
{[-1,2] \times[-3,4] } & =[-6,8] .
\end{aligned}
$$

Finding the optimal interval may be not that simple, e.g., $\sin ([1,2])$?

3 Equivalent expressions

Often we want to use interval arithmetic to evaluate as precisely as possible a function f in a real number x. However, there are infinitely many different equivalent expressions for f. For example, if we evaluate $f(x)=x-x$ in [1,2] with interval arithmetic:

$$
f([1,2])=[1,2]-[1,2]=[-1,1] .
$$

Here f can clearly be simplified - and every computer algebra software do it automatically - but it may not be that easy. In general, computer algebra software use heuristics to simplify expressions, but it is not clear what is the best expression for evaluation with interval arithmetic. The usual rule of thumb is to minimize the number of occurrences of variables. For example, the simple following rewriting saves two variable occurrences:

$$
x+x y+y \longrightarrow(x+1)(y+1)-1 .
$$

For $x=y=[1,2]$ both expression yield $[3,8]$. For $x=y=[-2,-1]$ the former yields $[-3,2]$ while the latter yields $[-1,0]$.

4 Checking inequalities

The "classic" usage of interval arithmetic is to bound real numbers by small interval. However, it can also be interesting, to use the large intervals to handle a continuum of numbers. For example, can you prove that the following function is positive over $[1,2]$?

$$
f: x \rightarrow \frac{\arctan (\ln (1+x))}{\sin (x) \sqrt{3-\cos ^{7}(x)}}
$$

If you plot f, you "sees" that it is clearly positive and seem even to above 0.4. But this is not a proof. . . Do you really want to compute the derivative and find its roots?

Actually, it suffices to compute $f([1,2])$ with your favourite interval arithmetic software. For example, SageMath yields the interval [0.349, 0.573], which allows to conclude on the positivity over [1,2]. Let us stress that this interval is very likely to be not optimal (its "quality" depends on the software implementation).

5 Interval recursive subdivision

How to prove that the previous function f is larger than 0.4 over [1, 2], as suggested by the plot? Since $f([1,2])=[0.349,0.573]$ contains 0.4 , we cannot yet conclude. Idea: halve the interval to increase the precision:

6 Infinite recursion

How to prove that a function f with $f(0)=0$ is nonnegative over $[0,1]$? For any $\varepsilon>0, f([0, \varepsilon])$ will (usually) strictly contain 0 , so that the recursion will be infinite around 0. Idea: use the Mean value theorem (Lagrange theorem):

$$
\forall x>0, \quad \exists c \in[0, x], \quad f(x)=f(0)+x f^{\prime}(c)
$$

Namely, $\forall x \in[0, \varepsilon]$:

$$
f(x)=x f^{\prime}(c) \subset[0, \varepsilon] \times f^{\prime}([0, \varepsilon])
$$

This latter interval thus contains the optimal $f([0, \varepsilon])$. If $f^{\prime}(0)>0$, then there exists $\varepsilon>0$ small enough such that $f^{\prime}([0, \varepsilon])$ has a positive left endpoint. This ensures that f is nonnegativ \rrbracket^{1} over $[0, \varepsilon]$. An explicit value of ε can be found by dichotomy.

If $f^{\prime}(0)=0$, use the Taylor theorem at a larger order.
Remark: this may also be used to improve the precision for small enough intervals: on the one (bad) hand f^{\prime} has usually more variables than f, on the other (good) hand we multiply $f^{\prime}([0, \varepsilon])$ by the small interval $[0, \varepsilon]$.

[^0]
[^0]: ${ }^{1}$ Actually positive except in 0.

