Heesch Numbers & the Einstein Problem

Thomas Fernique

Puzzle challenge (room S937)

Can an entire A4 sheet be covered by tiles all identical to this one?

Puzzle challenge (room S937)

Can an entire A4 sheet be covered by tiles all identical to this one?

Tile: A topological disk T (e.g., a polygon).

Patch:

A simply connected union of interior-disjoint isometric copies of T.

Corona C of a patch P: Tiles s.t. $P \cup C$ is a patch with no point of P on its boundary.

Heesch number of T:

Maximum number of coronas that can be successively added to T.

Heesch number of T:

Maximum number of coronas that can be successively added to T.

Heesch number of T: Maximum number of coronas that can be successively added to T.

The previous tile has Heesch number 3 (Robert Ammann, 1990s).

This generalization has Heesch number 4 (Casey Mann, 2001).

It can be continued up to Heesch number 5 (Casey Mann, 2001).

Another similar idea yields Heesch number 5 (David Smith, 2019).

It has be continued to yield Heesch number 6 (Bojan Bašić, 2021)

This is the current record... among tiles with finite Heesch number!

Heesch problem:

Decide whether the Heesch number of a given tile is finite.

Heesch problem:

Decide whether the Heesch number of a given tile is finite.

Equivalently:

Decide whether a given tile can cover the entire plane.

Heesch problem:

Decide whether the Heesch number of a given tile is finite.

Equivalently:

Decide whether a given tile can cover the entire plane.

Claim:

Decidable if we know a bound k on finite Heesch numbers.

Heesch problem:

Decide whether the Heesch number of a given tile is finite.

Equivalently:

Decide whether a given tile can cover the entire plane.

Claim:

Decidable if we know a bound k on finite Heesch numbers.

Indeed, explore all the ways to add successive coronas:

- either it eventually fails \Rightarrow NO
- or you succeed to form k coronas \Rightarrow YES.

Heesch problem:

Decide whether the Heesch number of a given tile is finite.

Equivalently:

Decide whether a given tile can cover the entire plane.

Claim:

Decidable if we know a bound k on finite Heesch numbers.

Indeed, explore all the ways to add successive coronas:

- either it eventually fails \Rightarrow NO
- or you succeed to form k coronas \Rightarrow YES.

No such bound (yet) known. Personal guess: there are none.

Einstein problem:

Does exist a tile that cover only non-periodically the entire plane?

Einstein problem:

Does exist a tile that cover only non-periodically the entire plane?

Claim:

If such a tile does not exist, then the Heesch problem is decidable.

Einstein problem:

Does exist a tile that cover only non-periodically the entire plane?

Claim:

If such a tile does not exist, then the Heesch problem is decidable.

Indeed, explore all the ways to add successive coronas:

- either it eventually fails \Rightarrow NO
- or it eventually finds a periodic patch \Rightarrow YES.

Einstein problem:

Does exist a tile that cover only non-periodically the entire plane?

Claim:

If such a tile does not exist, then the Heesch problem is decidable.

Indeed, explore all the ways to add successive coronas:

- either it eventually fails \Rightarrow NO
- or it eventually finds a periodic patch \Rightarrow YES.

Theorem (David Smith *et al.*, 2023) Such a tile actually does exist!

Interlude

$\mathsf{Einstein} \neq \mathsf{ein} \; \mathsf{Stein}$

Interlude

But Heinrich Heesch defined the Heesch number. (He also "almost" proved the 4-color theorem)

Interlude

And David Smith is an english retired print technician!

Proof (Smith, Myers, Kaplan, Goodman-Strauss)

Sketch:

- Show that every tile can be replaced by a combinatorially equivalent patch: iterating yields a hierarchical tiling;
- conversely, prove that tiles can always be grouped into such patches: only such hierarchical tilings are possible.

Scale-invariance ensures non-periodicity.

Conclusion

Einstein problem:

Does exist a tile that cover only non-periodically the entire plane?

YES

Conclusion

Einstein problem:

Does exist a tile that cover only non-periodically the entire plane?

YES

Heesch problem:

Decide whether a given tile can cover the entire plane.

OPEN

Conclusion

Einstein problem:

Does exist a tile that cover only non-periodically the entire plane?

YES

Heesch problem:

Decide whether a given tile can cover the entire plane.

OPEN

Generalized Heesch problem:

Decide whether k given tiles can cover the entire plane.

NO for $k \ge 5$ (Nicolas Ollinger, 2009)