Heesch Numbers \& the Einstein Problem

Thomas Fernique

Puzzle challenge (room S937)

Can an entire A4 sheet be covered by tiles all identical to this one?

Puzzle challenge (room S937)

Can an entire A4 sheet be covered by tiles all identical to this one?

Heesch numbers (1968)

Tile:
A topological disk T (e.g., a polygon).

Heesch numbers (1968)

Patch:
A simply connected union of interior-disjoint isometric copies of T.

Heesch numbers (1968)

Corona C of a patch P :
Tiles s.t. $P \cup C$ is a patch with no point of P on its boundary.

Heesch numbers (1968)

Heesch number of T :
Maximum number of coronas that can be successively added to T.

Heesch numbers (1968)

Heesch number of T :
Maximum number of coronas that can be successively added to T.

Heesch numbers (1968)

Heesch number of T :
Maximum number of coronas that can be successively added to T.

Records

The previous tile has Heesch number 3 (Robert Ammann, 1990s).

Records

This generalization has Heesch number 4 (Casey Mann, 2001).

Records

It can be continued up to Heesch number 5 (Casey Mann, 2001).

Records

Another similar idea yields Heesch number 5 (David Smith, 2019).

Records

It has be continued to yield Heesch number 6 (Bojan Bašić, 2021)

Records

This is the current record. . . among tiles with finite Heesch number!

The Heesch problem

Heesch problem:
Decide whether the Heesch number of a given tile is finite.

The Heesch problem

Heesch problem:
Decide whether the Heesch number of a given tile is finite.
Equivalently:
Decide whether a given tile can cover the entire plane.

The Heesch problem

Heesch problem:
Decide whether the Heesch number of a given tile is finite.
Equivalently:
Decide whether a given tile can cover the entire plane.
Claim:
Decidable if we know a bound k on finite Heesch numbers.

The Heesch problem

Heesch problem:
Decide whether the Heesch number of a given tile is finite.
Equivalently:
Decide whether a given tile can cover the entire plane.
Claim:
Decidable if we know a bound k on finite Heesch numbers.
Indeed, explore all the ways to add successive coronas:

- either it eventually fails $\Rightarrow \mathrm{NO}$
- or you succeed to form k coronas \Rightarrow YES.

The Heesch problem

Heesch problem:
Decide whether the Heesch number of a given tile is finite.
Equivalently:
Decide whether a given tile can cover the entire plane.
Claim:
Decidable if we know a bound k on finite Heesch numbers.
Indeed, explore all the ways to add successive coronas:

- either it eventually fails $\Rightarrow \mathrm{NO}$
- or you succeed to form k coronas \Rightarrow YES.

No such bound (yet) known. Personal guess: there are none.

The Einstein problem

Einstein problem:
Does exist a tile that cover only non-periodically the entire plane?

The Einstein problem

Einstein problem:
Does exist a tile that cover only non-periodically the entire plane?
Claim:
If such a tile does not exist, then the Heesch problem is decidable.

The Einstein problem

Einstein problem:
Does exist a tile that cover only non-periodically the entire plane?
Claim:
If such a tile does not exist, then the Heesch problem is decidable.
Indeed, explore all the ways to add successive coronas:

- either it eventually fails $\Rightarrow \mathrm{NO}$
- or it eventually finds a periodic patch \Rightarrow YES.

The Einstein problem

Einstein problem:
Does exist a tile that cover only non-periodically the entire plane?
Claim:
If such a tile does not exist, then the Heesch problem is decidable.
Indeed, explore all the ways to add successive coronas:

- either it eventually fails $\Rightarrow \mathrm{NO}$
- or it eventually finds a periodic patch \Rightarrow YES.

Theorem (David Smith et al., 2023)
Such a tile actually does exist!

Interlude

Einstein \neq ein Stein

Interlude

But Heinrich Heesch defined the Heesch number. (He also "almost" proved the 4-color theorem)

Interlude

And David Smith is an english retired print technician!

The Hat (David Smith, 2023)

This tile was discovered while searching for large Heesch numbers.

The Hat (David Smith, 2023)

This tile was discovered while searching for large Heesch numbers.

The Hat (David Smith, 2023)

This tile was discovered while searching for large Heesch numbers.

The Hat (David Smith, 2023)

This tile was discovered while searching for large Heesch numbers.

The Hat (David Smith, 2023)

This tile was discovered while searching for large Heesch numbers.

The Hat (David Smith, 2023)

This tile was discovered while searching for large Heesch numbers.

The Hat (David Smith, 2023)

This tile was discovered while searching for large Heesch numbers.

The Hat (David Smith, 2023)

This tile was discovered while searching for large Heesch numbers.

The Hat (David Smith, 2023)

This tile was discovered while searching for large Heesch numbers.

Proof (Smith, Myers, Kaplan, Goodman-Strauss)

Sketch:

- Show that every tile can be replaced by a combinatorially equivalent patch: iterating yields a hierarchical tiling;
- conversely, prove that tiles can always be grouped into such patches: only such hierarchical tilings are possible.
Scale-invariance ensures non-periodicity.

Conclusion

Einstein problem:
Does exist a tile that cover only non-periodically the entire plane?
YES

Conclusion

Einstein problem:
Does exist a tile that cover only non-periodically the entire plane?
YES

Heesch problem:
Decide whether a given tile can cover the entire plane.

OPEN

Conclusion

Einstein problem:
Does exist a tile that cover only non-periodically the entire plane?

YES

Heesch problem:
Decide whether a given tile can cover the entire plane.

OPEN

Generalized Heesch problem:
Decide whether k given tiles can cover the entire plane.

$$
\begin{gathered}
\text { NO for } k \geq 5 \\
\text { (Nicolas Ollinger, 2009) }
\end{gathered}
$$

