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Abstract. This paper is motivated by the issue of quasicrystal growth. It describes a simple
local algorithm which appears to grow an infinite family of aperiodic tilings. Starting from a
seed, tiles are added one by one at randomly chosen sites. A tile is added only if there is only one
way to do this so that no forbidden local configuration is created. This algorithm rapidly grows
large round-shaped patterns, up to a proportion of missing tiles which can be made arbitrarily
small by taking a large enough seed.

1. Introduction
Since the discover of quasicrystals [1], a lot of attention has been drawn by the issue of whether
local energetic interactions could explain the growth and stability of such aperiodic structures.
Actually, the eventuality of a finite set of local configurations which characterize only aperiodic
structures (local rules) has been considered in the early 60’s by computer scientists [2]. The first
example was found in 1964 [3]. Other cases were later found in tiling theory (see, e.g., Sec. 5.7
of [4] and references therein), including the famous Penrose tilings [5].

Sadly, adding tiles one by one while taking care to observe some given local rules may not lead
to a tiling characterized by these local rules. There are indeed arbitrarily large patterns which
satisfy everywhere the local rules but can nevertheless not be extended further (deceptions) [6].
Does it means, as suggested by Penrose [7], that the growth of quasicrystals is an intrinsically
non-local problem?

An interesting growth algorithm has been proposed for Penrose tilings [8]. Starting from a
pattern (seed), tiles are added one by one at randomly chosen sites. The rule is to add a tile in
a given site when there is only one way to do this so that local rules are satisfied (forced tile).
This however eventually leads to a pattern with no more forced tiles (dead pattern). A special
rule is then used to add a tile in some specific sites (marginal sites). Unfortunately, this special
rule makes the growth non-local because the whole pattern has indeed to be examined to decide
whether it is dead or not.

This non-locality problem led Socolar [9] to modify the algorithm: the special rule can now
be used at any time, but only with a small probability ε. The algorithm becomes purely local,
and since the probability that the special rule is used while the pattern is not dead is small
(though it increases with the pattern size), the grown patterns look like thoses grown with the
previous algorithm. The drawback is that the growth now stucks a very long time on each dead
pattern (because ε is small and the marginal sites are quite scarce).

Another drawback, shared by both algorithms, is that the dead patterns the growth goes
through have a very geometric shape, making such a mechanism questionable as a model of real
quasicrystal growth (animated growths can be found on the web [10]).



In this paper, we modify the first algorithm [8] in a different way. We never use the special
rule and, instead, slightly increase the radius of the local rules to determine forced tiles. This
algorithm is thus local. It is moreover deterministic, in the sense that no choice is ever made and
the patterns grown at the limit do not depend on the way sites to add tiles are chosen at random
(whereas patterns grown by the Socolar’s modified algorithm [9] depend on the marginal sites
the special rule is applied in). An unavoidable consequence is that these limit patterns cannot
fully cover the plane. Indeed, the information contained in the seed and the local rules never
characterizes a unique aperiodic tiling (but a continuum [11]). Hence, none of the tiles which
distinguish between these tilings can be added without making a choice. Fortunately enough,
these missing tiles turn out to be quite sparse and appear to not prevent the local growth to
”jump” over them. Moreover, the larger the initial seed is, the sparser they are (they form
so-called Conway worms which are wider and wider spaced). We shall here consider not only
Penrose tilings but all the planar rhombus tilings with local rules, concisely summarized Section 2.
The algorithm is defined Section 3 and discussed Section 4.

2. Planar rhombus tilings with local rules
Pairwise non-collinear vectors ~v1, . . . , ~vn of the Euclidean plane define the rhombic prototiles:

Tij = {λ~vi + µ~vj | 0 ≤ λ, µ ≤ 1}.

A tile is a translated prototile. A rhombus tiling is a covering of the plane by interior-disjoint
tiles, with the intersection of two tiles, if not empty, being either a vertex or an entire edge. A
pattern is a finite subset of a tiling.

Let ~e1, . . . , ~en be the canonical basis of Rn. The lift of a rhombus tiling is defined as follows:
an arbitrary vertex is first mapped onto a point of Zn, then each tile Tij is mapped onto the
2-dimensional face of a unit hypercube of Zn generated by ~ei and ~ej , with two tiles adjacent
along an edge ~vi being mapped onto two faces adjacent along an edge ~ei. The lift of a rhombus
tilings is thus a “stepped” surface in Rn. A rhombus tiling is said to be planar if there is a
plane E ⊂ Rn, called the slope, such that the tiling can be lifted into the tube E + [0, 1]n.

An r-map of center x of a rhombus tiling T is the pattern formed by all the tiles of T
connected by a path of at most r edges to a vertex x of T . The r-atlas of T is the set of its
r-maps. A planar rhombus tiling T is said to admit local rules of radius r if any tiling whose
r-atlas is a subset of the one of T is planar with the same slope as T .

Penrose tilings, for example, can be defined as planar rhombus tilings for n = 5 [12] and
admit local rules of radius 0. Another famous example are Ammann-Beenker tilings, which can
be defined as planar rhombus tilings for n = 4 [13] but do not admit local rules [14].

The shadow of a rhombus tiling T is obtained by ”shrinking” all the ~vi’s but three to ~0,
then removing all the tiles whose interior becames empty. This is a rhombus tilings with n = 3,
and its lift is the orthogonal projection of the lift of T on the space generated by the three ~ei’s
whose indices are those of the non-shrinked ~vi’s. A non-zero vector ~p ∈ Z3 is a subperiod if T
has a ~p-periodic shadow, i.e., a shadow whose lift is invariant under a translation by ~p.

Subperiods seem to play an important role w.r.t. local rules. A necessary condition for a
rhombus tiling to admit local rules is to have only periodic shadows [15]. This is, for example,
the case of Penrose tilings. This is not sufficient: Ammann-Beenker tilings do not admit local
rules but have only periodic shadows. A sufficient condition has been proven for n = 4 (and
conjectured to be true for any n): if the subperiods of a planar rhombus tiling characterize its
slope (i.e., any planar rhombus tiling with the same subperiods must have this slope), then it
admits local rules [16]. The point is that checking that a slope is enforced by subperiods just
amounts to some basic algebra. This easily yields arbitrarily many examples, for n = 4, to test
our local growth algorithm.



3. Local growth
The local growth is defined by Algo. 1, below. Fig. 1 illustrates one step on a toy example.
Fig. 2 shows two larger patterns obtained in the case of golden octagonal tilings. These are the
planar aperiodic octagonal tilings with a slope directed by (−1, 0, ϕ, ϕ) and (0, 1, ϕ, 1), where ϕ
is the golden ratio. This slope is enforced by subperiods and admits local rules of radius 3 [16].

Algorithm 1: Local growth

Data: An r-atlas A and a pattern P (the seed)
while true do

x← a random vertex of P not completly surrounded by tiles;
Px ← the pattern formed by the tiles of P within distance r of x;
Ax ← the maps in A which, once centered in x, contain Px;
Fx ← the tiles shared by all the maps in Ax (that is, the forced tiles);
P ← P ∪ Fx;

Figure 1. A pattern P (left) and, for r = 1, a pattern Px (dark). The 1-atlas A (framed) has
two maps which contain Px. These two maps have 4 other tiles in common, added to P (right).

Figure 2. Patterns grown by Algo. 1 with the 4-atlas of golden octagonal tilings (dark seeds).



4. Discussion
Simulations on various planar octagonal tilings with local rules show that, for large enough seed
and atlas, the patterns grown by Algo. 1 eventually cover almost all the plane [17].

The growth appears to be enforced by the atlas (which may need a slightly larger radius than
the one of local rules). A key role may be played by subperiods: Fig. 3 explain how they, so
to speak, ”conspire” to force tiles. We tested a modified algorithm which purely relies on this
subperiod conspiration: the growth indeed looks the same.

The grown patterns appear to depend on the seed. Given a seed which lifts in a tube
E + [0, 1]n, the slope E can always be slightly shifted so that the tube still contains that lift
(while the direction of E is fixed by the atlas). The intersection of all the planar tilings with
these shifted slopes appears to be the limit pattern (missing tiles form so-called Conway worms).
The larger the seed is, the smaller the allowed shift on E is and the sparser are the missing tiles.

Figure 3. The four shadows of a pattern of a golden octagonal tiling (actually the one Fig. 1)
are periodic (each subperiod is depicted). In each shadow, tiles are forced in the direction of
the subperiod according only to the local environment (some red tiles have been added). Two
neighboor tiles in the shadow obtained by shrinking ~vi may be separated by an unknown number
of edges ~vi in the original pattern. The position in the original pattern of a tile forced in a shadow
is therefore unclear. However, if such a tile is next to a known location in two shadows (e.g.,
here, the black point and the plain red tile in the second and fourth shadow), since no ~vi can
have been shrinked in both shadow, then the position of the tile in the pattern can be deduced
from its position in the shadows. The subperiods conspire to force tiles in some (most of) sites.
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