Lift & Flip to Sample Tilings

Thomas Fernique & Olga Sizova

Lozenges 0000	Dimers 0000	Some other cases	Squares and triangles
Outline			

Lozenges ●000	Dimers 0000	Some other cases	Squares and triangles
Outline			

Lozenges 0●00

Dimers

Some other cases

Squares and triangles

Lozenge tilings & flips

Tiling of a simply connected region by lozenges with a 30° angle. Flip: rotation of three tiles sharing a vertex. Lozenges 0●00

Dimers

Some other cases

Squares and triangles

Lozenge tilings & flips

Tiling of a simply connected region by lozenges with a 30° angle. Flip: rotation of three tiles sharing a vertex.

0000

Dimers

Some other cases

Squares and triangles

Lift & Flip-connexity

Lift: see tiles as 2D facets of \mathbb{Z}^3 . Flip: adding/removing a cube (in \mathbb{R}^3).

0000

Dimers

Some other cases

Squares and triangles

Lift & Flip-connexity

Lift: see tiles as 2D facets of \mathbb{Z}^3 . Flip: adding/removing a cube (in \mathbb{R}^3).

Lozenges	
0000	

Some other cases

Squares and triangles

What for?

ozenges		
000		

Some other cases

Squares and triangles

What for?

Lozenges	
0000	

Some other cases

Squares and triangles

What for?

Lozenges	
0000	

Some other cases

Squares and triangles

What for?

Lozenges 0000	Dimers 0000	Some other cases	Squares and triangles
Outline			

Lozenges 0000	Dimers 0●00	Some other cases	Squares and triangles
On the tria	ngular grid		

Consider again a lozenge tiling.

nges O Dimers 0000 Some other cases

Squares and triangles

On the triangular grid

It can be seen as a perfect matching on the triangular grid.

Lozenges 0000	Dimers 00●0	Some other cases	Squares and triangles
Height function	n (Thurston'89)	

Color triangles in black & white. Orient black ones clockwise.

Give weight -2 to edges which cut a tile, +1 to all the other ones.

Lozenges 0000	Dimers 00●0	Some other cases	Squares and triangles
Height function	n (Thurston'89		

Give height 0 to a vertex v_0 . Height of v: weight of a path $v_0 \rightsquigarrow v$.

Lozenges 0000	Dimers 00●0	Some other cases	Squares and triangles
Height function	n (Thurston'89		

Give height 0 to a vertex v_0 . Height of v: weight of a path $v_0 \rightsquigarrow v$.

Lozenges Dimers Some other cases oooo Squares and triangles oooo Height function (Thurston'89)

Give height 0 to a vertex v_0 . Height of v: weight of a path $v_0 \rightsquigarrow v$.

Height: scalar product of the lift with the cube diagonal.

Lozenges 0000	Dimers 0000	Some other cases	Squares and triangles
On the sq	uare grid		

Dimers 0000 Some other cases

Squares and triangles

On the square grid

Dimers 0000 Some other cases

Squares and triangles

On the square grid

Dimers 0000 Some other cases

Squares and triangles

On the square grid

Lozenges 0000	Dimers 000●	Some other cases	Squares and triangles
On the squ	uare grid		

Lift: not that easy to visualize...

Lozenges 0000	Dimers 000●	Some other cases	Squares and triangles
On the squ	uare grid		

Lift: not that easy to visualize... Flip: adding/removing a sort of bumpy square...

Lozenges 0000	Dimers 0000	Some other cases	Squares and triangles
Outline			

Lozenges	Dimers	Some other cases	Squares and triangles
		0000	

Lozenges	Dimers	Some other cases	Squares and triangles
0000	0000	⊙●○○	

Lozenges 0000	Dimers 0000	Some other cases $0 \bullet 00$	Squares and triangles
- · · · ·			

On the Kagome grid (Bodini'06)

11/17

11/17

Lozenges Dimers Some other cases Squares and triangles 0000 0000 0000 0000

Lozenges Dimers Some other cases Squares and triangles 0000 0000 0000 0000

 Lozenges
 Dimers
 Some other cases
 Squares and triangles

 0000
 0000
 0000
 0000
 0000

Lozenges Dimers Some other cases Squares and triangles 0000 0000 0000 0000

Lozenges Dimers Some other cases Squares and triangles 0000 0000 0000 0000

 Lozenges
 Dimers
 Some other cases
 Squares and triangles

 0000
 0000
 0000
 0000

 Lozenges
 Dimers
 Some other cases
 Squares and triangles

 0000
 0000
 0000
 0000

Two rectangles (Kenyon-Kenyon'92, Rémila'04)

 1×2 and 2×1 dominoes $\longrightarrow a \times b$ and $c \times d$ rectangles.

Two rectangles (Kenyon-Kenyon'92, Rémila'04)

Flips: strong (rectangles are changed) or weak (they are moved).

Two rectangles (Kenyon-Kenyon'92, Rémila'04)

Lift: Tiling group theory (Conway-Lagarias'90) to lift in \mathbb{R}^4 !

Lift: Tiling group theory (Conway-Lagarias'90) to lift in \mathbb{R}^4 !

Some other cases 0000

Rhombus tilings (Bodini-F.-Rémila'08)

What if we allow $n \ge 3$ edge directions to define rhombi?

Rhombus tilings (Bodini-F.-Rémila'08)

We get $\binom{n}{2}$ tiles and so-called $n \to 2$ tilings.

Rhombus tilings (Bodini-F.-Rémila'08)

Lift: map the *n* edge directions onto the standard basis of \mathbb{R}^n .

Rhombus tilings (Bodini-F.-Rémila'08)

Flip: rotation of three lozenges sharing a vertex.

Rhombus tilings (Bodini-F.-Rémila'08)

Flip: rotation of three lozenges sharing a vertex.

 Lozenges
 Dimers
 Some other cases
 Squares and triangles

 0000
 0000
 0000
 0000

Rhombus tilings (Bodini-F.-Rémila'08)

Each tile can be moved step by step towards its final position without moving tiles already at their final position \rightsquigarrow connexity.

This allows to sample random tilings. And get arctic-circle?

Lozenges	Dimers	Some other cases	Squares and triangles
0000	0000		●000
Outline			

Lozenges 0000	0000	Some other cases	Squares and triangles ○●○○
Tilings & flips			

How to connect tilings by squares and triangles of a given region?

Lozenges 0000	Dimers 0000	Some other cases	Squares and triangles 0●00
Tilings & flips			

Physicists suggest "defect" (lozenges) to mediate between tilings.

Lozenges 0000	Dimers 0000	Some other cases	Squares and triangles ○●○○
Tilings & flips			

Physicists suggest "defect" (lozenges) to mediate between tilings.

Lozenges	Dimers	Some other cases	Squares and triangles
0000	0000	0000	
Lift			

Lifts \hat{u}_k/\hat{v}_k of edges u_k/v_k have to sum up to zero around each tile.

Lozenges	Dimers	Some other cases	Squares and triangles
0000	0000	0000	
Lift			

Set e.g. $\hat{u}_k = (j^k, 0)$ and $\hat{v}_k = (0, j^k)$, both in $\mathbb{C} \times \mathbb{C}$, with $j = e^{\frac{2i\pi}{3}}$.

Lozenges	Dimers	Some other cases	Squares and triangles
0000	0000	0000	
Lift			

Flip: adding/removing a triangular prism (in $\mathbb{C} \times \mathbb{C}$).

Lozenges	Dimers	Some other cases	Squares and triangles
0000	0000	0000	00●0
Lift			

Flip: adding/removing a triangular prism (in $\mathbb{C} \times \mathbb{C}$). Lozenges are squares like any other!

Lozenges 0000	Dimers 0000	Some other cases	Squares and triangles 000●
Flip-connexity			

Physicists claim that any two square-triangle tilings are connected.

Lozenges 0000	Dimers 0000	Some other cases 0000	Squares and triangles 000●
Flip-connexity			

Physicists claim that any two square-triangle tilings are connected. Does it holds for the superset of square-triangle-lozenges tilings?

Lozenges 0000	Dimers 0000	Some other cases 0000	Squares and triangles 000●
Flip-connexity			

Physicists claim that any two square-triangle tilings are connected. Does it holds for the superset of square-triangle-lozenges tilings?