Lift \& Flip to Sample Tilings

Thomas Fernique \& Olga Sizova

Outline

(1) Lozenges
(2) Dimers
(3) Some other cases

4 Squares and triangles

Outline

(1) Lozenges
(2) Dimers
(3) Some other cases
(4) Squares and triangles

Lozenge tilings \& flips

Tiling of a simply connected region by lozenges with a 30° angle.
Flip: rotation of three tiles sharing a vertex.

Lozenge tilings \& flips

Tiling of a simply connected region by lozenges with a 30° angle.
Flip: rotation of three tiles sharing a vertex.

Lift \& Flip-connexity

Lift: see tiles as 2D facets of \mathbb{Z}^{3}.
Flip: adding/removing a cube (in \mathbb{R}^{3}).

Lift \& Flip-connexity

Lift: see tiles as 2D facets of \mathbb{Z}^{3}.
Flip: adding/removing a cube (in \mathbb{R}^{3}).

What for?

Random sampling (mixing time issues) to guess "typical shapes".

What for?

What for?

Random sampling (mixing time issues) to guess "typical shapes".

Outline

(1) Lozenges
(2) Dimers
(3) Some other cases
(4) Squares and triangles

On the triangular grid

Consider again a lozenge tiling.

On the triangular grid

It can be seen as a perfect matching on the triangular grid.

Height function (Thurston'89)

Color triangles in black \& white. Orient black ones clockwise.

Height function (Thurston'89)

Give weight -2 to edges which cut a tile, +1 to all the other ones.

Height function (Thurston'89)

Give height 0 to a vertex v_{0}. Height of v : weight of a path $v_{0} \rightsquigarrow v$.

Give height 0 to a vertex v_{0}. Height of v : weight of a path $v_{0} \rightsquigarrow v$.

Give height 0 to a vertex v_{0}. Height of v : weight of a path $v_{0} \rightsquigarrow v$.

Height function (Thurston'89)

Height: scalar product of the lift with the cube diagonal.

On the square grid

This easily extends to domino tilings on the square grid!

On the square grid

This easily extends to domino tilings on the square grid!

On the square grid

This easily extends to domino tilings on the square grid!

On the square grid

This easily extends to domino tilings on the square grid!

On the square grid

Lift: not that easy to visualize...

On the square grid

Lift: not that easy to visualize. . .
Flip: adding/removing a sort of bumpy square. . .

Outline

(1) Lozenges

(2) Dimers
(3) Some other cases

4 Squares and triangles

On the Kagome grid (Bodini'06)

Two rectangles (Kenyon-Kenyon'92, Rémila'04)

1×2 and 2×1 dominoes $\longrightarrow a \times b$ and $c \times d$ rectangles.

Two rectangles (Kenyon-Kenyon'92, Rémila'04)

$\operatorname{Icm}(a, c)$

Flips: strong (rectangles are changed) or weak (they are moved).

Two rectangles (Kenyon-Kenyon'92, Rémila'04)

Lift: Tiling group theory (Conway-Lagarias'90) to lift in \mathbb{R}^{4} !

Two rectangles (Kenyon-Kenyon'92, Rémila'04)

Lift: Tiling group theory (Conway-Lagarias'90) to lift in \mathbb{R}^{4} !

Rhombus tilings (Bodini-F.-Rémila'08)

What if we allow $n \geq 3$ edge directions to define rhombi?

Rhombus tilings (Bodini-F.-Rémila'08)

We get $\binom{n}{2}$ tiles and so-called $n \rightarrow 2$ tilings.

Rhombus tilings (Bodini-F.-Rémila'08)

Lift: map the n edge directions onto the standard basis of \mathbb{R}^{n}.

Rhombus tilings (Bodini-F.-Rémila'08)

Flip: rotation of three lozenges sharing a vertex.

Rhombus tilings (Bodini-F.-Rémila'08)

Flip: rotation of three lozenges sharing a vertex.

Rhombus tilings (Bodini-F.-Rémila'08)

Each tile can be moved step by step towards its final position without moving tiles already at their final position \rightsquigarrow connexity.

Rhombus tilings (Bodini-F.-Rémila'08)

This allows to sample random tilings. And get arctic-circle?

Outline

(1) Lozenges

(2) Dimers
(3) Some other cases
(4) Squares and triangles

Tilings \& flips

How to connect tilings by squares and triangles of a given region?

Tilings \& flips

Physicists suggest "defect" (lozenges) to mediate between tilings.

Tilings \& flips

Physicists suggest "defect" (lozenges) to mediate between tilings.

Lift

Lifts $\hat{u}_{k} / \hat{v}_{k}$ of edges u_{k} / v_{k} have to sum up to zero around each tile.

Lift

$\hat{u}_{0}+\hat{u}_{1}+\hat{u}_{2}=0$

$\hat{v}_{0}+\hat{v}_{1}+\hat{v}_{2}=0$

Set e.g. $\hat{u}_{k}=\left(j^{k}, 0\right)$ and $\hat{v}_{k}=\left(0, j^{k}\right)$, both in $\mathbb{C} \times \mathbb{C}$, with $j=\mathrm{e}^{\frac{2 i \pi}{3}}$.

Lift

Flip: adding/removing a triangular prism (in $\mathbb{C} \times \mathbb{C}$).

Lift

Flip: adding/removing a triangular prism (in $\mathbb{C} \times \mathbb{C}$). Lozenges are squares like any other!

Flip-connexity

Physicists claim that any two square-triangle tilings are connected.

Flip-connexity

Physicists claim that any two square-triangle tilings are connected. Does it holds for the superset of square-triangle-lozenges tilings?

Physicists claim that any two square-triangle tilings are connected. Does it holds for the superset of square-triangle-lozenges tilings?

