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Considered Problem

What is the maximal density of a packing of the Euclidean space
by spheres with finitely many prescribed sizes r1, . . . , rk?
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Outline

The localization problem

The m-localization

Beyond the m-localization?
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One circle

Theorem (Fejes Tóth, 1943)

In a Delaunay triangulation of the centers of a saturated packing

by , the densest possible triangle is .

This yields the maximal density because tiles the plane:

The maximal density is derived quite locally!
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Two circles

Theorem (Florian, 1960)

In a Delaunay triangulation of the centers of a saturated packing

by and , the densest possible triangle is .

This yields only an upper bound on the maximal density because
does not tile the plane:

I and would alternate around ;

I the angle of the triangle in is larger than π
3 ;

I would thus be surrounded by , but this is impossible.

The maximal density cannot be derived that locally.
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One sphere in R3

Theorem
In a Delaunay tetrahedrization of the centers of a saturated
packing by unit spheres, the densest possible tetrahedron is regular.

Theorem (Hales, 1999)

In a Voronöı diagram of the centers of a saturated packing by unit
spheres, the densest possible cell is a regular dodecahedron.

Again, this yields only an upper bound on the maximal density
because regular tetrahedron or dodecahedron do not tile the space.

The maximal density cannot be derived that locally.
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Localization (following Lagarias, Discrete Comput. Geom. 27, 2002)

Weighting rule:

I packing Ω  partition P of the space into bounded polytopes;

I each cell has a weight related to the empty volume it contains;

I each cell distributes its weight among nearby spheres.

Local density inequality:
A lower bound on the total weight received by any sphere.

Proposition

Any lower bound β 6= −κ yields an upper bound on the density.

Proof sketch:
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Proof sketch:

κ|Ω|
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Example: one circle

Weighting rule:

I circle packing Ω  Delaunay triangulation of the plane;

I the weight of a triangle R is equal to π
2
√

3
vol(R)− cov(R);

I each triangle R shares its weight fairly among its 3 circles.

Local density inequality (theorem):
The total weight received by any circle is nonnegative.

Upper bound on the density:

δ ≤ π

2
√

3
.
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Example: one sphere in R3

Weighting rule (Hales, 1992):

I sphere packing Ω  Delaunay tetrahedrization of the space;

I the weight of a tetrahedron R is equal to δoctvol(R)− cov(R),
where δoct ≈ 0.720903 is the density in a regular octahedron;

I each tetrahedra shares its weight fairly among its 4 spheres.

Local density inequality (conjecture, Hales, 1992):
The total weight received by a sphere is at least 24 arccos 1√

3
− 22π

3 .

Local density inequality (theorem, Hales-Ferguson, 1998–2014):
The local density inequality holds for a modified weighting rule.

Upper bound on the density:

δ ≤ π

3
√

2
≈ 0.740480
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Proving a local density inequality

Regions bounded & weights given to nearby spheres  the weight
of a sphere is given by a function defined over a compact set K .

We can proceed by dichotomy using interval arithmetic:

check(K):

I=f(K)

if I.upper()<beta.lower():

raise InequalityNotSatisfied

if I.lower()>=beta.upper():

return

for Ks in split(K):

check(Ks)

If the local density is optimal, then there is x such that f (x) = β.
Around x : infinite recursion! Bound the ∂f ’s from below over V(x)
to ensure f (V(x)) ≥ β and stop the recursion when K ⊂ V(x).
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Two major problems

Problem 1
There are 2dim(K) recursive calls by level and possibly many levels.

 find a weighting rules with lower dim(K ) and fewer levels?

 use simple (e.g., linear) lower bounds on the weight of a cells?

Problem 2
Optimal local densities may not exist (aperiodic densest packings?)
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The m-localization: teaser

This is a weighting rule:

I introduced under that name by T. Kennedy in 2004;

I relying on ideas introduced by A. Heppes in 2000-02;

I improved by N. Bédaride and Th. Fernique in 2020.

Designed to prove maximal density of triangulated packings:

13/25



Triangulated binary packings

r2/r1 δ

0.6376 0.9106
0.5452 0.9116
0.5333 0.9141
0.4142 0.9201
0.3861 0.9200
0.3492 0.9246
0.2808 0.9319
0.1547 0.9503
0.1010 0.9624

Theorem (Kennedy, 2006)

There are exactly 9 sizes allowing a triangulated binary packing.
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Triangulated ternary packings

r2/r1 r3/r1 δ

0.83 0.65 0.9093
0.79 0.63 0.9098
0.84 0.61 0.9101
0.88 0.62 0.9094
0.59 0.51 0.9124
0.79 0.57 0.9100
0.61 0.50 0.9135
0.66 0.46 0.9153
0.55 0.43 0.9178

Theorem (Fernique-Hashemi-Sizova, 2019)

There are exactly 164 sizes allowing a triangulated ternary packing.
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Density of triangulated packings

Theorem (Heppes 2000-02, Kennedy 2004, Bédaride-F. 2020)

For each of the 9 sizes which allow a triangulated binary packing,
the density is maximized by a triangulated binary packing.

Theorem (Pchelina, 2021)

For 9 out of 164 sizes which allow a triangulated ternary packing,
the density is maximized by a triangulated ternary packing.
For 15 + 18 + 6 sizes, this does not hold:

For 116 sizes, the m-localization does not allow to conclude.
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The m-localization: definition

Weighting rule:

I packing Ω  FM-triangulation of the plane;

I each triangle R has weight at most δ∗vol(R)− cov(R);

I each triangle cleverly distributes its weight among its 3 circles.

Local density inequality:
The total weight received by any circle is nonnegative.

Upper bound on the density:

δ ≤ δ∗.
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FM-triangulation

Cell of a circle: the points closer to it than to any other circle.
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FM-triangulation

Dual: Fejes-Mólnar (or weighted Delaunay) triangulation.
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Weight distribution

The circles of a tight triangle R∗ receive weights V ∗i ’s which
depend only on the 3 circle sizes and satisfy the linear equation:

V ∗1 + V ∗2 + V ∗3 = δ∗vol(R∗)− cov(R∗).
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Weight distribution

The total weight received by any circle in the (candidate) densest
triangulated packing must be nonnegative in order for the local
density inequality to be satisfied for this packing.
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Weight distribution

The total weight received by any circle in the (candidate) densest
triangulated packing must be equal to 0 in order for the local
density inequality to be optimal for this packing.
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Weight distribution

The total weight received by any circle in the (candidate) densest
triangulated packing must be equal to 0 in order for the local
density inequality to be optimal for this packing.

This yields further linear equations on the V ∗i ’s.
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Weight distribution

Triangle deformation  weight deviation: Vi := V ∗i + m|α− α∗|.
m big enough to ensure the local density inequality in any packing.
m small enough to have R of weight at most δ∗vol(R)− cov(R).
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Weight distribution

Triangle deformation  weight deviation: Vi := V ∗i + m|α− α∗|.
m big enough to ensure the local density inequality in any packing.
m small enough to have R of weight at most δ∗vol(R)− cov(R).

Finitely many configurations
Compact set of FM-triangles

}
 computer check!
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Outline

The localization problem

The m-localization

Beyond the m-localization?
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The case c5

Consider the m-localization for this triangulated binary packing.
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The case c5

Each blue triangle gives weight V ∗ to each of its 3 circles.
The total weight received by the central blue circle is 6V ∗.
Hence V ∗ = 0 and the total weight of a blue triangle R is 0.
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The case c5

Each blue triangle gives weight V ∗ to each of its 3 circles.
The total weight received by the central blue circle is 6V ∗.
Hence V ∗ = 0 and the total weight of a blue triangle R is 0.
But it should be δ∗vol(R)− cov(R) > π

2
√

3
vol(R)− cov(R) = 0.
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The case c5

0
0

0

0
0

0

Solution: the weight received by a circle depends on its neighbors.
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Stoichiometry

What about the packings with frequency fr of circles of size r?

Modified Local density inequality:
The total weight received by a circle of size r is at least βr , with∑

r

frβr ≥ 0.

Example (Fernique, 2020)

Characterization of the densest packings by circles of size 1 and√
2− 1 for each possible stoichiometry.
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Nontriangulated packings

What if the sizes do not allow any triangulated packing ?
(except the hexagonal compact packing with same-sized circles)

This is just removing equations on the V ∗i ’s. We need an oracle!

Actually, we already needed an oracle for triangulated packings
because the system of linear equations is always undetermined.

The main problem seems that the m-localization is ”too local”:
the weight of a triangle should be distributed beyond its 3 circles.

At least we can hope to get an upper bound on the density. . .
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Upper bounds for binary packings

Florian's upper bound

m-localization upper bound

lower bound derived from "good packing"
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Example: two circles within ratio 0.48
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