(Generation and) Recognition of Digital Planes using Multidimensional Continued Fractions

Thomas Fernique

LIRMM - Univ. Montpellier 2

Lyon, April 16, 2008

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Question: planarity of a given discrete object?

Many approaches already exist.

Here: generalization of Wu-Troesh algorithm for discrete lines. Principe: local planarity checking and "backwards zooms".

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Stepped planes	Local properties	Recoding	A hybrid algorithm
0000	0000	0000	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Stepped planes

2 Local properties

3 Recoding (Backwards zooms)

Stepped planes	Local properties	Recoding	A hybrid algorithm

Stepped planes

2 Local properties

3 Recoding (Backwards zooms)

A hybrid algorithm

Stepped planes	Local properties	Recoding	A hybrid algorithm
0000			
Face			

Let $(\vec{e}_1, \dots, \vec{e}_d)$ be the canonical basis of \mathbb{R}^d . Face of type $i \in \{1, \dots, d\}$ located at $\vec{x} \in \mathbb{Z}^d$:

(日)、

-

Discrete objects here considered: unions of such faces.

Stepped planes	Local properties	Recoding	A hybrid algorithm
0000	0000	0000	
Plane			

Stepped plane $\mathcal{P}_{\vec{\alpha},\rho}$: boundary of the union of unit cubes of \mathbb{Z}^d intersecting the real half-space $\{\vec{x} \mid \langle \vec{x} | \vec{\alpha} \rangle \leq \rho\}$.

Vertices of $\mathcal{P}_{\vec{\alpha},\rho}$: *discrete standard plane* of parameters $(\vec{\alpha}, \rho)$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Stepped planes	Local properties	Recoding	A hybrid algorithm
0000			
Patch			

Patch of a stepped plane: union of faces included in this plane.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Stepped planes	Local properties	Recoding	A hybrid algorithm
0000			
Patch			

Patch of a stepped plane: union of faces included in this plane.

Stepped planes	Local properties	Recoding	A hybrid algorithm
0000			
Patch			

Patch of a stepped plane: union of faces included in this plane.

・ロト ・西ト ・ヨト ・ヨー うへぐ

Let us stress that stepped planes can share patches.

Stepped planes	Local properties	Recoding	A hybrid algorithm
0000			
Parameters			

More generally, given a union of faces \mathcal{B} , $P(\mathcal{B})$ denotes the set of parameters of stepped planes \mathcal{B} is a patch of:

$$P(\mathcal{B}) = \{ (\vec{\alpha}, \rho) \in \mathbb{R}^d_+ \setminus \{\vec{0}\} \times \mathbb{R} \mid \mathcal{B} \subset \mathcal{P}_{\vec{\alpha}, \rho} \}.$$

We speak about *admissibles parameters* of \mathcal{B} . It is a convex polytope of \mathbb{R}^{d+1} , non-empty iff \mathcal{B} is a patch of stepped plane.

 \rightsquigarrow *Recognition* of \mathcal{B} : computation of $P(\mathcal{B})$.

Stepped planes	Local properties	Recoding	A hybrid algorithm

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

1 Stepped planes

2 Local properties

3 Recoding (Backwards zooms)

A hybrid algorithm

Stepped planes	Local properties	Recoding	A hybrid algorithm
0000	0000	0000	000
Principe			

Stepped plane: constrained and regular object.

Looks planar.

・ロト ・聞ト ・ヨト ・ヨト

э

Stepped planes	Local properties	Recoding	A hybrid algorithm
0000	0000	0000	000
Principe			

Stepped plane: constrained and regular object.

Does not look planar.

・ロト ・聞ト ・ヨト ・ヨト

э

Stepped planes	Local properties	Recoding	A hybrid algorithm
	○●○○	0000	000
Run			

Definition (run)

An (i, j)-run of a union of faces \mathcal{B} is a maximal sequence of faces of type *i*, aligned in the direction \vec{e}_j and included in \mathcal{B} .

(1,3)-runs of length 2 and 3.

Stepped planes	Local properties	Recoding 0000	A hybrid algorithm
Run			

Proposition (Berthé-F. 2007)

(i,j)-runs of stepped plane $\mathcal{P}_{\vec{\alpha},\rho}$ have length $\lfloor \alpha_i / \alpha_j \rfloor$ or $\lceil \alpha_i / \alpha_j \rceil$.

If it is a stepped plane with normal $\vec{\alpha}$, then $2 < \alpha_1/\alpha_3 < 3$.

Stepped planes	Local properties	Recoding 0000	A hybrid algorithm
Run			

Proposition (Berthé-F. 2007)

(i, j)-runs of stepped plane $\mathcal{P}_{\vec{\alpha}, \rho}$ have length $\lfloor \alpha_i / \alpha_j \rfloor$ or $\lceil \alpha_i / \alpha_j \rceil$.

< ロ ト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

It is not a stepped plane (incompatible lengths of runs).

Stepped planes	Local properties	Recoding	A hybrid algorithm
	○○○●	0000	000
Recognizability			

Planes and patches do not always have identical runs:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Stepped planes	Local properties	Recoding	A hybrid algorithm
	○○○●	0000	000
Recognizability			

Planes and patches do not always have identical runs:

Weak conditions \rightsquigarrow info. on the (eventual) normal vector.

We speak about a *recognizable* union of faces.

Stepped planes	Local properties	Recoding	A hybrid algorithm

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

1 Stepped planes

2 Local properties

3 Recoding (Backwards zooms)

A hybrid algorithm

Stepped planes	Local properties	Recoding ●000	A hybrid algorithm 000
Principe			

Recoding: map \tilde{T} on union of faces which satisfies:

- \mathcal{B} patch of \mathcal{P} iff $\tilde{\mathcal{T}}(\mathcal{B})$ patch of $\tilde{\mathcal{T}}(\mathcal{P})$;
- P(B) can be (easily) deduced from $P(\tilde{T}(B))$;
- $\tilde{T}(\mathcal{B})$ contains (much) lesser faces than \mathcal{B} .

Aim: reducing the recognition of \mathcal{B} to the one of $\tilde{\mathcal{T}}(\mathcal{B})$.

Stepped planes	Local properties	Recoding	A hybrid algorithm
	0000	○●○○	000
Principe			

More precisely, recoding by *dual maps* (see abstract):

 $\tilde{T}(\mathcal{B}) = E_1^*(\sigma_{\mathcal{B}})(\mathcal{B}).$

Choice of $\sigma_{\mathcal{B}}$ relies on the runs of \mathcal{B} (if recognizable).

Stepped planes	Local properties	Recoding	A hybrid algorithm
	0000	○●○○	000
Principe			

More precisely, recoding by *dual maps* (see abstract):

 $\tilde{T}(\mathcal{B}) = E_1^*(\sigma_{\mathcal{B}})(\mathcal{B}).$

Choice of $\sigma_{\mathcal{B}}$ relies on the runs of \mathcal{B} (if recognizable).

Intuition of the "whole" principe:

Compute the common part of multi-dimensional continued fraction expansion (Brun's algorithm) of the normal vectors of stepped planes \mathcal{B} is a patch of.

Stepped planes	Local properties	Recoding	A hybrid algorithm
0000	0000	○○●○	000
Problems with boundaries			

(ロ)、(型)、(E)、(E)、 E) の(の)

Problem: \tilde{T} can be applied only with particular boundaries. This condition generally does not hold.

Stepped planes	Local properties 0000	Recoding ○○●○	A hybrid algorithm
Problems with boundaries			

Problem: \tilde{T} can be applied only with particular boundaries. This condition generally does not hold.

Solution: use the following equivalence notion:

$$\mathcal{B} \sim \mathcal{B}' \iff \mathcal{P}(\mathcal{B}) = \mathcal{P}(\mathcal{B}').$$

The equivalence classes are generally big.

 \rightsquigarrow allows to choose an equivalent patch with suitable boundaries.

Stepped planes	Local properties 0000	Recoding ○○●○	A hybrid algorithm
Problems with boundaries			

Problem: \tilde{T} can be applied only with particular boundaries. This condition generally does not hold.

Solution: use the following equivalence notion:

$$\mathcal{B}\sim\mathcal{B}' \;\Leftrightarrow\; \mathcal{P}(\mathcal{B})=\mathcal{P}(\mathcal{B}').$$

The equivalence classes are generally big.

 \rightsquigarrow allows to choose an equivalent patch with suitable boundaries.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Note: each equivalence class has a structure of semi-lattice

Stepped planes	Local properties	Recoding	A hybrid algorithm
	0000	○○○●	000
Problems with boundaries			

A stepped plane containing this has (1,3)-runs of length 2 and 3.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Stepped planes	Local properties	Recoding	A hybrid algorithm
	0000	○○○●	000
Problems with boundaries			

We thus can extend (1,3)-runs of length less than 2,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Stepped planes	Local properties 0000	Recoding ○○○●	A hybrid algorithm
Problems with boundaries			

and "close" those of length 3.

▲ロト ▲母 ト ▲目 ト ▲目 ト ● ○ ○ ○ ○ ○

Stepped planes 0000	Local properties 0000	Recoding ○○○●	A hybrid algorithm 000
Problems with boundaries			

We can proceed similarly for (1, 2)-runs,

Stepped planes	Local properties	Recoding	A hybrid algorithm
0000	0000	○○○●	000
Problems with boundaries			

We can proceed similarly for (1, 2)-runs,

Stepped planes	Local properties	Recoding ○○○●	A hybrid algorithm 000
Problems with boundaries			

and for (3, 2)-runs.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Stepped planes	Local properties	Recoding ○○○●	A hybrid algorithm
Problems with boundaries			
	We can then repeat	these operations.	

▲□▶▲圖▶▲圖▶▲圖▶ 圖 めへぐ

Stepped planes	Local properties	Recoding ○○○●	A hybrid algorithm
Problems with boundaries			

We can then repeat these operations.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 めへぐ

Stepped planes	Local properties	Recoding ○○○●	A hybrid algorithm 000
Problems with boundaries			

We can then repeat these operations.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 めへぐ

Stepped planes	Local properties	Recoding ○○○●	A hybrid algorithm
Problems with boundaries			

If the initial number is finite, then the process converges.

Stepped planes	Local properties	Recoding ○○○●	A hybrid algorithm 000
Problems with boundaries			

We could also remove "deducible" faces. Thus, large choice.

Stepped planes	Local properties 0000	Recoding 0000	A hybrid algorithm

1 Stepped planes

2 Local properties

3 Recoding (Backwards zooms)

Stepped planes	Local properties	Recoding	A hybrid algorithm
	0000	0000	●○○
Pseudo-code			

Algorithm:

- 1. while \mathcal{B} recognizable do
- 2. $\tilde{\mathcal{B}} \leftarrow$ suitable equivalent of \mathcal{B} ;
- 3. $\mathcal{B} \leftarrow \text{recoding of } \tilde{\mathcal{B}};$
- 4. endwhile;
- 5. compute P(B) thanks to another algorithm;
- 6. deduce the parameters of the initial \mathcal{B} ;

Stepped planes	Local properties	Recoding	A hybrid algorithm
	0000	0000	○●○
Complexity			

Each loop:

reading runs + choosing an equivalent + recoding: $\mathcal{O}(|\mathcal{B}|)$.

Number of loops:

If $\mathcal B$ is a patch of stepped plane of normal $\vec lpha = (p_1/q, \dots, p_d/q)$:

$$\log_{\frac{d+2}{d+1}}(p_1+\ldots+p_d+q).$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Stepped planes	Local properties	Recoding	A hybrid algorithm
	0000	0000	○●○
Complexity			

Each loop:

reading runs + choosing an equivalent + recoding: $\mathcal{O}(|\mathcal{B}|)$.

Number of loops:

If $\mathcal B$ is a patch of stepped plane of normal $ec lpha = (p_1/q,\ldots,p_d/q)$:

$$\log_{\frac{d+2}{d+1}}(p_1+\ldots+p_d+q).$$

Otherwise, let D be the side of a bounding box for \mathcal{B} . Then, either \mathcal{B} is a patch of a stepped plane of normal $\vec{\alpha} = (p_1/q, \dots, p_d/q)$ with $p_i, q \leq D$, or it is not planar. Hence the general bound:

$$\log_{\frac{d+2}{d+1}}((d+1)D).$$

Stepped planes	Local properties	Recoding	A hybrid algorithm
	0000	0000	○●○
Complexity			

Each loop:

reading runs + choosing an equivalent + recoding: $\mathcal{O}(|\mathcal{B}|)$.

Number of loops:

If $\mathcal B$ is a patch of stepped plane of normal $ec lpha = (p_1/q,\ldots,p_d/q)$:

$$\log_{\frac{d+2}{d+1}}(p_1+\ldots+p_d+q).$$

Otherwise, let *D* be the side of a bounding box for \mathcal{B} . Then, either \mathcal{B} is a patch of a stepped plane of normal $\vec{\alpha} = (p_1/q, \dots, p_d/q)$ with $p_i, q \leq D$, or it is not planar. Hence the general bound:

$$\log_{\frac{d+2}{d+1}}((d+1)D).$$

Total complexity: quasi-linear if D is polynomial in $|\mathcal{B}|$.

Stepped planes	Local properties 0000	Recoding 0000	A hybrid algorithm ○○●
Example			

<ロト <回ト < 注ト < 注ト

ж

Union of 407 faces: is it a patch of stepped plane?

Stepped planes	Local properties	Recoding 0000	A hybrid algorithm ○○●
Example			

Recognizable union \rightsquigarrow computation of a suitable equivalent.

・ロト ・聞ト ・ヨト ・ヨト

э

Recoding ~> union of 216 faces. Is it a patch of stepped plane?

Stepped planes	Local properties 0000	Recoding 0000	A hybrid algorithm ○○●
Example			

Recognizable union ~> computation of a suitable equivalent.

Stepped planes	Local properties	Recoding	A hybrid algorithm
	0000	0000	○○●
Example			

Recoding ~> union of 129 faces. Is it a patch of stepped plane?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Stepped planes	Local properties	Recoding	A hybrid algorithm
	0000	0000	○○●
Example			

Recognizable union \rightsquigarrow computation of a suitable equivalent.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Stepped planes	Local properties	Recoding	A hybrid algorithm
	0000	0000	○○●
Example			

A CHARGE CONTRACTION OF CONTRACTICON OF CONTR

Recoding \rightsquigarrow union of 52 faces. Is it a patch of stepped plane?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Stepped planes	Local properties	Recoding	A hybrid algorithm
	0000	0000	○○●
Example			

A CONTRACTOR OF A CONTRACTOR A C

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Unrecognizable union \rightsquigarrow use another algorithm.

Advantages of recognition by recoding:

- new generalization of a result for discrete lines;
- good theoretical complexity;
- allows partial recognition (convergence of continued fractions);

• "backwards" recoding → generation (see abstract).

Open problems:

- o practical complexity?
- o robustness?