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The problem

Informal:
How to put the most bottles on the kitchen table?

Formal:
What is the maximal proportion of the Euclidean plane that can be
covered by interior-disjoint disks of given sizes?

Reformulation:
What is the maximal density of a packing of disks of given sizes?

Our running example:
Disks of diameter 1 and r :=

√
2− 1:
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First try

This ratio allows a small disk to exactly fit between four large ones.

3/10



First try

This packing has density δ∗ := π+πr2

4 ≥ 92%. Optimal?
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First try

The Hexagonal Compact Packing (HCP) has density π
2
√
3
≤ 91%.
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Proof intuition

Theorem (Thue, 1943)

The densest triangle which connects the centers of equal disks
connects three pairwise adjacent disks.

Since HCP is made only of such triangles, it maximizes the density.

Theorem (Florian, 1960)

The densest triangle which connects the centers of unequal disks
connects two smallest disks and a largest one, all pairwise adjacent.

Claim: there is no disk packing made only of such triangles.

The density may thus be locally greater than δ∗ (frustration).

Proof idea: “spread” the density to lower it everywhere below δ∗.
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Proof strategy

Given a saturated packing P of disks of size 1 and r :

1. compute a Delaunay triangulation T of its disk centers;

2. define, for every vertex v of T ∈ T , a vertex potential Uv (T );

3. show, for every vertex v of T :∑
T∈T | T3v

Uv (T ) ≥ 0; (1)

4. show, for every triangle T of T :∑
v∈T

Uv (T ) ≤ E (T ), (2)

where E (T ) := δ∗vol(T )− cov(T ) is the emptiness of T .
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Step 1: Delaunay triangulation

Points closer to a disk than to any other one  Voronöı partition.
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Step 1: Delaunay triangulation

Dual of the Voronöı partition  Delaunay triangulation.
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Step 1: Delaunay triangulation

Partition vertex: center of a disk interior-disjoint from the packing.
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Step 1: Delaunay triangulation

Claim: saturation ⇒ edge lengths ≤ 2 + 2r and angles ≥ 33◦.
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Step 2: Vertex potential

If T connect the centers u, v and w of disks of size ru, rv and rw :

Uv (T ) := U∗rurv rw + m |v̂ − v̂∗| ,

where:

I v̂ is the angle in v of T and v̂∗ in its tight version T ∗;

I U∗rurv rw = U∗rw rv ru ∈ R is the base vertex potential (to be fixed);

I m > 0 is the deviation (to be fixed).
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Step 3: Inequality (1)

We want:∑
T3v Uv (T ) ≥ 0.

It suffices to have:

Angles at least 33◦ and no more v̂i
⇒ finitely many cases to check!

Division by 0: tight configurations. It suffices to have
∑

i U
∗
i ≥ 0.
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Step 4: Inequality (2)

We also want:∑
v∈T

Uv (T ) ≤ E (T ) = δ∗vol(T )− cov(T ).

 Fix the deviation and base vertex potentials as small as possible!

Then just check the above inequality for every possible triangle. . .

Edge lengths at most 2 + 2r ⇒ compact set of triangles.

Use Interval Arithmetic over small enough subdivisions of this set!

Equality if T occurs in a densest packing ⇒ infinite subdivision?

Use the Mean Value Theorem (and, again, Interval Arithmetic).
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Conclusion

I We only skipped edge potential for stretched triangles.

I The proof works for the 9 triangulated binary packings:

I It works for 40 out of the 164 triangulated ternary packings:

I What for more disk sizes? If there is no triangulated packing?

I Yet no example of disks with only aperiodic densest packings.

I The Kepler conjecture (1610–2014) has a similar proof!
Much harder because of the dimension (computational issue)
and (I guess) because there is no “triangulated” packing.

I The case of spheres of size 1 and
√

2− 1 should be easier!

I Motivation: material sciences (nanocrystals).
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