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Symbolic dynamics
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Patterns and configurations

We fix a dimension d

Let A be finite alphabet.

A configuration u is an element of AZd
(an A-coloring of Zd)

A pattern p is an element of AD , where D ⊂ Zd is a finite
set, called its support.

A translate of the pattern p by m ∈ Zd is denoted p + m and
has D + m for support.

The language of a configuration u is the set of finite patterns
that occur in u (up to translation).
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Subshifts

The set AZd
endowed with the product topology is a compact

metric space.

d(u, v) ≤ 2−n if u|[−n,n]d = v|[−n,n]d .

The shifts σm, m ∈ Zd , act on configurations

σm : AZd → AZd
, (un)n∈Zd 7→ (un+m)n∈Zd .

A d-dimensional subshift X ⊂ AZd
is a closed and

shift-invariant set of configurations in AZd
.

A subshift X can be defined by providing its language, that
is, the set of patterns that occur (up to translation) in
configurations in X .

It can be defined equivalently by providing the set of forbidden
patterns.

Example: {0, 1}Z with 11 not allowed.



SFT and sofic subshifts

Subshifts of finite type (SFT) are the subshifts defined by a
finite set of forbidden patterns.

Sofic subshifts are images of SFT under a factor map.

A factor map π : X → Y between two subshifts X and Y is a
continuous, surjective map such that

π ◦ σm = σm ◦ π,

for all m ∈ Zd .

A factor map is a sliding block code (defined by a local
rule/CA) [Curtis-Hedlund-Lyndon].

Example: add colorations. Take a larger alphabet for X : X is
the SFT, Y is the sofic shift.

Wang tiles



Computable subshifts

A subshift is said to be

Π1-computable or effective if its language is co-recursively
enumerable;

Σ1-computable if its language is recursively enumerable;

∆1-computable or decidable if its language is recursive.

cf. E. Jeandel’s lecture.



Frequencies and measures

The frequency f (p) of a pattern p in a d-dimensional
configuration u is defined as the limit (if it exists) of

lim
n

|x|[−n,n]d |p
(2n + 1)d

where |x|[−n,n]d |p stands for the number of occurrences of p in
xn.

A subshift is said to be uniquely ergodic if it admits a unique
shift-invariant measure; in this case, pattern frequencies do
exist (and the convergence is uniform).

A subshift is said to be minimal if every non-empty closed
shift-invariant subset is equal to the whole set. A minimal and
uniquely ergodic subshift is said strictly ergodic.

Any pattern which appears in a strictly ergodic subshift has a
positive frequency.



About the computability of frequencies

Computable frequencies: there exists an algorithm that takes as
input a pattern and a precision, and that outputs an approximation
of this frequency with respect to this precision

 Computable pattern frequencies/shift-invariant measure

Computability of letter frequencies does not say much on the
algorithmic complexity of a subshift.

Take a subshift X ⊂ {0, 1}Z and consider the subshift Y
obtained by applying to each configuration of X the
substitution

0 7→ 01, 1 7→ 10.

The subshift Y admits letter frequencies (they are both equal
to 1/2), and it has the same algorithmic complexity as X .
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Effectiveness for shifts

Theorem Let X be a subshift.

If X is effective and uniquely ergodic, then its invariant
measure is computable and X is decidable.

If X is minimal and its frequencies are computable, then its
language is recursively enumerable.

If X is minimal and effective, then X is decidable.



Effectiveness for shifts

We assume X effective and uniquely ergodic. Let us prove that the
frequency of any pattern is computable.

Consider the following algorithm that takes as an argument
the parameter e for the precision. We consider a finite pattern
p.

At step n, one produces all ‘square’ patterns of size n that do
not contain the n first forbidden patterns.

For each of these square patterns, one computes the number
of occurrences of p in it, divided by (2n + 1)d .

We continue until these quantities belong to an interval of
length e.

This algorithm then stops (compactness=subshift + unique
ergodicity=uniform frequencies), and taking an element of the
interval provides an approximation of the frequency of p up to
precision e.



We assume X minimal with computable pattern frequencies. We
prove that the language is recursively enumerable.

Frequencies are positive by minimality.

Even if the frequencies are computable, one cannot decide
whether the frequency of a given pattern is equal to zero or
not, hence we cannot decide whether this pattern belongs to
the language or not.

However, one can decide whether the frequency of a pattern is
larger than a given value. This thus implies that the language
is recursively enumerable.



Substitutions and S -adic systems



Substitutions

Substitutions on words : symbolic dynamical systems

Substitutions on tiles : inflation/subdivision rules, tilings and
point sets



Substitutions

Substitutions on words : symbolic dynamical systems

Morphism of the free monoid (no cancellations)

σ : 1 7→ 12, 2 7→ 1

1
12
121
12112
12112121

Fibonacci word σ∞(1) = 121121211211212 · · ·
Substitutions on tiles : inflation/subdivision rules, tilings and
point sets



Substitutions

Substitutions on words : symbolic dynamical systems

Substitutions on tiles : inflation/subdivision rules, tilings and
point sets

Tilings Encyclopedia http://tilings.math.uni-bielefeld.de/
[E. Harriss, D. Frettlöh]



S-adic expansions

Let S be a set S of substitutions on the alphabet A
Let s = (σn)n∈N ∈ SN a sequence of substitutions (directive
sequence)

Let (an)n∈N be a sequence of letters in A
We say that the infinite word u ∈ AN admits (σn, an)n as an
S-adic representation if

u = lim
n→∞

σ0σ1 · · ·σn−1(an)



S-adic expansions

Let S be a set S of substitutions on the alphabet A
Let s = (σn)n∈N ∈ SN a sequence of substitutions (directive
sequence)

Let (an)n∈N be a sequence of letters in A
We say that the infinite word u ∈ AN admits (σn, an)n as an
S-adic representation if

u = lim
n→∞

σ0σ1 · · ·σn−1(an)

The terminology comes from Vershik adic transformations
Bratteli diagrams

S stands for substitution, adic for the inverse limit
powers of the same substitution= partial quotients



Geometrical substitutions and tilings
Let φ : Rd → Rd be an expanding linear map

Principle One takes

a finite number of prototiles {T1,T2, . . . ,Tm}
an expansive transformation φ (the inflation factor )

a rule that allows one to divide each φTi into copies of the
T1,T2, . . . ,Tm

A tile-substitution s with expansion φ is a map Ti 7→ s(Ti ), where
s(Ti ) is a patch made of translates of the prototiles and

φ(Ti ) =
⋃

Tj∈s(Ti)
Tj

Example

A PRIMER ON SUBSTITUTION TILINGS OF THE EUCLIDEAN PLANE 5

1.6. Outline of the paper. Substitutions of constant length have a natural generalization to
tilings in higher dimensions, which we introduce in Section 2. These generalizations, which include
the well-studied self-similar tilings, rely upon the use of linear expansion maps and are therefore
rigidly geometric. We present examples in varying degrees of generality and include a selection of
the major results in the field.

Extending substitutions of non-constant length to higher dimensions seems to be more difficult,
and is the topic of Section 3. To even define what this class contains has been problematic and
there is not yet a consensus on the subject. For lack of existing terminology we have decided to call
this type of substitution combinatorial as tiles are combined to create the substitutions without
any geometric restriction save that they can be iterated without gaps or overlaps, and because in
certain cases it is possible to define them in terms of their graph-theoretic structure.

In many cases one can transform combinatorial tiling substitutions into geometric ones through
a limit process. In Section 4, we will discuss how to do this and what the effects are to the extent
that they are known. We conclude the paper by discussing several of the different ways substitution
tilings can be studied, and what sorts of questions are of interest.

2. Geometric tiling substitutions

Although the idea had been around for several years, self-similar tilings of the plane were given a
formal definition and introduced to the wider public by Thurston in a series of four AMS Colloquium
lectures, with lecture notes appearing thereafter [59]. Throughout the literature one finds varying
degrees of generality and some commonly used restrictions. We make an effort to give precise
definitions here, adding remarks which point out some of the differences in usage and in terminology.

2.1. Self-similar tilings: proper inflate-and-subdivide rules. For the moment we assume
that the only rigid motions allowed for equivalence of tiles are translations; this follows [59] and
[57]. We give the definitions as they appear in [57], which includes that of [59] as a special case.

Let φ : Rd → Rd be a linear transformation, diagonalizable over C, that is expanding in the sense
that all of its eigenvalues are greater than one in modulus. A tiling T is called φ-subdividing if

(1) for each tile T ∈ T , φ(T ) is a union of T -tiles, and
(2) T and T ′ are equivalent tiles if and only if φ(T ) and φ(T ′) form equivalent patches of tiles

in T .

A tiling T will be called self-affine with expansion map φ if it is φ-subdividing, repetitive, and
has finite local complexity. If φ is a similarity the tiling will be called self-similar. For self-similar
tilings of R or R2 ∼= C there is an expansion constant λ for which φ(z) = λz.

The rule taking T ∈ T to the union of tiles in φ(T ) is called an inflate-and-subdivide rule because
it inflates using the expanding map φ and then decomposes the image into the union of tiles on the
original scale. If T is φ-subdividing, then it will be invariant under this rule, therefore we show the
inflate-and-subdivide rule rather than the tiling itself. The rule given in Figure 1 is an inflate-and-
subdivide rule with φ(z) = 3z. However, the rule given in Figure 3 is not an inflate-and-subdivide
rule.

Example 5. The “L-triomino” or “chair” substitution uses four prototiles, each being an L formed
by three unit squares. We have chosen to color the prototiles since they are inequivalent up to
translation. The expansion map is φ(z) = 2z and in Figure 5 we show the substitution of the four
prototiles.

Figure 5. The “chair” or “L-triomino” substitution.



Combinatorial tiling substitutions

The substitution rule replaces a tile by some configuration of
tiles that may not bear any geometric resemblance to the
original.

The difficulty with such a rule comes when one wishes to
iterate it: we need to be sure that the substitution can be
applied repeatedly so that all the tiles fit together without
gaps or overlaps.

Combinatorial substitutions map a tiling by tiles onto a tiling
by super-tiles so that the super-tiles of the latter are arranged
as the tiles of the former.

We can introduce concatenation rules which specify how the
respective images of two adjacent tiles must be glued.

[Priebe-Frank, Fernique-Ollinger]



Some decision problems

for substitutions



Decision problems for word substitutions

Some classical decision problems for primitive substitutions can be
solved using return words and derived sequences [Durand]

Let A, B, be finite alphabets. We consider two morphisms
σ : A∗ → A∗, φ : A∗ → B∗; an infinite word of the form

lim
n
σn(u)

is is a D0L word and
φ(lim

n
σn(u))

an HD0L or morphic word, for u finite word.



Decision problems for word substitutions

Some classical decision problems for primitive substitutions can be
solved using return words and derived sequences [Durand]

Let σ be a primitive substitution. It generates a minimal subshift
Xσ. A return word to a word u of its language is a word w of the
language such that

uw admits exactly two occurrences of u, with the second
occurrence of u being a suffix of uw .

One can recode sequences of the subshift via return words,
obtaining derived sequences.

[cf D. Perrin’s lecture]



Decision problems for word substitutions

Some classical decision problems for primitive substitutions can be
solved using return words and derived sequences [Durand]

The HD0L ω-equivalence problem for primitive morphisms: it
is decidable to know whether two HD0L words are equal.

The decidability of the ultimate periodicity of HD0L infinite
sequences: it is decidable to know whether an HD0L word is
ultimately periodic.

The uniform recurrence of morphic sequences is decidable.



Decision problems for word substitutions

Constant-length substitutions (automatic sequences): decision
procedures are produced based on the connections between
first-order logic and automata [Shallit-Walnut]

It is decidable if the fixed-points of a morphism avoid (long)
abelian powers (no eigenvalue equal to 1) [Rao-Rosenfeld]

Consistency of multidimensional combinatorial substitutions
[Jolivet-Kari]

Decidability of topological properties for two-dimensional
self-affine tiles [Jolivet-Kari]



Effectiveness for S -adic systems



Effectiveness for S-adic subshifts

Directive sequences

Pattern frequencies/invariant measure

Language

Existence of (decorated) local rules (being sofic or an SFT)

There are mainly two difficulties which come from

the notion of substitution in dimension d

the S-adic framework

A natural viewpoint since the characterization of entropy as
right-recursively enumerable numbers [Hochman-Meyerovitch]

[cf. R. Pavlov’s lecture]



Effectiveness for S-adic shifts

Theorem [B.-Fernique-Sablik] Let XS be a strictly ergodic S-adic
subshift defined with respect to a directive sequence S ∈ SN such
that S satisfies the good growing property. The following
conditions are equivalent:

there exists a computable sequence S ′ such that XS = XS ′ ;

the unique invariant measure of XS is computable;

the subshift XS is decidable.



Good growing substitution

A finite set of substitutions S has a good growing property if

there are finitely many ways of gluing super-tiles: there exists
a finite set of patterns P ⊂ A∗ such that if a pattern formed
by a super-tile of order n surrounded by super-tiles of order n
is in the language of XSN , then it appears as the n-iteration of
a pattern of P
the size of the super-tiles of order n grows with n: for every
ball of radius R, there exist n ∈ N such a translate of this ball
is contained in all the supports of super-tiles of order n.

Non-trivial rectangular substitutions or geometrical tiling
substitutions verify this property.



Local rules and substitutions

In dimension d ≥ 2, under natural assumptions, it is known
for different types of substitutions that substitutive tilings can
be enforced with (colored) local rules.

The ideas is always to force a hierarchical structure, as in
Robison’s tiling, where each change of level is marked by the
type of the super-tile of this level, and the rule used is
transmitted for super-tiles of lower order.

Rectangular substitutions: [Mozes’89]

Geometrical substitutions: [Goodman-Strauss’98]

Combinatorial substitutions: [Fernique-Ollinger’2010]



Existence of local rules

A closed subset S ⊂ SN is effectively closed if the set of (finite)
words which do not appear as prefixes of elements of S is
recursively enumerable.

One enumerates forbidden prefixes.

Theorem [Aubrun-Sablik] We consider rectangular
substitutions. The S-adic subshift XS is sofic if and only if it
can be defined by a set of directive sequences S which is
effectively closed.



Existence of local rules

Theorem [Aubrun-Sablik] We consider rectangular
substitutions. The S-adic subshift XS is sofic if and only if it
can be defined by a set of directive sequences S which is
effectively closed.

A similar result for more general substitutions is expected

The difficulty relies in the ability to exhibit a rectangular grid
to use the simulation of a one-dimensional effective subshift
by a two-dimensional sofic subshift [Aubrun-Sablik,
Durand-Romanschenko-Shen]



Sturmian and planar tilings



Tilings and symbolic dynamics

From a discrete plane to a tiling by projection....
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....and from a tiling by lozenges to a ternary coding



Two-dimensional Sturmian words

Theorem [B.-Vuillon]

Let (um)m∈Z2 ∈ {1, 2, 3}Z2
be a 2d Sturmian word, that is, a

coding of a discrete plane. Then there exist x ∈ R, and α, β ∈ R
such that 1, α, β are Q-linearly independent and α + β < 1 such
that

∀m = (m, n) ∈ Z2, Um = i ⇐⇒ Rm
α Rn

β(x) = x+mα+nβ ∈ Ii (mod 1),

with
I1 = [0, α[, I2 = [α, α + β[, I3 = [α + β, 1[

or
I1 =]0, α], I2 =]α, α + β], I3 =]α + β, 1].

Coding of a Z2-action



Factors

The block W = [wi ,j ], defined on {1, 2, 3} and of size (m, n),
is a factor of u if and only if

IW :=
⋂

1≤i≤m,1≤j≤n
R−i+1
α R−j+1

β Iwi,j 6= ∅.

The sets IW are connected.

The frequency of every factor W of U exists and is equal to
the length of I (W ).



Effective 2d Sturmian shifts

Theorem [B.-Bourdon-Jolivet-Siegel] A 2d Sturmian shift is S-adic
with an expansion provided by Brun continued fraction algorithm

Theorem [B.-Fernique-Sablik] The following conditions are
equivalent:

its normal vector is computable;

its unique invariant measure is computable;

its language is decidable;

Its Brun S-adic directive sequence is computable.

Theorem [Fernique-Sablik] A Euclidean plane E admits colored
weak local rules if and only if it is computable: there is a sofic
shift that contains planar tilings with a slope parallel to E with a
bounded thickness.
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Conclusion and perspectives

The following effectiveness notions for S-adic symbolic dynamical
systems are intimately related

Effectiveness of the directive sequences

Computability of pattern frequencies/invariant measures

Decidability of the language

Existence of (colored) local rules (being sofic or an SFT)

How to extend these results?

Can one extend Durand’s approach in a multidimensional
setting?

Extend Aubrun-Sablik result on the connections between
soficity and effectiveness of the directive sequence

One has to formulate suitable assumptions on substitutions
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