Effective S-adic symbolic dynamical systems

V. Berthé, Th. Fernique, M. Sablik

IRIF-CNRS-Paris-France http://www.irif.univ-paris-diderot.fr/~berthe

CIE 2016. Special session Symbolic dynamics

Outline

- Symbolic dynamics
- Substitutions and S-adic systems
- Effectiveness for S-adic systems
- Sturmian and planar tilings

Symbolic dynamics

-		-	~	•	v		-	•	-	v		-	•	
1	2	1	2	1	2	3	1	2	1	2	3	1	3	1
3	1	3	1	2	1	2	3	1	2	1	2	1	2	
2	1	2	3	1	2	1	2	3	1	3	1	2	1	
1	2	1	2	3	1	3	1	2	1	2	3	1	2	
3	1	2	1	2	1	2	3	1	2	1	2	3	1	
2	3	1	3	1	2	1	2	3	1	2	1	2	1	
1	2	1	2	3	1	2	1	2	3	1	3	1	2	
3	1	2	1	2	3	1	3	1	2	1	2	3	1	

Patterns and configurations

We fix a dimension d

- Let \mathcal{A} be finite alphabet.
- A configuration u is an element of $\mathcal{A}^{\mathbb{Z}^d}$ (an \mathcal{A} -coloring of \mathbb{Z}^d)
- A pattern p is an element of A^D, where D ⊂ Z^d is a finite set, called its support.
- A translate of the pattern p by $\mathbf{m} \in \mathbb{Z}^d$ is denoted $p + \mathbf{m}$ and has $D + \mathbf{m}$ for support.
- The language of a configuration *u* is the set of finite patterns that occur in *u* (up to translation).

-		-	~	-	5	-	-	-	-	~	-	-	-	·
1	2	1	2	1	2	3	1	2	1	2	3	1	3	
3	1	3	1	2	1	2	3	1	2	1	2	1	2	
2	1	2	3	1	2	1	2	3	1	3	1	2	1	
1	2	1	2	3	1	3	1	2	1	2	3	1	2	
3	1	2	1	2	1	2	3	1	2	1	2	3	1	
2	3	1	3	1	2	1	2	3	1	2	1	2	1	
1	2	1	2	3	1	2	1	2	3	1	3	1	2	
3	1	2	1	2	3	1	3	1	2	1	2	3	1	

Subshifts

• The set $\mathcal{A}^{\mathbb{Z}^d}$ endowed with the product topology is a compact metric space.

$$d(u, v) \leq 2^{-n}$$
 if $u_{|[-n,n]^d} = v_{|[-n,n]^d}$.

• The shifts $\sigma_{\mathbf{m}}, \, \mathbf{m} \in \mathbb{Z}^d$, act on configurations

$$\sigma_{\mathbf{m}}\colon \mathcal{A}^{\mathbb{Z}^d} \to \mathcal{A}^{\mathbb{Z}^d}, \ (u_{\mathbf{n}})_{\mathbf{n} \in \mathbb{Z}^d} \mapsto (u_{\mathbf{n}+\mathbf{m}})_{n \in \mathbb{Z}^d}.$$

- A *d*-dimensional subshift X ⊂ A^{Z^d} is a closed and shift-invariant set of configurations in A^{Z^d}.
- A subshift X can be defined by providing its language, that is, the set of patterns that occur (up to translation) in configurations in X.
- It can be defined equivalently by providing the set of forbidden patterns.
- Example: $\{0,1\}^{\mathbb{Z}}$ with 11 not allowed.

SFT and sofic subshifts

- Subshifts of finite type (SFT) are the subshifts defined by a finite set of forbidden patterns.
- Sofic subshifts are images of SFT under a factor map.
- A factor map $\pi : X \to Y$ between two subshifts X and Y is a continuous, surjective map such that

 $\pi \circ \sigma_{\mathbf{m}} = \sigma_{\mathbf{m}} \circ \pi,$

for all $\mathbf{m} \in \mathbb{Z}^d$.

- A factor map is a sliding block code (defined by a local rule/CA) [Curtis-Hedlund-Lyndon].
- Example: add colorations. Take a larger alphabet for X: X is the SFT, Y is the sofic shift.
- Wang tiles

Computable subshifts

- A subshift is said to be
 - Π₁-computable or effective if its language is co-recursively enumerable;
 - Σ_1 -computable if its language is recursively enumerable;
 - Δ_1 -computable or decidable if its language is recursive.

cf. E. Jeandel's lecture.

Frequencies and measures

• The frequency f(p) of a pattern p in a d-dimensional configuration u is defined as the limit (if it exists) of

$$\lim_{n} \frac{|x_{|[-n,n]^d}|_p}{(2n+1)^d}$$

where $|x_{|[-n,n]^d}|_p$ stands for the number of occurrences of p in x_n .

- A subshift is said to be uniquely ergodic if it admits a unique shift-invariant measure; in this case, pattern frequencies do exist (and the convergence is uniform).
- A subshift is said to be minimal if every non-empty closed shift-invariant subset is equal to the whole set. A minimal and uniquely ergodic subshift is said strictly ergodic.
- Any pattern which appears in a strictly ergodic subshift has a positive frequency.

About the computability of frequencies

Computable frequencies: there exists an algorithm that takes as input a pattern and a precision, and that outputs an approximation of this frequency with respect to this precision

→ Computable pattern frequencies/shift-invariant measure

About the computability of frequencies

Computable frequencies: there exists an algorithm that takes as input a pattern and a precision, and that outputs an approximation of this frequency with respect to this precision

→ Computable pattern frequencies/shift-invariant measure

Computability of letter frequencies does not say much on the algorithmic complexity of a subshift.

Take a subshift X ⊂ {0,1}^ℤ and consider the subshift Y obtained by applying to each configuration of X the substitution

 $0 \mapsto 01, 1 \mapsto 10.$

The subshift Y admits letter frequencies (they are both equal to 1/2), and it has the same algorithmic complexity as X.

Theorem Let X be a subshift.

- If X is effective and uniquely ergodic, then its invariant measure is computable and X is decidable.
- If X is minimal and its frequencies are computable, then its language is recursively enumerable.
- If X is minimal and effective, then X is decidable.

Effectiveness for shifts

We assume X effective and uniquely ergodic. Let us prove that the frequency of any pattern is computable.

- Consider the following algorithm that takes as an argument the parameter *e* for the precision. We consider a finite pattern *p*.
- At step *n*, one produces all 'square' patterns of size *n* that do not contain the *n* first forbidden patterns.
- For each of these square patterns, one computes the number of occurrences of p in it, divided by $(2n + 1)^d$.
- We continue until these quantities belong to an interval of length *e*.
- This algorithm then stops (compactness=subshift + unique ergodicity=uniform frequencies), and taking an element of the interval provides an approximation of the frequency of *p* up to precision *e*.

We assume X minimal with computable pattern frequencies. We prove that the language is recursively enumerable.

- Frequencies are positive by minimality.
- Even if the frequencies are computable, one cannot decide whether the frequency of a given pattern is equal to zero or not, hence we cannot decide whether this pattern belongs to the language or not.
- However, one can decide whether the frequency of a pattern is larger than a given value. This thus implies that the language is recursively enumerable.

Substitutions and S-adic systems

Substitutions

- Substitutions on words : symbolic dynamical systems
- Substitutions on tiles : inflation/subdivision rules, tilings and point sets

Substitutions

• Substitutions on words : symbolic dynamical systems Morphism of the free monoid (no cancellations)

```
\sigma: 1 \mapsto 12, \ 2 \mapsto 1
1
12
121
12112
12112121
```

Fibonacci word $\sigma^{\infty}(1) = 121121211211212\cdots$

 Substitutions on tiles : inflation/subdivision rules, tilings and point sets

Substitutions

- Substitutions on words : symbolic dynamical systems
- Substitutions on tiles : inflation/subdivision rules, tilings and point sets

Tilings Encyclopedia http://tilings.math.uni-bielefeld.de/ [E. Harriss, D. Frettlöh]

S-adic expansions

- Let ${\mathcal S}$ be a set ${\mathcal S}$ of substitutions on the alphabet ${\mathcal A}$
- Let s = (σ_n)_{n∈ℕ} ∈ S^ℕ a sequence of substitutions (directive sequence)
- Let $(a_n)_{n\in\mathbb{N}}$ be a sequence of letters in $\mathcal A$

We say that the infinite word $u \in \mathcal{A}^{\mathbb{N}}$ admits $(\sigma_n, a_n)_n$ as an *S*-adic representation if

$$u = \lim_{n \to \infty} \sigma_0 \sigma_1 \cdots \sigma_{n-1}(a_n)$$

S-adic expansions

- Let ${\mathcal S}$ be a set ${\mathcal S}$ of substitutions on the alphabet ${\mathcal A}$
- Let s = (σ_n)_{n∈ℕ} ∈ S^ℕ a sequence of substitutions (directive sequence)
- Let $(a_n)_{n\in\mathbb{N}}$ be a sequence of letters in \mathcal{A}

We say that the infinite word $u \in \mathcal{A}^{\mathbb{N}}$ admits $(\sigma_n, a_n)_n$ as an *S*-adic representation if

$$u = \lim_{n \to \infty} \sigma_0 \sigma_1 \cdots \sigma_{n-1}(a_n)$$

The terminology comes from Vershik adic transformations Bratteli diagrams

S stands for substitution, adic for the inverse limit powers of the same substitution= partial quotients

Geometrical substitutions and tilings

Let $\phi: \mathbb{R}^d \rightarrow \mathbb{R}^d$ be an expanding linear map

Principle One takes

- a finite number of prototiles $\{T_1, T_2, \ldots, T_m\}$
- an expansive transformation ϕ (the inflation factor)
- a rule that allows one to divide each ϕT_i into copies of the T_1, T_2, \ldots, T_m

A tile-substitution s with expansion ϕ is a map $T_i \mapsto s(T_i)$, where $s(T_i)$ is a patch made of translates of the prototiles and

$$\phi(T_i) = \bigcup_{T_j \in s(T_i)} T_j$$

Example

Combinatorial tiling substitutions

- The substitution rule replaces a tile by some configuration of tiles that may not bear any geometric resemblance to the original.
- The difficulty with such a rule comes when one wishes to iterate it: we need to be sure that the substitution can be applied repeatedly so that all the tiles fit together without gaps or overlaps.
- Combinatorial substitutions map a tiling by tiles onto a tiling by super-tiles so that the super-tiles of the latter are arranged as the tiles of the former.
- We can introduce concatenation rules which specify how the respective images of two adjacent tiles must be glued.

[Priebe-Frank, Fernique-Ollinger]

Some decision problems for substitutions

Some classical decision problems for primitive substitutions can be solved using return words and derived sequences [Durand]

Let \mathcal{A}, \mathcal{B} , be finite alphabets. We consider two morphisms $\sigma \colon \mathcal{A}^* \to \mathcal{A}^*, \phi \colon \mathcal{A}^* \to \mathcal{B}^*$; an infinite word of the form

 $\lim_n \sigma^n(u)$

is is a D0L word and

 $\phi(\lim_n \sigma^n(u))$

an HD0L or morphic word, for u finite word.

Some classical decision problems for primitive substitutions can be solved using return words and derived sequences [Durand]

Let σ be a primitive substitution. It generates a minimal subshift X_{σ} . A return word to a word u of its language is a word w of the language such that

uw admits exactly two occurrences of u, with the second occurrence of u being a suffix of uw.

One can recode sequences of the subshift via return words, obtaining derived sequences.

[cf D. Perrin's lecture]

Some classical decision problems for primitive substitutions can be solved using return words and derived sequences [Durand]

- The HD0L ω -equivalence problem for primitive morphisms: it is decidable to know whether two HD0L words are equal.
- The decidability of the ultimate periodicity of HD0L infinite sequences: it is decidable to know whether an HD0L word is ultimately periodic.
- The uniform recurrence of morphic sequences is decidable.

- Constant-length substitutions (automatic sequences): decision procedures are produced based on the connections between first-order logic and automata [Shallit-Walnut]
- It is decidable if the fixed-points of a morphism avoid (long) abelian powers (no eigenvalue equal to 1) [Rao-Rosenfeld]
- Consistency of multidimensional combinatorial substitutions [Jolivet-Kari]
- Decidability of topological properties for two-dimensional self-affine tiles [Jolivet-Kari]

Effectiveness for S-adic systems

Effectiveness for S-adic subshifts

- Directive sequences
- Pattern frequencies/invariant measure
- Language
- Existence of (decorated) local rules (being sofic or an SFT)

There are mainly two difficulties which come from

- the notion of substitution in dimension d
- the S-adic framework

A natural viewpoint since the characterization of entropy as right-recursively enumerable numbers [Hochman-Meyerovitch] [cf. R. Pavlov's lecture] **Theorem** [B.-Fernique-Sablik] Let X_S be a strictly ergodic *S*-adic subshift defined with respect to a directive sequence $S \in \mathfrak{S}^{\mathbb{N}}$ such that \mathfrak{S} satisfies the good growing property. The following conditions are equivalent:

- there exists a computable sequence S' such that $X_S = X_{S'}$;
- the unique invariant measure of X_S is computable;
- the subshift X_S is decidable.

Good growing substitution

- \bullet A finite set of substitutions $\mathfrak S$ has a good growing property if
 - there are finitely many ways of gluing super-tiles: there exists a finite set of patterns $\mathcal{P} \subset \mathcal{A}^*$ such that if a pattern formed by a super-tile of order *n* surrounded by super-tiles of order *n* is in the language of $X_{\mathfrak{S}^{\mathbb{N}}}$, then it appears as the *n*-iteration of a pattern of \mathcal{P}
 - the size of the super-tiles of order n grows with n: for every ball of radius R, there exist $n \in \mathbb{N}$ such a translate of this ball is contained in all the supports of super-tiles of order n.
- Non-trivial rectangular substitutions or geometrical tiling substitutions verify this property.

Local rules and substitutions

- In dimension d ≥ 2, under natural assumptions, it is known for different types of substitutions that substitutive tilings can be enforced with (colored) local rules.
- The ideas is always to force a hierarchical structure, as in Robison's tiling, where each change of level is marked by the type of the super-tile of this level, and the rule used is transmitted for super-tiles of lower order.
 - Rectangular substitutions: [Mozes'89]
 - Geometrical substitutions: [Goodman-Strauss'98]
 - Combinatorial substitutions: [Fernique-Ollinger'2010]

Existence of local rules

A closed subset $\mathbf{S} \subset \mathfrak{S}^{\mathbb{N}}$ is effectively closed if the set of (finite) words which do not appear as prefixes of elements of \mathbf{S} is recursively enumerable.

One enumerates forbidden prefixes.

• Theorem [Aubrun-Sablik] We consider rectangular substitutions. The **S**-adic subshift X_S is sofic if and only if it can be defined by a set of directive sequences **S** which is effectively closed.

Existence of local rules

- Theorem [Aubrun-Sablik] We consider rectangular substitutions. The **S**-adic subshift X_S is sofic if and only if it can be defined by a set of directive sequences **S** which is effectively closed.
- A similar result for more general substitutions is expected
- The difficulty relies in the ability to exhibit a rectangular grid to use the simulation of a one-dimensional effective subshift by a two-dimensional sofic subshift [Aubrun-Sablik, Durand-Romanschenko-Shen]

Sturmian and planar tilings

Tilings and symbolic dynamics

From a discrete plane to a tiling by projection....

....and from a tiling by lozenges to a ternary coding

Two-dimensional Sturmian words

Theorem [B.-Vuillon]

Let $(u_m)_{m \in \mathbb{Z}^2} \in \{1, 2, 3\}^{\mathbb{Z}^2}$ be a 2d Sturmian word, that is, a coding of a discrete plane. Then there exist $x \in \mathbb{R}$, and $\alpha, \beta \in \mathbb{R}$ such that $1, \alpha, \beta$ are \mathbb{Q} -linearly independent and $\alpha + \beta < 1$ such that

$$\forall \mathbf{m} = (m, n) \in \mathbb{Z}^2, \ U_{\mathbf{m}} = i \Longleftrightarrow R^m_{\alpha} R^n_{\beta}(x) = x + m\alpha + n\beta \in I_i \ (\text{mod } 1),$$

with

$$\mathbf{I_1} = [\mathbf{0}, \alpha[, \ \mathbf{I_2} = [\alpha, \alpha + \beta[, \ \mathbf{I_3} = [\alpha + \beta, 1[$$

or

$$I_1 =]0, \alpha], I_2 =]\alpha, \alpha + \beta], I_3 =]\alpha + \beta, 1].$$

Coding of a \mathbb{Z}^2 -action

Factors

• The block $W = [w_{i,j}]$, defined on $\{1, 2, 3\}$ and of size (m, n), is a factor of u if and only if

$$I_W := \bigcap_{1 \le i \le m, 1 \le j \le n} R_{\alpha}^{-i+1} R_{\beta}^{-j+1} I_{w_{i,j}} \neq \emptyset.$$

- The sets I_W are connected.
- The frequency of every factor W of U exists and is equal to the length of I(W).

Effective 2d Sturmian shifts

Theorem [B.-Bourdon-Jolivet-Siegel] A 2d Sturmian shift is S-adic with an expansion provided by Brun continued fraction algorithm

Effective 2d Sturmian shifts

Theorem [B.-Bourdon-Jolivet-Siegel] A 2d Sturmian shift is S-adic with an expansion provided by Brun continued fraction algorithm

Theorem [B.-Fernique-Sablik] The following conditions are equivalent:

- its normal vector is computable;
- its unique invariant measure is computable;
- its language is decidable;
- Its Brun S-adic directive sequence is computable.

Effective 2d Sturmian shifts

Theorem [B.-Bourdon-Jolivet-Siegel] A 2d Sturmian shift is S-adic with an expansion provided by Brun continued fraction algorithm

Theorem [B.-Fernique-Sablik] The following conditions are equivalent:

- its normal vector is computable;
- its unique invariant measure is computable;
- its language is decidable;
- Its Brun S-adic directive sequence is computable.

Theorem [Fernique-Sablik] A Euclidean plane *E* admits colored weak local rules if and only if it is computable: there is a sofic shift that contains planar tilings with a slope parallel to *E* with a bounded thickness.

Conclusion and perspectives

The following effectiveness notions for S-adic symbolic dynamical systems are intimately related

- Effectiveness of the directive sequences
- Computability of pattern frequencies/invariant measures
- Decidability of the language
- Existence of (colored) local rules (being sofic or an SFT)

Conclusion and perspectives

The following effectiveness notions for S-adic symbolic dynamical systems are intimately related

- Effectiveness of the directive sequences
- Computability of pattern frequencies/invariant measures
- Decidability of the language
- Existence of (colored) local rules (being sofic or an SFT)

How to extend these results?

- Can one extend Durand's approach in a multidimensional setting?
- Extend Aubrun-Sablik result on the connections between soficity and effectiveness of the directive sequence
- One has to formulate suitable assumptions on substitutions