Effective S-adic symbolic dynamical systems

V. Berthé, Th. Fernique, M. Sablik
IRIF-CNRS-Paris-France
http://www.irif.univ-paris-diderot.fr/~ berthe

CIE 2016. Special session Symbolic dynamics

Outline

- Symbolic dynamics
- Substitutions and S-adic systems
- Effectiveness for S-adic systems
- Sturmian and planar tilings

Symbolic dynamics

1	2	1	2	1	2	3	1	2	1	2	3	1	3
3	1	3	1	2	1	2	3	1	2	1	2	1	2
2	1	2	3	1	2	1	2	3	1	3	1	2	1
1	2	1	2	3	1	3	1	2	1	2	3	1	2
3	1	2	1	2	1	2	3	1	2	1	2	3	1
2	3	1	3	1	2	1	2	3	1	2	1	2	1
1	2	1	2	3	1	2	1	2	3	1	3	1	2
3	1	2	1	2	3	1	3	1	2	1	2	3	1

Patterns and configurations

We fix a dimension d

- Let \mathcal{A} be finite alphabet.
- A configuration u is an element of $\mathcal{A}^{\mathbb{Z}^{d}}$ (an \mathcal{A}-coloring of \mathbb{Z}^{d})
- A pattern p is an element of \mathcal{A}^{D}, where $D \subset \mathbb{Z}^{d}$ is a finite set, called its support.
- A translate of the pattern p by $\mathbf{m} \in \mathbb{Z}^{d}$ is denoted $p+\mathbf{m}$ and has $D+\mathbf{m}$ for support.
- The language of a configuration u is the set of finite patterns that occur in u (up to translation).

1	2	1	2	1	2	3	1	2	1	2	3	1	3
3	1	3	1	2	1	2	3	1	2	1	2	1	2
2	1	2	3	1	2	1	2	3	1	3	1	2	1
1	2	1	2	3	1	3	1	2	1	2	3	1	2
3	1	2	1	2	1	2	3	1	2	1	2	3	1
2	3	1	3	1	2	1	2	3	1	2	1	2	1
1	2	1	2	3	1	2	1	2	3	1	3	1	2
3	1	2	1	2	3	1	3	1	2	1	2	3	1

Subshifts

- The set $\mathcal{A}^{\mathbb{Z}^{d}}$ endowed with the product topology is a compact metric space.

$$
d(u, v) \leq 2^{-n} \text { if } u_{\left[[-n, n]^{d}\right.}=v_{\left[[-n, n]^{d}\right.} .
$$

- The shifts $\sigma_{\mathbf{m}}, \mathbf{m} \in \mathbb{Z}^{d}$, act on configurations

$$
\sigma_{\mathbf{m}}: \mathcal{A}^{\mathbb{Z}^{d}} \rightarrow \mathcal{A}^{\mathbb{Z}^{d}},\left(u_{\mathbf{n}}\right)_{\mathbf{n} \in \mathbb{Z}^{d}} \mapsto\left(u_{\mathbf{n}+\mathbf{m}}\right)_{n \in \mathbb{Z}^{d}} .
$$

- A d-dimensional subshift $X \subset \mathcal{A}^{\mathbb{Z}^{d}}$ is a closed and shift-invariant set of configurations in $\mathcal{A}^{\mathbb{Z}^{d}}$.
- A subshift X can be defined by providing its language, that is, the set of patterns that occur (up to translation) in configurations in X.
- It can be defined equivalently by providing the set of forbidden patterns.
- Example: $\{0,1\}^{\mathbb{Z}}$ with 11 not allowed.

SFT and sofic subshifts

- Subshifts of finite type (SFT) are the subshifts defined by a finite set of forbidden patterns.
- Sofic subshifts are images of SFT under a factor map.
- A factor map $\pi: X \rightarrow Y$ between two subshifts X and Y is a continuous, surjective map such that

$$
\pi \circ \sigma_{\mathbf{m}}=\sigma_{\mathbf{m}} \circ \pi
$$

for all $\mathbf{m} \in \mathbb{Z}^{d}$.

- A factor map is a sliding block code (defined by a local rule/CA) [Curtis-Hedlund-Lyndon].
- Example: add colorations. Take a larger alphabet for X : X is the SFT, Y is the sofic shift.
- Wang tiles

Computable subshifts

A subshift is said to be

- Π_{1}-computable or effective if its language is co-recursively enumerable;
- $\Sigma_{1 \text {-computable if its language is recursively enumerable; }}$
- Δ_{1}-computable or decidable if its language is recursive.
cf. E. Jeandel's lecture.

Frequencies and measures

- The frequency $f(p)$ of a pattern p in a d-dimensional configuration u is defined as the limit (if it exists) of

$$
\lim _{n} \frac{\left|x_{\mid[-n, n]^{d}}\right|_{p}}{(2 n+1)^{d}}
$$

where $\left|x_{\left[[-n, n]^{d}\right.}\right|_{p}$ stands for the number of occurrences of p in x_{n}.

- A subshift is said to be uniquely ergodic if it admits a unique shift-invariant measure; in this case, pattern frequencies do exist (and the convergence is uniform).
- A subshift is said to be minimal if every non-empty closed shift-invariant subset is equal to the whole set. A minimal and uniquely ergodic subshift is said strictly ergodic.
- Any pattern which appears in a strictly ergodic subshift has a positive frequency.

About the computability of frequencies

Computable frequencies: there exists an algorithm that takes as input a pattern and a precision, and that outputs an approximation of this frequency with respect to this precision
\rightsquigarrow Computable pattern frequencies/shift-invariant measure

About the computability of frequencies

Computable frequencies: there exists an algorithm that takes as input a pattern and a precision, and that outputs an approximation of this frequency with respect to this precision
\rightsquigarrow Computable pattern frequencies/shift-invariant measure

Computability of letter frequencies does not say much on the algorithmic complexity of a subshift.

- Take a subshift $X \subset\{0,1\}^{\mathbb{Z}}$ and consider the subshift Y obtained by applying to each configuration of X the substitution

$$
0 \mapsto 01,1 \mapsto 10
$$

The subshift Y admits letter frequencies (they are both equal to $1 / 2$), and it has the same algorithmic complexity as X.

Effectiveness for shifts

Theorem Let X be a subshift.

- If X is effective and uniquely ergodic, then its invariant measure is computable and X is decidable.
- If X is minimal and its frequencies are computable, then its language is recursively enumerable.
- If X is minimal and effective, then X is decidable.

Effectiveness for shifts

We assume X effective and uniquely ergodic. Let us prove that the frequency of any pattern is computable.

- Consider the following algorithm that takes as an argument the parameter e for the precision. We consider a finite pattern p.
- At step n, one produces all 'square' patterns of size n that do not contain the n first forbidden patterns.
- For each of these square patterns, one computes the number of occurrences of p in it, divided by $(2 n+1)^{d}$.
- We continue until these quantities belong to an interval of length e.
- This algorithm then stops (compactness=subshift + unique ergodicity=uniform frequencies), and taking an element of the interval provides an approximation of the frequency of p up to precision e.

We assume X minimal with computable pattern frequencies. We prove that the language is recursively enumerable.

- Frequencies are positive by minimality.
- Even if the frequencies are computable, one cannot decide whether the frequency of a given pattern is equal to zero or not, hence we cannot decide whether this pattern belongs to the language or not.
- However, one can decide whether the frequency of a pattern is larger than a given value. This thus implies that the language is recursively enumerable.

Substitutions and S-adic systems

Substitutions

- Substitutions on words : symbolic dynamical systems
- Substitutions on tiles: inflation/subdivision rules, tilings and point sets

Substitutions

- Substitutions on words : symbolic dynamical systems

Morphism of the free monoid (no cancellations)

$$
\sigma: 1 \mapsto 12,2 \mapsto 1
$$

$$
1
$$

12
121
12112
12112121
Fibonacci word $\sigma^{\infty}(1)=121121211211212 \ldots$

- Substitutions on tiles: inflation/subdivision rules, tilings and point sets

Substitutions

- Substitutions on words : symbolic dynamical systems
- Substitutions on tiles: inflation/subdivision rules, tilings and point sets

Tilings Encyclopedia http://tilings.math.uni-bielefeld.de/
[E. Harriss, D. Frettlöh]

S-adic expansions

- Let \mathcal{S} be a set S of substitutions on the alphabet \mathcal{A}
- Let $s=\left(\sigma_{n}\right)_{n \in \mathbb{N}} \in S^{\mathbb{N}}$ a sequence of substitutions (directive sequence)
- Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence of letters in \mathcal{A}

We say that the infinite word $u \in \mathcal{A}^{\mathbb{N}}$ admits $\left(\sigma_{n}, a_{n}\right)_{n}$ as an S-adic representation if

$$
u=\lim _{n \rightarrow \infty} \sigma_{0} \sigma_{1} \cdots \sigma_{n-1}\left(a_{n}\right)
$$

S-adic expansions

- Let \mathcal{S} be a set S of substitutions on the alphabet \mathcal{A}
- Let $s=\left(\sigma_{n}\right)_{n \in \mathbb{N}} \in S^{\mathbb{N}}$ a sequence of substitutions (directive sequence)
- Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence of letters in \mathcal{A}

We say that the infinite word $u \in \mathcal{A}^{\mathbb{N}}$ admits $\left(\sigma_{n}, a_{n}\right)_{n}$ as an S-adic representation if

$$
u=\lim _{n \rightarrow \infty} \sigma_{0} \sigma_{1} \cdots \sigma_{n-1}\left(a_{n}\right)
$$

The terminology comes from Vershik adic transformations Bratteli diagrams
S stands for substitution, adic for the inverse limit powers of the same substitution = partial quotients

Geometrical substitutions and tilings

Let $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be an expanding linear map
Principle One takes

- a finite number of prototiles $\left\{T_{1}, T_{2}, \ldots, T_{m}\right\}$
- an expansive transformation ϕ (the inflation factor)
- a rule that allows one to divide each ϕT_{i} into copies of the

$$
T_{1}, T_{2}, \ldots, T_{m}
$$

A tile-substitution s with expansion ϕ is a map $T_{i} \mapsto s\left(T_{i}\right)$, where $s\left(T_{i}\right)$ is a patch made of translates of the prototiles and

$$
\phi\left(T_{i}\right)=\bigcup_{T_{j} \in s(T i)} T_{j}
$$

Example

Combinatorial tiling substitutions

- The substitution rule replaces a tile by some configuration of tiles that may not bear any geometric resemblance to the original.
- The difficulty with such a rule comes when one wishes to iterate it: we need to be sure that the substitution can be applied repeatedly so that all the tiles fit together without gaps or overlaps.
- Combinatorial substitutions map a tiling by tiles onto a tiling by super-tiles so that the super-tiles of the latter are arranged as the tiles of the former.
- We can introduce concatenation rules which specify how the respective images of two adjacent tiles must be glued.

> [Priebe-Frank, Fernique-Ollinger]

Some decision problems
 for substitutions

Decision problems for word substitutions

Some classical decision problems for primitive substitutions can be solved using return words and derived sequences [Durand]

Let \mathcal{A}, \mathcal{B}, be finite alphabets. We consider two morphisms $\sigma: \mathcal{A}^{*} \rightarrow \mathcal{A}^{*}, \phi: \mathcal{A}^{*} \rightarrow \mathcal{B}^{*} ;$ an infinite word of the form

$$
\lim _{n} \sigma^{n}(u)
$$

is is a DOL word and

$$
\phi\left(\lim _{n} \sigma^{n}(u)\right)
$$

an HDOL or morphic word, for u finite word.

Decision problems for word substitutions

Some classical decision problems for primitive substitutions can be solved using return words and derived sequences [Durand]

Let σ be a primitive substitution. It generates a minimal subshift X_{σ}. A return word to a word u of its language is a word w of the language such that
$u w$ admits exactly two occurrences of u, with the second occurrence of u being a suffix of $u w$.

One can recode sequences of the subshift via return words, obtaining derived sequences.

> [cf D. Perrin's lecture]

Decision problems for word substitutions

Some classical decision problems for primitive substitutions can be solved using return words and derived sequences [Durand]

- The HDOL ω-equivalence problem for primitive morphisms: it is decidable to know whether two HDOL words are equal.
- The decidability of the ultimate periodicity of HDOL infinite sequences: it is decidable to know whether an HDOL word is ultimately periodic.
- The uniform recurrence of morphic sequences is decidable.

Decision problems for word substitutions

- Constant-length substitutions (automatic sequences): decision procedures are produced based on the connections between first-order logic and automata [Shallit-Walnut]
- It is decidable if the fixed-points of a morphism avoid (long) abelian powers (no eigenvalue equal to 1) [Rao-Rosenfeld]
- Consistency of multidimensional combinatorial substitutions [Jolivet-Kari]
- Decidability of topological properties for two-dimensional self-affine tiles [Jolivet-Kari]

Effectiveness for S-adic systems

Effectiveness for S-adic subshifts

- Directive sequences
- Pattern frequencies/invariant measure
- Language
- Existence of (decorated) local rules (being sofic or an SFT)

There are mainly two difficulties which come from

- the notion of substitution in dimension d
- the S-adic framework

A natural viewpoint since the characterization of entropy as right-recursively enumerable numbers [Hochman-Meyerovitch]
[cf. R. Pavlov's lecture]

Effectiveness for S-adic shifts

Theorem [B.-Fernique-Sablik] Let X_{S} be a strictly ergodic S-adic subshift defined with respect to a directive sequence $S \in \mathfrak{S}^{\mathbb{N}}$ such that \mathfrak{S} satisfies the good growing property. The following conditions are equivalent:

- there exists a computable sequence S^{\prime} such that $X_{S}=X_{S^{\prime}}$;
- the unique invariant measure of X_{S} is computable;
- the subshift X_{S} is decidable.

Good growing substitution

- A finite set of substitutions \mathfrak{S} has a good growing property if
- there are finitely many ways of gluing super-tiles: there exists a finite set of patterns $\mathcal{P} \subset \mathcal{A}^{*}$ such that if a pattern formed by a super-tile of order n surrounded by super-tiles of order n is in the language of $X_{\mathfrak{G}^{\mathbb{N}}}$, then it appears as the n-iteration of a pattern of \mathcal{P}
- the size of the super-tiles of order n grows with n : for every ball of radius R, there exist $n \in \mathbb{N}$ such a translate of this ball is contained in all the supports of super-tiles of order n.
- Non-trivial rectangular substitutions or geometrical tiling substitutions verify this property.

Local rules and substitutions

- In dimension $d \geq 2$, under natural assumptions, it is known for different types of substitutions that substitutive tilings can be enforced with (colored) local rules.
- The ideas is always to force a hierarchical structure, as in Robison's tiling, where each change of level is marked by the type of the super-tile of this level, and the rule used is transmitted for super-tiles of lower order.
- Rectangular substitutions: [Mozes'89]
- Geometrical substitutions: [Goodman-Strauss'98]
- Combinatorial substitutions: [Fernique-Ollinger'2010]

Existence of local rules

A closed subset $\mathbf{S} \subset \mathfrak{S}^{\mathbb{N}}$ is effectively closed if the set of (finite) words which do not appear as prefixes of elements of \mathbf{S} is recursively enumerable.

One enumerates forbidden prefixes.

- Theorem [Aubrun-Sablik] We consider rectangular substitutions. The \mathbf{S}-adic subshift $X_{\mathbf{S}}$ is sofic if and only if it can be defined by a set of directive sequences \mathbf{S} which is effectively closed.

Existence of local rules

- Theorem [Aubrun-Sablik] We consider rectangular substitutions. The \mathbf{S}-adic subshift $X_{\mathbf{S}}$ is sofic if and only if it can be defined by a set of directive sequences \mathbf{S} which is effectively closed.
- A similar result for more general substitutions is expected
- The difficulty relies in the ability to exhibit a rectangular grid to use the simulation of a one-dimensional effective subshift by a two-dimensional sofic subshift [Aubrun-Sablik, Durand-Romanschenko-Shen]

Sturmian and planar tilings

Tilings and symbolic dynamics

From a discrete plane to a tiling by projection....

....and from a tiling by lozenges to a ternary coding

Two-dimensional Sturmian words

Theorem [B.-Vuillon]

Let $\left(u_{\mathbf{m}}\right)_{\mathbf{m} \in \mathbb{Z}^{2}} \in\{1,2,3\}^{\mathbb{Z}^{2}}$ be a 2 d Sturmian word, that is, a coding of a discrete plane. Then there exist $x \in \mathbb{R}$, and $\alpha, \beta \in \mathbb{R}$ such that $1, \alpha, \beta$ are \mathbb{Q}-linearly independent and $\alpha+\beta<1$ such that
$\forall \mathbf{m}=(m, n) \in \mathbb{Z}^{2}, U_{\mathbf{m}}=i \Longleftrightarrow R_{\alpha}^{m} R_{\beta}^{n}(x)=x+m \alpha+n \beta \in I_{i}(\bmod 1)$,
with

$$
\iota_{1}=\left[0, \alpha\left[, \quad I_{2}=\left[\alpha, \alpha+\beta\left[, \quad I_{3}=[\alpha+\beta, 1[\right.\right.\right.\right.
$$

or

$$
\left.\left.\left.\left.\left.\left.I_{1}=\right] 0, \alpha\right], \quad I_{2}=\right] \alpha, \alpha+\beta\right], \quad I_{3}=\right] \alpha+\beta, 1\right] .
$$

Coding of a \mathbb{Z}^{2}-action

Factors

- The block $W=\left[w_{i, j}\right]$, defined on $\{1,2,3\}$ and of size (m, n), is a factor of u if and only if

$$
I_{W}:=\bigcap_{1 \leq i \leq m, 1 \leq j \leq n} R_{\alpha}^{-i+1} R_{\beta}^{-j+1} I_{w_{i, j}} \neq \emptyset .
$$

- The sets I_{W} are connected.
- The frequency of every factor W of U exists and is equal to the length of $I(W)$.

Effective $2 d$ Sturmian shifts

Theorem [B.-Bourdon-Jolivet-Siegel] A 2d Sturmian shift is S-adic with an expansion provided by Brun continued fraction algorithm

Effective $2 d$ Sturmian shifts

Theorem [B.-Bourdon-Jolivet-Siegel] A 2d Sturmian shift is S-adic with an expansion provided by Brun continued fraction algorithm

Theorem [B.-Fernique-Sablik] The following conditions are equivalent:

- its normal vector is computable;
- its unique invariant measure is computable;
- its language is decidable;
- Its Brun S-adic directive sequence is computable.

Effective $2 d$ Sturmian shifts

Theorem [B.-Bourdon-Jolivet-Siegel] A 2d Sturmian shift is S-adic with an expansion provided by Brun continued fraction algorithm

Theorem [B.-Fernique-Sablik] The following conditions are equivalent:

- its normal vector is computable;
- its unique invariant measure is computable;
- its language is decidable;
- Its Brun S-adic directive sequence is computable.

Theorem [Fernique-Sablik] A Euclidean plane E admits colored weak local rules if and only if it is computable: there is a sofic shift that contains planar tilings with a slope parallel to E with a bounded thickness.

Conclusion and perspectives

The following effectiveness notions for S-adic symbolic dynamical systems are intimately related

- Effectiveness of the directive sequences
- Computability of pattern frequencies/invariant measures
- Decidability of the language
- Existence of (colored) local rules (being sofic or an SFT)

Conclusion and perspectives

The following effectiveness notions for S-adic symbolic dynamical systems are intimately related

- Effectiveness of the directive sequences
- Computability of pattern frequencies/invariant measures
- Decidability of the language
- Existence of (colored) local rules (being sofic or an SFT)

How to extend these results?

- Can one extend Durand's approach in a multidimensional setting?
- Extend Aubrun-Sablik result on the connections between soficity and effectiveness of the directive sequence
- One has to formulate suitable assumptions on substitutions

