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Simulations

Expected convergence times of 1n2n and 2n1n seem to be Θ(n3).
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Here, we show that the worst expected convergence time is O(n3).
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Structure: tilings and forbidden patterns

Non-periodic tilings model the structure of quasicrystals,
with forbidden patterns modelling finite range interaction:
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Back to basics

Our problem turns out to be the most simple case:

tiling of the line with two tiles (two-letter word);

forbidden patterns: two identical consecutive letters (errors)

local corrections: swap letters (flip)
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Decrease on expectation
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Then

E(min{t ≥ 0 | ψ(wt) = 0}) ≤ ψ(w0)

ε
.

Main task: find a suitable ψ. Unfortunately, E does not suit!
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One proves (n = |w |):

1 (1 + n
2 )α ≤ ψα(w) ≤ n1+α;

2 ψα(w) > (1 + n
2 )α ⇒ E(∆ψα(w)|w) ≤ −α(1−α)

2 nα−2;

3 ψα(w) = (1 + n
2 )α ⇒ E (w) = 0.

This yields:

Theorem (Bodini-F-Regnault)

The expected convergence time is at most cubic:

E(T (w)) ≤ 2n3

α(1− α)
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q−1

. . . the blue flip decreases it by (q − 1)α − qα, with q ≤ p. . .
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Proof (sketch)

Main idea ensuring the decrease on expectation (sketch):

q

p

. . . and the concavity of x → xα yields a negative total variation.



Thank you for your attention
In the abstract: average case analysis with a well-chosen α
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