Stochastic flips on two-letter words

Thomas Fernique CNRS - Marseille - France

Joint work with O. Bodini & D. Regnault

Analco, January 16, 2010.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



## 2 Motivations







#### 2 Motivations



▲□▶ <圖▶ < ≧▶ < ≧▶ = のQ@</p>

| Our problem      | Motivations | Main result |
|------------------|-------------|-------------|
| ●○○○             | 0000        | 0000        |
| Two-letter words |             |             |


#### Configuration: word w over $\{1, 2\}$ with as many 1 as 2.



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

| Our problem      | Motivations | Main result |
|------------------|-------------|-------------|
| ● ○ ○ ○          | 0000        | 0000        |
| Two-letter words |             |             |

#### Configuration: word w over $\{1, 2\}$ with as many 1 as 2.



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Error: two identical consecutive letters. Counted by E(w)

| Our problem | Motivations | Main result |
|-------------|-------------|-------------|
| ○●○○        | 0000        | 0000        |
| Flips       |             |             |



| Our problem | Motivations | Main result |
|-------------|-------------|-------------|
| ○●○○        | 0000        | 0000        |
| Flips       |             |             |



| Our problem | Motivations | Main result |
|-------------|-------------|-------------|
| ○●○○        | 0000        | 0000        |
| Flips       |             |             |

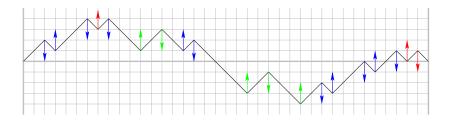


| Our problem | Motivations | Main result |
|-------------|-------------|-------------|
| ○●○○        | 0000        | 0000        |
| Flips       |             |             |



| Our problem | Motivations | Main result |
|-------------|-------------|-------------|
| ○●○○        | 0000        | 0000        |
| Flips       |             |             |




| Our problem | Motivations | Main result |
|-------------|-------------|-------------|
| ○●○○        | 0000        | 0000        |
| Flips       |             |             |



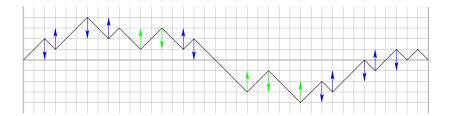
| Our problem | Motivations | Main result |
|-------------|-------------|-------------|
| ○●○○        | 0000        | 0000        |
| Flips       |             |             |




| Our problem | Motivations | Main result |
|-------------|-------------|-------------|
| ○●○○        | 0000        | 0000        |
| Flips       |             |             |



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで


Flips can delete, shift or create errors.

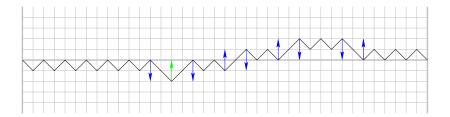
| Our problem      | Motivations | Main result |
|------------------|-------------|-------------|
| ○○●○             | 0000        | 0000        |
| Stochastic flips |             |             |



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

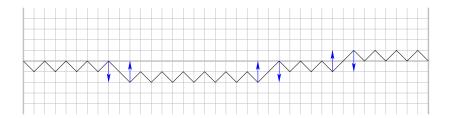
| Our problem      | Motivations | Main result |
|------------------|-------------|-------------|
| ○○●○             | 0000        | 0000        |
| Stochastic flips |             |             |




◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

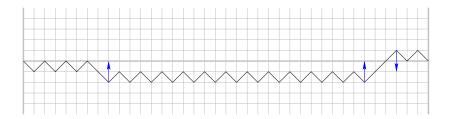
| Our problem      | Motivations | Main result |
|------------------|-------------|-------------|
| ○○●○             | 0000        | 0000        |
| Stochastic flips |             |             |




◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

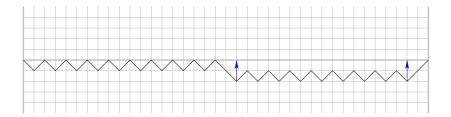
| Our problem      | Motivations | Main result |
|------------------|-------------|-------------|
| ○○●○             | 0000        | 0000        |
| Stochastic flips |             |             |




▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

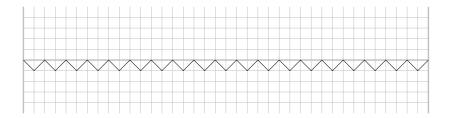
| Our problem      | Motivations | Main result |
|------------------|-------------|-------------|
| ○○●○             | 0000        | 0000        |
| Stochastic flips |             |             |




▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

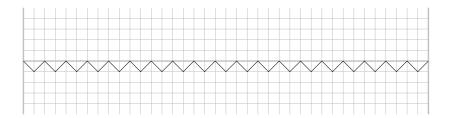
| Our problem      | Motivations | Main result |
|------------------|-------------|-------------|
| ○○●○             | 0000        | 0000        |
| Stochastic flips |             |             |




▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

| Our problem      | Motivations | Main result |
|------------------|-------------|-------------|
| ○○●○             | 0000        | 0000        |
| Stochastic flips |             |             |



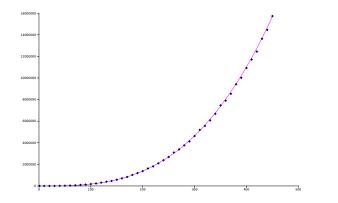

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

| Our problem      | Motivations | Main result |
|------------------|-------------|-------------|
| ○○●○             | 0000        | 0000        |
| Stochastic flips |             |             |



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

| Our problem      | Motivations | Main result |
|------------------|-------------|-------------|
| ○○●○             | 0000        | 0000        |
| Stochastic flips |             |             |




Convergence time:  $T(w_0) := \min\{t \ge 0 \mid E(w_t) = 0\}.$ 

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙

| Our problem | Motivations | Main result |
|-------------|-------------|-------------|
| ○○○●        | 0000        | 0000        |
| Simulations |             |             |

Expected convergence times of  $1^n 2^n$  and  $2^n 1^n$  seem to be  $\Theta(n^3)$ .

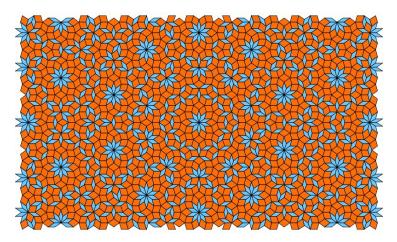


Here, we show that the worst expected convergence time is  $O(n^3)$ .

イロト 不得 トイヨト イヨト

э










#### Structure: tilings and forbidden patterns

Non-periodic tilings model the structure of quasicrystals, with forbidden patterns modelling finite range interaction:



| Our problem                          | Motivations | Main result |
|--------------------------------------|-------------|-------------|
|                                      | 0000        |             |
| Growth: self-assembly or relaxation? |             |             |



| Our problem                          | Motivations | Main result |
|--------------------------------------|-------------|-------------|
| Growth: self-assembly or relaxation? |             |             |

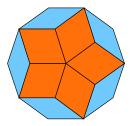




| Our problem                          | Motivations | Main result |
|--------------------------------------|-------------|-------------|
|                                      | 0000        |             |
| Growth: self-assembly or relaxation? |             |             |

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

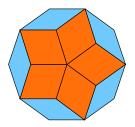



| Our problem                          | Motivations | Main result |
|--------------------------------------|-------------|-------------|
|                                      | 0000        |             |
| Growth: self-assembly or relaxation? |             |             |

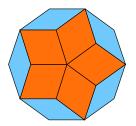
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



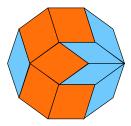
| Our problem                          | Motivations | Main result |
|--------------------------------------|-------------|-------------|
|                                      | 0000        |             |
| Crowth: colf accomply or relayation? |             |             |


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで



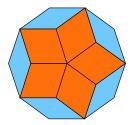

| Our problem                          | Motivations | Main result |
|--------------------------------------|-------------|-------------|
|                                      | 0000        |             |
| Growth: self assembly or relaxation? |             |             |

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

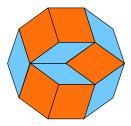

Add one tile at time:



Add one tile at time:

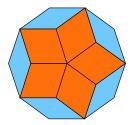



Perform local corrections:

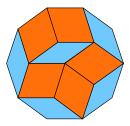



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Add one tile at time:

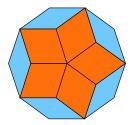



Perform local corrections:

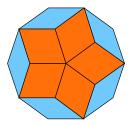



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Add one tile at time:

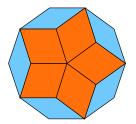



Perform local corrections:



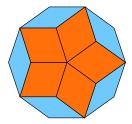

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Add one tile at time:



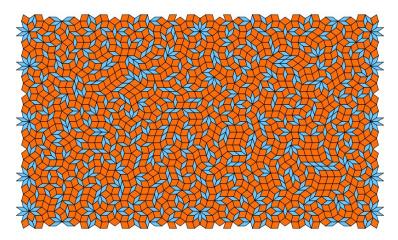

Perform local corrections:

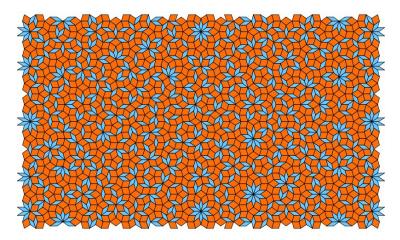


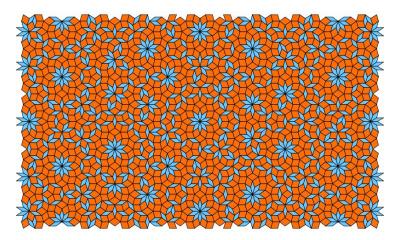

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

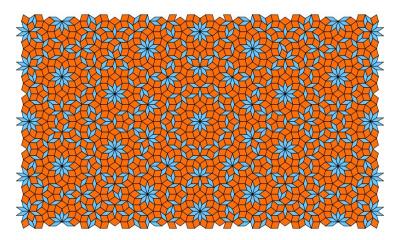
Add one tile at time:




Hard to avoid forbidden patterns


Perform local corrections:





▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Does it converges? Rate?









| Our problem    | Motivations | Main result |
|----------------|-------------|-------------|
|                | 0000        |             |
| Back to basics |             |             |

Our problem turns out to be the most simple case:

- tiling of the line with two tiles (two-letter word);
- forbidden patterns: two identical consecutive letters (errors)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• local corrections: swap letters (flip)



## Motivations



(4日) (個) (目) (目) (目) (の)

Decrease on expectation

## Main tool:

## Decrease on expectation

Let  $(w_t)_{t\in\mathbb{N}}$  be a stochastic process over a space  $\mathcal{W}$ . Let  $\psi: \mathcal{W} \to \mathbb{R}_+$  and  $\varepsilon > 0$  such that, whenever  $\psi(w_t) > 0$ ,

$$\mathbb{E}\left(\Delta\psi(w_t)|w_t,\ldots,w_0\right)\leq -\varepsilon.$$

#### Then

$$\mathbb{E}(\min\{t \ge 0 \mid \psi(w_t) = 0\}) \le \frac{\psi(w_0)}{\varepsilon}.$$

Decrease on expectation

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

## Main tool:

## Decrease on expectation

Let  $(w_t)_{t\in\mathbb{N}}$  be a stochastic process over a space  $\mathcal{W}$ . Let  $\psi: \mathcal{W} \to \mathbb{R}_+$  and  $\varepsilon > 0$  such that, whenever  $\psi(w_t) > 0$ ,

$$\mathbb{E}\left(\Delta\psi(w_t)|w_t,\ldots,w_0\right)\leq -\varepsilon.$$

#### Then

$$\mathbb{E}(\min\{t \ge 0 \mid \psi(w_t) = 0\}) \le \frac{\psi(w_0)}{\varepsilon}.$$

Main task: find a suitable  $\psi$ .

Decrease on expectation

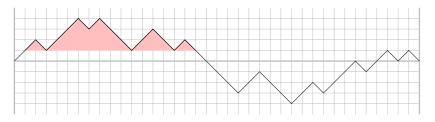
## Main tool:

## Decrease on expectation

Let  $(w_t)_{t\in\mathbb{N}}$  be a stochastic process over a space  $\mathcal{W}$ . Let  $\psi: \mathcal{W} \to \mathbb{R}_+$  and  $\varepsilon > 0$  such that, whenever  $\psi(w_t) > 0$ ,

$$\mathbb{E}\left(\Delta\psi(w_t)|w_t,\ldots,w_0\right)\leq -\varepsilon.$$

#### Then


$$\mathbb{E}(\min\{t \ge 0 \mid \psi(w_t) = 0\}) \le \frac{\psi(w_0)}{\varepsilon}.$$

Main task: find a suitable  $\psi$ .

Unfortunately, *E* does not suit!

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ











 $\alpha$ -weighted Dyck factors

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

## We introduce Dyck factor:



## Definition

Let  $0 < \alpha < 1$ . Let DF(w) be the Dyck factors of w. One sets:

$$\psi_{\alpha}(w) := \sum_{v \in DF(w)} (1 + |v|_1)^{\alpha}.$$

| Our problem         | Motivations | Main result |
|---------------------|-------------|-------------|
| 0000                | 0000        | ○○●○        |
| A cubic upper bound |             |             |

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

One proves 
$$(n = |w|)$$
:  
(1 +  $\frac{n}{2}$ ) <sup>$\alpha$</sup>   $\leq \psi_{\alpha}(w) \leq n^{1+\alpha}$ ;

| Our problem         | Motivations | Main result |
|---------------------|-------------|-------------|
| 0000                | 0000        | ○○●○        |
| A cubic upper bound |             |             |

・ロト・日本・日本・日本・日本・日本

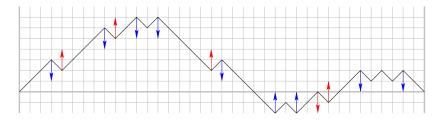
One proves 
$$(n = |w|)$$
:  
**1**  $(1 + \frac{n}{2})^{\alpha} \leq \psi_{\alpha}(w) \leq n^{1+\alpha}$ ;  
**2**  $\psi_{\alpha}(w) > (1 + \frac{n}{2})^{\alpha} \Rightarrow \mathbb{E}(\Delta \psi_{\alpha}(w)|w) \leq -\frac{\alpha(1-\alpha)}{2}n^{\alpha-2}$ ;

| Our problem<br>0000 | Main result<br>○○●○ |
|---------------------|---------------------|
| A cubic upper bound |                     |

One proves 
$$(n = |w|)$$
:  
**1**  $(1 + \frac{n}{2})^{\alpha} \leq \psi_{\alpha}(w) \leq n^{1+\alpha}$ ;  
**2**  $\psi_{\alpha}(w) > (1 + \frac{n}{2})^{\alpha} \Rightarrow \mathbb{E}(\Delta \psi_{\alpha}(w)|w) \leq -\frac{\alpha(1-\alpha)}{2}n^{\alpha-2}$ ;  
**3**  $\psi_{\alpha}(w) = (1 + \frac{n}{2})^{\alpha} \Rightarrow E(w) = 0$ .

| Our problem         | Motivations | Main result |
|---------------------|-------------|-------------|
| 0000                | 0000        | ○○●○        |
| A cubic upper bound |             |             |

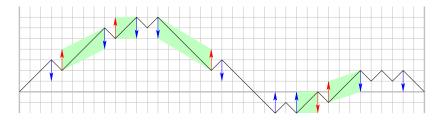
One proves 
$$(n = |w|)$$
:  
**1**  $(1 + \frac{n}{2})^{\alpha} \leq \psi_{\alpha}(w) \leq n^{1+\alpha}$ ;  
**2**  $\psi_{\alpha}(w) > (1 + \frac{n}{2})^{\alpha} \Rightarrow \mathbb{E}(\Delta \psi_{\alpha}(w)|w) \leq -\frac{\alpha(1-\alpha)}{2}n^{\alpha-2}$ ;  
**3**  $\psi_{\alpha}(w) = (1 + \frac{n}{2})^{\alpha} \Rightarrow E(w) = 0$ .


## This yields:

Theorem (Bodini-F-Regnault)

The expected convergence time is at most cubic:

$$\mathbb{E}(T(w)) \leq \frac{2n^3}{\alpha(1-\alpha)}.$$


| Our problem    | Motivations | Main result |
|----------------|-------------|-------------|
| 0000           | 0000        | ○○○●        |
| Proof (sketch) |             |             |



A flip can increase (red) or decrease (blue)  $\psi_{\alpha}$ .

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

| Our problem    | Motivations | Main result |
|----------------|-------------|-------------|
| 0000           | 0000        | ○○○●        |
| Proof (sketch) |             |             |



With each red flip is associated a "higher" blue flip.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

| Our problem    | Motivations | Main result |
|----------------|-------------|-------------|
| 0000           | 0000        | ○○○●        |
| Proof (sketch) |             |             |



Whenever the red flip increases  $\psi_{\alpha}$  by  $(p+1)^{\alpha} - p^{\alpha} \dots$ 

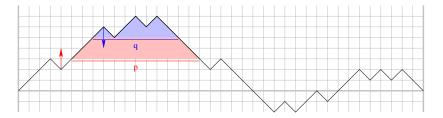
| Our problem    | Motivations | Main result |
|----------------|-------------|-------------|
| 0000           | 0000        | ○○○●        |
| Proof (sketch) |             |             |



Whenever the red flip increases  $\psi_{\alpha}$  by  $(p+1)^{\alpha} - p^{\alpha} \dots$ 

| Our problem    | Motivations | Main result |
|----------------|-------------|-------------|
| 0000           | 0000        | ○○○●        |
| Proof (sketch) |             |             |




... the blue flip decreases it by  $(q-1)^lpha-q^lpha$ , with  $q\leq p\ldots$ 

| Our problem    | Motivations | Main result |
|----------------|-------------|-------------|
| 0000           | 0000        | ○○○●        |
| Proof (sketch) |             |             |



... the blue flip decreases it by  $(q-1)^lpha-q^lpha$ , with  $q\leq p\ldots$ 

| Our problem    | Motivations | Main result |
|----------------|-------------|-------------|
| 0000           | 0000        | ○○○●        |
| Proof (sketch) |             |             |



... and the concavity of  $x \to x^{\alpha}$  yields a negative total variation.

# Thank you for your attention

In the abstract: average case analysis with a well-chosen  $\boldsymbol{\alpha}$