Stochastic flips on two-letter words

Thomas Fernique
CNRS - Marseille - France

Joint work with O. Bodini \& D. Regnault

Analco, January 16, 2010.
(1) Our problem
(2) Motivations
(3) Main result

(1) Our problem

(2) Motivations

(3) Main result

Configuration: word w over $\{1,2\}$ with as many 1 as 2 .

Configuration: word w over $\{1,2\}$ with as many 1 as 2 .

Error: two identical consecutive letters. Counted by $E(w)$

Flip: local transformation $12 \leftrightarrow 21$.

Flips can delete, shift or create errors.

Process: $w_{t} \rightarrow w_{t+1}$ by a random flip which does not create errors.

Process: $w_{t} \rightarrow w_{t+1}$ by a random flip which does not create errors.

Process: $w_{t} \rightarrow w_{t+1}$ by a random flip which does not create errors.

Process: $w_{t} \rightarrow w_{t+1}$ by a random flip which does not create errors.

Process: $w_{t} \rightarrow w_{t+1}$ by a random flip which does not create errors.

Process: $w_{t} \rightarrow w_{t+1}$ by a random flip which does not create errors.

Process: $w_{t} \rightarrow w_{t+1}$ by a random flip which does not create errors.

Process: $w_{t} \rightarrow w_{t+1}$ by a random flip which does not create errors.

Process: $w_{t} \rightarrow w_{t+1}$ by a random flip which does not create errors.

Convergence time: $T\left(w_{0}\right):=\min \left\{t \geq 0 \mid E\left(w_{t}\right)=0\right\}$.

Expected convergence times of $1^{n} 2^{n}$ and $2^{n} 1^{n}$ seem to be $\Theta\left(n^{3}\right)$.

Here, we show that the worst expected convergence time is $O\left(n^{3}\right)$.

(1) Our problem

(2) Motivations

Non-periodic tilings model the structure of quasicrystals, with forbidden patterns modelling finite range interaction:

How to model the growth of quasicrystals?

How to model the growth of quasicrystals?

Add one tile at time:

How to model the growth of quasicrystals?

Add one tile at time:

How to model the growth of quasicrystals?

Add one tile at time:

How to model the growth of quasicrystals?

Add one tile at time:

How to model the growth of quasicrystals?

Add one tile at time:

Hard to avoid forbidden patterns

How to model the growth of quasicrystals?

Add one tile at time:

Perform local corrections:

Hard to avoid forbidden patterns

How to model the growth of quasicrystals?

Add one tile at time:

Perform local corrections:

Hard to avoid forbidden patterns

How to model the growth of quasicrystals?

Add one tile at time:

Perform local corrections:

Hard to avoid forbidden patterns

How to model the growth of quasicrystals?

Add one tile at time:

Perform local corrections:

Hard to avoid forbidden patterns

How to model the growth of quasicrystals?

Add one tile at time:

Hard to avoid forbidden patterns

Perform local corrections:

Does it converges? Rate?

Experimentally converges rather fast，but remains to be proven：

Experimentally converges rather fast, but remains to be proven:

Experimentally converges rather fast, but remains to be proven:

Experimentally converges rather fast, but remains to be proven:

Our problem turns out to be the most simple case:

- tiling of the line with two tiles (two-letter word);
- forbidden patterns: two identical consecutive letters (errors)
- local corrections: swap letters (flip)

(1) Our problem

(2) Motivations
(3) Main result

Main tool:

Decrease on expectation

Let $\left(w_{t}\right)_{t \in \mathbb{N}}$ be a stochastic process over a space \mathcal{W}.
Let $\psi: \mathcal{W} \rightarrow \mathbb{R}_{+}$and $\varepsilon>0$ such that, whenever $\psi\left(w_{t}\right)>0$,

$$
\mathbb{E}\left(\Delta \psi\left(w_{t}\right) \mid w_{t}, \ldots, w_{0}\right) \leq-\varepsilon
$$

Then

$$
\mathbb{E}\left(\min \left\{t \geq 0 \mid \psi\left(w_{t}\right)=0\right\}\right) \leq \frac{\psi\left(w_{0}\right)}{\varepsilon}
$$

Main tool:

Decrease on expectation

Let $\left(w_{t}\right)_{t \in \mathbb{N}}$ be a stochastic process over a space \mathcal{W}.
Let $\psi: \mathcal{W} \rightarrow \mathbb{R}_{+}$and $\varepsilon>0$ such that, whenever $\psi\left(w_{t}\right)>0$,

$$
\mathbb{E}\left(\Delta \psi\left(w_{t}\right) \mid w_{t}, \ldots, w_{0}\right) \leq-\varepsilon
$$

Then

$$
\mathbb{E}\left(\min \left\{t \geq 0 \mid \psi\left(w_{t}\right)=0\right\}\right) \leq \frac{\psi\left(w_{0}\right)}{\varepsilon}
$$

Main task: find a suitable ψ.

Main tool:

Decrease on expectation

Let $\left(w_{t}\right)_{t \in \mathbb{N}}$ be a stochastic process over a space \mathcal{W}.
Let $\psi: \mathcal{W} \rightarrow \mathbb{R}_{+}$and $\varepsilon>0$ such that, whenever $\psi\left(w_{t}\right)>0$,

$$
\mathbb{E}\left(\Delta \psi\left(w_{t}\right) \mid w_{t}, \ldots, w_{0}\right) \leq-\varepsilon
$$

Then

$$
\mathbb{E}\left(\min \left\{t \geq 0 \mid \psi\left(w_{t}\right)=0\right\}\right) \leq \frac{\psi\left(w_{0}\right)}{\varepsilon}
$$

Main task: find a suitable ψ.
Unfortunately, E does not suit!

We introduce Dyck factor:

We introduce Dyck factor:

We introduce Dyck factor:

We introduce Dyck factor:

We introduce Dyck factor:

We introduce Dyck factor:

Definition

Let $0<\alpha<1$. Let $D F(w)$ be the Dyck factors of w. One sets:

$$
\psi_{\alpha}(w):=\sum_{v \in D F(w)}\left(1+|v|_{1}\right)^{\alpha} .
$$

One proves $(n=|w|)$:
(1) $\left(1+\frac{n}{2}\right)^{\alpha} \leq \psi_{\alpha}(w) \leq n^{1+\alpha}$;

One proves $(n=|w|)$:
(1) $\left(1+\frac{n}{2}\right)^{\alpha} \leq \psi_{\alpha}(w) \leq n^{1+\alpha}$;
(2) $\psi_{\alpha}(w)>\left(1+\frac{n}{2}\right)^{\alpha} \Rightarrow \mathbb{E}\left(\Delta \psi_{\alpha}(w) \mid w\right) \leq-\frac{\alpha(1-\alpha)}{2} n^{\alpha-2}$;

One proves $(n=|w|)$:
(1) $\left(1+\frac{n}{2}\right)^{\alpha} \leq \psi_{\alpha}(w) \leq n^{1+\alpha}$;
(2) $\psi_{\alpha}(w)>\left(1+\frac{n}{2}\right)^{\alpha} \Rightarrow \mathbb{E}\left(\Delta \psi_{\alpha}(w) \mid w\right) \leq-\frac{\alpha(1-\alpha)}{2} n^{\alpha-2}$;
(3) $\psi_{\alpha}(w)=\left(1+\frac{n}{2}\right)^{\alpha} \Rightarrow E(w)=0$.

One proves $(n=|w|)$:
(1) $\left(1+\frac{n}{2}\right)^{\alpha} \leq \psi_{\alpha}(w) \leq n^{1+\alpha}$;
(2) $\psi_{\alpha}(w)>\left(1+\frac{n}{2}\right)^{\alpha} \Rightarrow \mathbb{E}\left(\Delta \psi_{\alpha}(w) \mid w\right) \leq-\frac{\alpha(1-\alpha)}{2} n^{\alpha-2}$;
(3) $\psi_{\alpha}(w)=\left(1+\frac{n}{2}\right)^{\alpha} \Rightarrow E(w)=0$.

This yields:

Theorem (Bodini-F-Regnault)

The expected convergence time is at most cubic:

$$
\mathbb{E}(T(w)) \leq \frac{2 n^{3}}{\alpha(1-\alpha)}
$$

Main idea ensuring the decrease on expectation (sketch):

A flip can increase (red) or decrease (blue) ψ_{α}.

Main idea ensuring the decrease on expectation (sketch):

With each red flip is associated a "higher" blue flip.

Main idea ensuring the decrease on expectation (sketch):

Whenever the red flip increases ψ_{α} by $(p+1)^{\alpha}-p^{\alpha} \ldots$

Main idea ensuring the decrease on expectation (sketch):

Whenever the red flip increases ψ_{α} by $(p+1)^{\alpha}-p^{\alpha} \ldots$

Main idea ensuring the decrease on expectation (sketch):

\ldots the blue flip decreases it by $(q-1)^{\alpha}-q^{\alpha}$, with $q \leq p \ldots$

Main idea ensuring the decrease on expectation (sketch):

\ldots the blue flip decreases it by $(q-1)^{\alpha}-q^{\alpha}$, with $q \leq p \ldots$

Main idea ensuring the decrease on expectation (sketch):

\ldots and the concavity of $x \rightarrow x^{\alpha}$ yields a negative total variation.

Thank you for your attention

In the abstract: average case analysis with a well-chosen α

