Markov Chains on Tilings: From Chaos to Order

Thomas Fernique

CIRM, October 21, 2013
1. Order

2. Chaos

3. From chaos to order
1 Order

2 Chaos

3 From chaos to order
Quasicrystals and tilings

Definition (IUCr, 1992)
Crystal $=$ ordered material $=$ essentially discrete diffraction.

The periodic crystals are usually modelled by patterns on lattices.
The non-periodic ones have quickly been modelled by *tilings*.
Quasicrystals and tilings

Definition (IUCr, 1992)

Crystal = ordered material = essentially discrete diffraction.

The periodic crystals are usually modelled by patterns on lattices. The non-periodic ones have quickly been modelled by tilings.

Definition

Tiling = covering of the plane by non-overlapping compact sets.

Example: digitizations of affine planes in higher dimensional space.

Quasicrystal stability (at low T): finite range energetic interaction. Modelled on tilings by constraints on the way things locally fit.
Example 1: Dimer tilings

Rows alternate rhombi (between their orientation):
Example 1: Dimer tilings

Rows alternate rhombi (between their orientation):
Example 2: Beenker tilings

Rows alternate rhombi, squares are free:
Example 2: Beenker tilings

Rows alternate rhombi, squares are free:
Example 2: Beenker tilings

Rows alternate rhombi, squares are free:
Example 3: generalized Penrose tilings

Rows alternate rhombi of a given type, different types freely mix:
Example 3: generalized Penrose tilings

Rows alternate rhombi of a given type, different types freely mix:
Example 3: generalized Penrose tilings

Rows alternate rhombi of a given type, different types freely mix:
Some references

<table>
<thead>
<tr>
<th></th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Chaos</td>
</tr>
<tr>
<td>3</td>
<td>From chaos to order</td>
</tr>
</tbody>
</table>
Melt and random tilings

First quasicrystals: rapid cooling of the melt (quenching). At high T: stabilization by entropy rather than energy.
Melt and random tilings

First quasicrystals: rapid cooling of the melt (quenching). At high T: stabilization by entropy rather than energy.

Definition (Configurational entropy of a tiling T)

$$S(T) := \log(\text{nb tilings of the same domain as } T)/\text{nb tiles in } T.$$
Example 1: Dimer tilings

Maximal entropy tilings are planar. There are efficiently sampled.
Example 1: Dimer tilings

Maximal entropy tilings are planar. There are efficiently sampled.
Example 1: Dimer tilings

Maximal entropy tilings are planar. There are efficiently sampled.
Example 2: Beenker tilings

Maximal entropy tilings? Typical properties? Random sampling?
Example 2: Beenker tilings

Maximal entropy tilings? Typical properties? Random sampling?
Example 3: generalized Penrose tilings

Maximal entropy tilings? Typical properties? Random sampling?
Example 3: generalized Penrose tilings

Maximal entropy tilings? Typical properties? Random sampling?
Some references

1 Order

2 Chaos

3 From chaos to order
Recent quasicrystals: slow cooling of the melt (versus quenching). Energy minimization gradually overcomes entropy maximization. Diffusion mechanism which makes the cooling correct the defects?
Cooling and stochastic flips

Recent quasicrystals: slow cooling of the melt (versus quenching). Energy minimization gradually overcomes entropy maximization. Diffusion mechanism which makes the cooling correct the defects?

Definition

Flip on a vertex x: half-turn a hexagon of three rhombi sharing x.

Diffusion: flips on random vertices with probability $\exp(-\Delta E / T)$.
Cooling and stochastic flips

Recent quasicrystals: slow cooling of the melt (versus quenching). Energy minimization gradually overcomes entropy maximization. Diffusion mechanism which makes the cooling correct the defects?

Definition

Flip on a vertex x: half-turn a hexagon of three rhombi sharing x.

Diffusion: flips on random vertices with probability $\exp(-\Delta E/T)$.

This is the Metropolis-Hastings algorithm for the Gibbs distribution

$$P(\text{tiling}) = \frac{1}{Z(T)} \exp \left(- \frac{E(\text{tiling})}{T} \right).$$

Chaos for high T, order for low T, but what about convergence?
Example 1: Dimer tilings

Ergodic at $T > 0$, $\Theta(n^2 \ln n)$ mixing at $T = \infty$, $O(n^{2.5})$ at $T = 0$.
Example 1: Dimer tilings

Ergodic at $T > 0$, $\Theta(n^2 \ln n)$ mixing at $T = \infty$, $\Theta(n^2)$ at $T = 0$.
Example 1: Dimer tilings

Ergodic at $T > 0$, $\Theta(n^2 \ln n)$ mixing at $T = \infty$, $\Theta(n^2)$ at $T = 0$.
Example 1: Dimer tilings

Ergodic at $T > 0$, $\Theta(n^2 \ln n)$ mixing at $T = \infty$, $\Theta(n^2)$ at $T = 0$.
Example 1: Dimer tilings

Ergodic at $T > 0$, $\Theta(n^2 \ln n)$ mixing at $T = \infty$, $\Theta(n^2)$ at $T = 0$.
Example 1: Dimer tilings

Ergodic at $T > 0$, $\Theta(n^2 \ln n)$ mixing at $T = \infty$, $\Theta(n^2)$ at $T = 0$.
Example 2: Beenker tilings

Ergodic at $T > 0$, $\Theta(n^2 \ln n)$ mixing at $T = \infty$, $\Theta(n^2)$ at $T = 0$.
Example 2: Beenker tilings

Ergodic at $T > 0$, $\Theta(n^2 \ln n)$ mixing at $T = \infty$, $\Theta(n^2)$ at $T = 0$.
Example 2: Beenker tilings

Ergodic at $T > 0$, $\Theta(n^2 \ln n)$ mixing at $T = \infty$, $\Theta(n^2)$ at $T = 0$.
Example 2: Beenker tilings

Ergodic at $T > 0$, $\Theta(n^2 \ln n)$ mixing at $T = \infty$, $\Theta(n^2)$ at $T = 0$.
Example 2: Beenker tilings

Ergodic at $T > 0$, $\Theta(n^2 \ln n)$ mixing at $T = \infty$, $\Theta(n^2)$ at $T = 0$.
Example 3: generalized Penrose tilings

Ergodic at $T > 0$, $\Theta(n^2 \ln n)$ mixing at $T = \infty$, $\Theta(n^2)$ at $T = 0$.
Example 3: generalized Penrose tilings

Ergodic at $T > 0$, $\Theta(n^2 \ln n)$ mixing at $T = \infty$, $\Theta(n^2)$ at $T = 0$.
Example 3: generalized Penrose tilings

Ergodic at $T > 0$, $\Theta(n^2 \ln n)$ mixing at $T = \infty$, $\Theta(n^2)$ at $T = 0$.
Example 3: generalized Penrose tilings

Ergodic at $T > 0$, $\Theta(n^2 \ln n)$ mixing at $T = \infty$, $\Theta(n^2)$ at $T = 0$.
Example 3: generalized Penrose tilings

Ergodic at $T > 0$, $\Theta(n^2 \ln n)$ mixing at $T = \infty$, $\Theta(n^2)$ at $T = 0$.
Some references