
Bidimensional Sturmian Sequenesand SubstitutionsThomas FerniqueLIRMM, 161 rue Ada 34392 Montpellier Cedex 5 - Frane,Ponelet Lab., Bol'shoj Vlas'evskij Pereulok 11. 119002 Mosow - Russia,thomas.fernique�ens-lyon.orgAbstrat. Substitutions are powerful tools to study ombinatorial prop-erties of sequenes. There exist strong haraterizations through sub-stitutions of the Sturmian sequenes that are S-adi, substitutive or a�xed-point of a substitution. In this paper, we de�ne a bidimensionalversion of Sturmian sequenes and look for analogous haraterizations.We prove in partiular that a bidimensional Sturmian sequene is alwaysS-adi and give su�ient onditions under whose it is either substitutiveor a �xed-point of a substitution.IntrodutionSubstitutions generate in�nite sequenes by iteration, replaing a letter by aword. One of the most interesting property of sequenes obtained in this wayis that they are algorithmially easily generated and have a struture stronglyordered, though not restrited to the single periodi ase.The onnetion between substitutions and Sturmian sequenes has beenwidely studied. Roughly speaking, a Sturmian sequene S�;� over the alpha-bet f1; 2g enodes the way the line y = �x + �, � being irrational, rosses theunit squares of the lattie Z2 (see Fig. 1 and for more details [9, 11℄).
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1 1Fig. 1. The Sturmian sequene � � � 112111211211 � � �A sequene is S-adi (see [13℄) if it an be written as an in�nite omposition ofa �nite number of substitutions. So are Sturmian sequenes, and more preisely:S�;� = �a1�10 Æ �10 Æ �a2�21 Æ �21 Æ �a3�30 Æ �30 Æ �a4�41 Æ �41 Æ � � �



2where (ai) is the ontinued fration expansion of � and (i) is the Ostrowskiexpansion of � (see [4℄). However, not only Sturmian sequenes are S-adi (seee.g. [8℄ for more details). Being more restritive, one an onsider the set of thesubstitutives sequenes, introdued in [7℄, that are the sequenes image under amorphism of a �xed-point of a (nontrivial) substitution:S�;� = �(S 0) and S 0 = �(S 0):It is proved that suh sequenes are exatly the Sturmian sequenes S�;� witha quadrati irrational slope � and an interept � 2 Q(�) (see [4℄). If we fur-thermore require that S�;� itself is a �xed-point of a substitution, the previousharaterization beomes that � is a redued quadrati irrational, with someadditional onditions on � (see e.g. [6, 14℄). Let us reall (theorems of Lagrangeand Galois) that an irrational number is quadrati (resp. redued quadrati) i�its ontinued fration expansion is eventually periodi (resp. purely periodi).In this paper, we would like to proeed by analogy in the bidimensional asein order to obtain similar results. The �rst di�ulty arises from the analogyitself, whih is not so obvious and with whom we deal in the �rst three setions.Setion 1 de�nes bidimensional Sturmian sequenes, our analogue of Sturmiansequenes. Setions 2 and 3 give the de�nition of, respetively, the bidimen-sional substitutions and the bidimensional ontinued fration expansion we havehosen, namely the generalized substitutions introdued in [3℄ and the Brun'salgorithm (see [5℄). It is indeed a hoie sine there is no anonial multidimen-sional de�nition of a substitution or of a ontinued fration expansion.Our main results are given in Setion 4. We here restrited ourselves to thease of homogenous bidimensional Sturmian sequenes, whih orrespond to theSturmian sequenes S�;� for whih � = 0. Theorem 3 proves that suh bidimen-sional sequenes are S-adi, while Theorem 4 gives a partial haraterizationvery similar to the unidimensional ase: a bidimensional Sturmian sequene isproved to be substitutive (resp. �xed-point of a substitution) if its parameters -the equivalent of the slope � of a Sturmian sequene - have an eventually periodi(resp. a purely periodi) bidimensional ontinued fration expansion.In Setion 5, we examine the result of Setion 4 from a more pratial point ofview: an we use the substitutions to e�etively generate bidimensional Sturmiansequenes? Though it does not ompletly solve the problem, Theorem 5 give anon trivial result in the substitutive ase. We end the paper giving in Setion 6future extensions of the work presented here.1 Stepped planes and bidimensional sequenesWe here show how to assoiate to a plane a bidimensional sequene, by analogyto the one-dimensional ase. This analogy also leads to de�ne Sturmian bidi-mensional sequenes. One denotes (e1; e2; e3) the anonial basis of R3 .



3The fae (x; i�), for x 2 Z3 and i 2 f1; 2; 3g is de�ned by (see Fig. 2):(x; i�) = fx+ rej + tek j 0 � r; t � 1 and i 6= j 6= kg:
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0 0 0 0Fig. 2. From left to right: the faes (0; i�), i = 1; 2; 3 and (x; 1�) = x+ (0; 1�).These faes generate the Z-module of the formal sums of weighted faesG = fPmx;i(x; i�) j mx;i 2 Zg, on whih the lattie Z3 ats by translation:y +mx;i(x; i�) = mx;i(y + x; i�).One then uses faes to approximate planes of R3 :De�nition 1. Let P�;� be the homogenous plane of R3 de�ned by:P�;� = fx 2 R3 j hx; t(1; �; �)i = 0g:The stepped plane S�;� assoiated to P�;� is de�ned by:S�;� = �(x; i�) j hx; t(1; �; �)i > 0 and hx � ei; t(1; �; �)i � 0	 ;and a path of S�;� is a �nite subset of the faes of S�;�.Notie that a path of S�;� belongs to the Z-module G, but is geometri, thatis, without multiple faes. Aording to the terminology introdued by Reveillèsin [12℄, the stepped plane orresponds to the notion of standard arithmeti planein disrete geometry.We now reall from [1℄ (see also [2℄) the way one an bijetively enode astepped plane by a bidimensional sequene over three letters. We �rst de�ne aone-to-one map from the faes of a stepped plane to its set of verties:Proposition 1 ([1℄). Let v be the map from the faes of R3 to the verties ofZ3 de�ned by (see Fig. 3, left):v : (x; 1�)! x(x; 2�)! x+ e1(x; 3�)! x+ e1 + e2:Then v maps di�erent faes of a same stepped plane to di�erent verties.We then de�ne a bijetive map from the verties of a stepped plane to Z2:



4Proposition 2 ([1℄). Let S�;� be a stepped plane. The orthogonal projetion �on the plane x+y+z = 0 is a bijetion from S�;� to the lattie Z�(e1)+Z�(e2).Thus the map ~� de�ned by ~�(x) = (m;n) i� �(x) = m�(e1) + n�(e2) is abijetion from S�;� to Z2. Moreover, one has the expliit formulas:~�0�pqr1A = (p� r; q � r);~��1(m;n) = 0�mn0 1A+�1� � m+ �n1 + �+ ���0�1111A :And �nally we give the enoding U�;� of a stepped plane S�;� (where U�;�(m;n)is the letter at position (m;n) in the bidimensional sequene U�;�):Proposition 3 ([1℄). Let � be the map whih maps a stepped plane S�;� to thebidimensional sequene U�;� over the alphabet f1; 2; 3g de�ned by:(x; i�) 2 S�;� , U�;�(~� Æ v(x; i�)) = i;or equivalently:U�;�(m;n) = i , (v(~��1(m;n); i�); i�) 2 S�;�Then � is one-to-one from the set fS�;� j 0 < �; � < 1g to the set of the bidimen-sional sequenes over f1; 2; 3g (see Fig. 3). Notie that not all the bidimensionalsequenes over f1; 2; 3g orrespond to a stepped plane.One then de�nes Sturmian stepped planes and bidimensional Sturmian se-quenes by analogy with the unidimensional ase:De�nition 2. A stepped plane S�;� is a Sturmian stepped plane if 1, � and� are linearly independent over Q. A bidimensional Sturmian sequene is theimage under � of a Sturmian stepped plane.Thus, � is a bijetion between the Sturmian stepped planes and the bidimen-sional Sturmian sequenes, for whih we furthermore have expliit formulas.2 Generalized substitutionsWe here de�ne substitutions that at on stepped planes (or, equivalently, on thebidimensional sequenes orresponding to stepped planes). These substitutionsare the generalized substitutions, introdued in [3℄ (see also [11℄, Chap. 8).Let us reall that the inidene matrix M� of a (lassi) substitution � givesat position (i; j) the number of ourenes of the letter i in the word �(j).Moreover, � is said unimodular if detM� = �1. We are now in a position tode�ne the generalized substitutions :



5
m

n

z

y

x

1

1
1

1
1

1

1

1

1
1

1
1

1

2

2

2

2

2

2

2
2

2

2
2

3
3

3

3

3

3
3

3

1 2 3 1 2

3 1 2 3

1 1 12 2

3 1 2 3

1 2 23 1

1 2

1 1 12 2

1 1

1

1

1

11

1

1

1 1

1

1

2 2

2

2

2

2

2

2

2

2

2

3

3 3

3

33

3

Fig. 3. From left to right: to eah fae orresponds a proper vertex (at its blakedorner); type 1; 2 or 3 of a vertex depends on the type of its orresponding fae; theprojetion ~� on the plane x+ y + z = 0 maps the verties to a 2-dimensional lattie;we thus obtain a bidimensional sequene over f1; 2; 3g.De�nition 3. The generalized substitution assoiated to the unimodular sub-stitution � is the endomorphism �� of G de�ned by:8>>>><>>>>:8i 2 A; ��(0; i�) =P3j=1Ps:�(j)=p�i�s �M�1� (f(s)); j�� ;8x 2 Z3; 8i 2 A; ��(x; i�) = M�1� x+��(0; i�);8Pm(x;i)(x; i�) 2 G; �� �Pm(x;i)(x; i�)� =Pm(x;i)��(x; i�);where f(w) = (jwj1; jwj2; jwj3) and jwji is the number of ourenes of the letteri in w.Example 1. Let us onsider the Rauzy substitution �:� : 1! 122! 133! 1 ; M� = 0�1 1 11 0 00 1 01A :� is unimodular, and one easily omputes (see Fig. 4):�� : (e1; 1�) 7! (e1; 1�) + (e2; 2�) + (e3; 3�);(e2; 2�) 7! (e1 � e3; 1�);(e3; 3�) 7! (e2 � e3; 2�): :We now de�ne an espeially interesting type of substitution:De�nition 4. A substitution � is of Pisot type if its inidene matrix M� haseigenvalues �1, �2 and � satisfying 0 < j�1j; j�2j < 1 < �. The generalizedsubstitution �� is then also said of Pisot type.If � is of Pisot type and if t(1; �; �) is the left eigenvetor of M� for thedominant eigenvalue � (that is, tM�t(1; �; �) = �t(1; �; �)), the plane P�;� isalled the ontrating invariant plane of � and veri�es:



6

Fig. 4. The endomorphism �� for the Rauzy substitution: ation on (ei; i�).Proposition 4. 9�, 0 < � < 1, suh that if x 2 P�;�, then M�x 2 P�;� andone has: jjM�xjj � �jjxjj:The ation of �� , when of Pisot type, on the stepped plane S�;� has somenie properties proved in [3℄. Indeed, �� maps eah path of S�;� to a pathof S�;� , the unit ube U = f(ei; i�); i = 1; 2; 3g is always a path of S�;�and the sequene (�n� (U)) is stritly inreasing for inlusion and thus generatesarbitrarily large pathes of S�;� (see Fig. 5).
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3Fig. 5. �n�(U) (top) and (�Æ�� Æ��1)n(U) (bottom) for the Rauzy substitution (whihis of Pisot type), n = 0; 1; 2; 3; 4. Notie that the ation of �� is not so obvious.



73 Bidimensional ontinued frationsContrary to the unidimensional ase with the Eulid's algorithm, there is noanonial ontinued fration expansion in the bidimensional ase. We thus �xhere the expansion we will use further, that is the one produed by the modi�edJaobi-Perron algorithm, whih is a two-point extension of Brun's algorithm. Letus reall this algorithm (see e.g. [5℄ for more details):De�nition 5. Let be X = [0; 1)� [0; 1) and T the map de�ned on Xn(0; 0) by:T (�; �) = 8>><>>: ��� ; 1� � � 1��� if � � �,� 1� � j 1�k ; �� ;� if � < �.For n � 1 and if possible (that is, while �n�1 6= 0), one denotes:(�n; �n) = Tn(�; �);and de�nes: (an; "n) =8>><>>:�j 1�n�1 k ; 0� if �n�1 � �n�1,�j 1�n�1 k ; 1� if �n�1 < �n�1.The sequene (an; "n)n�1 is alled the ontinued fration expansion of (�; �)(notie that an 2 N� and "n 2 f0; 1g). This sequene is in�nite i� 1, � and �are linearly independent over QLet us give a matriial point of view on this algorithm. For a 2 N� , one de�nesthe substitutions:�(a;0) : 1! a timesz }| {11 � � � 1 32! 13! 2 ; �(a;1) : 1! a timesz }| {11 � � �1 22! 33! 1 ;whose inident matries are:A(a;0) = 0�a 1 00 0 11 0 01A ; A(a;1) = 0�a 0 11 0 00 1 01A :So that, with (�0; �0) = (�; �) and �k = max(�k�1; �k�1), one has for n � 1:�ntA(an;"n)0� 1�n�n1A = 0� 1�n�1�n�11A :We an give an expanded formulation of the previous equality:



8Proposition 5. Let 1, � and � be linearly independent over Q and let (an; "n) bethe ontinued fration expansion of (�; �). Then there exists a sequene (�n; �n)of ouples in [0; 1)2 suh that:8n 2 N; 0� 1��1A = (�1�2 � � � �n)tA(a1;"1)tA(a2;"2) � � � tA(an;"n)0� 1�n�n1A :4 Substitutions and bidimensional Sturmian sequenesThe previous setions have suessively de�ned the bidimensional Sturmian se-quenes (or, equivalently, the Sturmian stepped planes), substitutions ating onthese sequenes and a bidimensional ontinued fration expansion. We thus arenow in a position to try to extend in the bidimensional ase the results for (uni-dimensional) Sturmian sequenes given in the introdution. Our results are �rstgiven in terms of stepped plane, and are them summed up in terms of bidimen-sional Sturmian sequenes at the end of the setion.Let us �rst de�ne a generalized substitution whih plays a spei� role:De�nition 6. The generalized substitution assoiated to the unimodular sub-stitution of Pisot type �(a;") introdued in Setion 3 is denoted �(a;"). Suh ageneralized substitution is said of Brun type.We then have the following fundamental theorem (proved in Appendix):Theorem 1. �(an;"n) is a bijetion from S�n;�n onto S�n�1;�n�1 .We shall stress that there is no ontradition between Theorem 1 and theresults realled at the end of Setion 2, whih would yield here that �(an;"n) isa one-to-one map from the stepped plane assoiated to its ontrating invariantplane to itself. Indeed, neither P�n;�n nor P�n�1;�n�1 are invariant planes of�(an;"n) (exept if the expansion (an; "n) is purely periodi of period 1, in whihase all these planes are idential).As we did in Proposition 5, we an give an expanded formulation of Theorem 1:Theorem 2. Let S�;� be a Sturmian stepped plane and (an; "n) be the ontinuedfration expansion of (�; �). Then there exists a sequene (S�n;�n) of Sturmianstepped planes suh that:8n 2 N; S�;� = �(a1;"1) Æ�(a2;"2) Æ � � � Æ�(an;"n) (S�n;�n) :We thus obtain for S�;� an equation - alled expansion - whih looks like thelassi S-adi expansion of a Sturmian sequene (see e.g. [13℄ for more details onS-adiity), though the number of di�erent substitutions of our expansion maybe unbounded. We will �x this last point thanks to the following proposition:



9Proposition 6. Let us de�ne the substitutions:�0 : 1! 12! 23! 13 ; 0 : 1! 32! 13! 2 ; �1 : 1! 12! 123! 3 ; 1 : 1! 22! 33! 1 :These substitutions are unimodular and verify:8(a; ") 2 N � f0; 1g; �(a;") = �a" Æ ":An indution easily proves Proposition 6. Let �" and �" be the generalizedsubstitutions assoiated to �" and ". A omputation yields ��Æ�0 = ��0 Æ �� ,and Proposition 6 allows us to rewrite Theorem 2 in the following way:Theorem 3. Let S�;� be a Sturmian stepped plane and (an; "n) be the ontinuedfration expansion of (�; �). Then there exists a sequene (S�n;�n) of Sturmianstepped planes suh that:8n 2 N; S�;� = �"1 Æ�a1"1 Æ �"2 Æ�a2"2 Æ � � � Æ �"n Æ�an"n (S�n;�n) ;where �" and �" are assoiated to the substitutions de�ned in Proposition 6.We now onsider the ase of periodi expansions. Let us reall that a sequene(un) is eventually periodi with period p and preperiod d if n > d ) un+p = un.If moreover d = 0, the sequene is said purely periodi. In this ase, one has:Theorem 4. Let S�;� be a Sturmian stepped plane and (an; "n) be the ontinuedfration expansion of (�; �). If this expansion is eventually periodi, then thereexist two generalized substitutions �d and �p, and a stepped plane Sp suh that:S�;� = �d(Sp); with Sp = �p(Sp):And if the expansion is purely periodi, one has simply:S�;� = �p(S�;�):Proof. It follows easily from Theorem 2 with:�d = �(a1;"1) Æ�(a2;"2) Æ � � � Æ�(ad;"d);�p = �(ad+1;"d+1) Æ�(ad+2;"d+2) Æ � � � Æ�(ad+p;"d+p);Sp = S�d;�d ;where p is the period of the expansion of (�; �) and d its preperiod. utAording to the terminology used in the introdution, Theorem 3 and 4state that a bidimensional Sturmian sequene U�;� has always a S-adi expan-sion, and is substitutive (resp. a �xed-point of a substitution) if the expansionof (�; �) is eventually periodi (resp. purely periodi). Notie that, ontrary tothe unidimensional ase, we do not yet obtain a omplete haraterization ofbidimensional Sturmian sequenes that are substitutive or �xed-point of a sub-stitution. We will disuss this more arefully in the last setion.



105 E�etive generation of stepped planesIt is to notie that suessive appliations of generalized substitutions on a �niteinitial path do not neessarily over, to in�nity, the whole stepped plane butonly an in�nite subset of it (think for example about a non simply-onnetedsubset or a one . . . ). Suh a problem, that we investigate in this setion, anhowever be of great pratial interest, for example to e�etively generate stan-dard arithmeti plane in disrete geometry.The following lemma, proved in Appendix, deals with the �almost� expansiv-ity of a generalized substitution of Pisot type:Lemma 1. Let � be a unimodular substitution � of Pisot type (all the notationsare those of Setion 2). Then there exist k 2 [0; 1) and C 2 R+ suh that:8<: (x; i�) 2 S�;�(y; j�) 2 ��(x; i�)jjyjj � C ) jjxjj � kjjyjj:It provides us a ase in whih one we an generate the whole stepped plane:Theorem 5. Let S�;� be a substitutive stepped plane, that is, a stepped planesuh that there exist two generalized substitutions �d and �p verifying:S�;� = �d(Sp); with Sp = �p(Sp):If �p is of Pisot type and bijetive on Sp, then there exists a �nite path P ofSp suh that: S�;� = �d� limn!+1�np (P )� :Proof. Let C and k be the onstants of Lemma 1 for the substitution �p andlet P be the path formed by the faes (x; i�) of Sp suh that jjxjj � C.Let (y; j�) be a fae of Sp. Consider the sequene (ym; j�m)m�1 suh that (y1; j�1 ) =(y; j�) and �p(ym+1; j�m+1) = (ym; j�m). This sequene is well de�ned sine �p isbijetive. While jjymjj � C, Lemma 1 yields jjym+1jj � kjjymjj, with k < 1.Hene for m large enough, one has jjymjj � C, that is, (ym; j�m) 2 P and�mp (ym; j�m) = (y; j�). utIn partiular, by Theorem 1 and 4, the previous theorem holds if (�; �) hasan eventually periodi expansion of period p and preperiod d, under the hy-pothesis that �p = �(ad+1;"d+1) Æ�(ad+2;"d+2) Æ � � � Æ�(ad+p;"d+p) is of Pisot type(what an be false sine for example �(1;1) Æ�(1;0) is not of Pisot type). Propo-sition 6 an be used in pratie to iterate on P only four di�erent generalizedsubstitutions, whatever �p may be.Example 2. Let (�; �) have the purely periodi expansion [(1; 1); (1; 0); (1; 0)℄�(of period 3). One omputes A(1;0)A(1;0)A(1;1) = M2� , where � is the Rauzysubstitution introdued in Setion 2. Thus �p = �(1;1) Æ�(1;0) Æ�(1;0) is of Pisottype and S�;� , �xed-point of �p, an be generated applying �p to a �nite path.



11Notie that it is easy to see in the previous example that �p and �� have thesame invariant plane, and thus both generate, starting from P , pathes of thesame stepped plane. But we shall stress that Theorem 1 yields the bijetivityof �p as produt of substitutions of Brun type (see De�nition 6). TheRauzy substitution - or any substitution with the same inidene matrix M� -might do not be bijetive (more preisely not onto) on S�;� . We an ertainlylaim that suh a substitution generates arbitrarily large pathes of S�;� , but notneessarily the whole plane to in�nity. In fat, expliit examples of substitutionsof Pisot type whih do not over the whole plane are known (though the Rauzysubstitution is not one of them).6 PerspetivesThis paper has de�ned the bidimensional Sturmian sequenes (or, equivalently,the Sturmian stepped planes), on whih at the generalized substitutions in-trodued in [3℄. We have proved that every bidimensional Sturmian sequene isS-adi (aording to the terminology of [13℄), what extends to the bidimensionalase the analogous result already known for unidimensional Sturmian sequenes.Similarly, the su�ient ondition (on eventually or purely periodi ontinuedfration expansions), for unidimensional Sturmian sequenes to be substitutiveor �xed-point of a substitution, has been here extended to an analogous ondi-tion (on Brun's expansions), for bidimensional Sturmian sequenes. However, wedid not prove that our ondition is also neessary, though it holds in the unidi-mensional ase. A way to �x that, ould be to extend the notion of return word- introdued in [7℄ and used to prove the unidimensional ase - to some suitablebidimensional analogous notion of �return pattern�. Suh a bidimensional exten-sion of return word have already been done in [10℄. We hene have good hopes toomplete our haraterization of substitutive bidimensional Sturmian sequenes.As notied in the introdution, we foused on the homogenous ase, that isthe analogous of the unidimensional Sturmian sequenes with interept equalsto zero (that is, S�;� with � = 0, aording to the notation of the introdution).Indeed, instead of the plane P�;� of De�nition 1, we should onsider the generalase of a plane P�;�;� = t(0; 0; �) + P�;�. In the unidimensional ase, takinginto aount an interept � just leads to additional onditions that are, roughlyspeaking, onditions on the Ostrowski expansion of � similarly to the onditionson the ontinued fration expansion of � (see [4℄). It remains to give and provesome similar onditions on the interept in the bidimensional ase.Last, we ould arry out some improvements to the more pratial results ofSetion 5. Indeed, starting from a �nite initial path to iterate a substitution isertainly more onvenient than starting from the whole plane. But it is not soeasy to ompute this �nite path. Could not the unit ube U , whih is provedto be a path of any stepped plane, su�es to generate the whole plane, as it
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13AppendixProof of Theorem 1 results of the three following lemmas:Lemma 2. �(an;"n) maps a fae of S�n;�n to faes of S�n�1;�n�1.Proof. Let (x; i�) be a fae of S�n;�n . By de�nition:hx; t(1; �n; �n)i > 0 and hx � ei; t(1; �n; �n)i � 0:A fae (y; j�) of the image �(an;"n)(x; i�) an be written:y = A�1(an;"n)(x+ f(s)); with �(an;"n)(j) = p� i� s:It su�es to prove that (y; j�) belongs to S�n�1;�n�1 , that is:hy; t(1; �n�1; �n�1)i > 0 and hy � ej ; t(1; �n�1; �n�1)i � 0:One has:hy; t(1; �n�1; �n�1)i = hA�1(an;"n)(x+ f(s)); t(1; �n�1; �n�1)i= hx+ f(s); tA�1(an;"n)t(1; �n�1; �n�1)i= hx+ f(s); �nt(1; �n; �n)i= �n hx; t(1; �n; �n)i| {z }>0 +�n hf(s); t(1; �n; �n)i| {z }�0 sine f(s);�n;�n�0So hy; t(1; �n�1; �n�1)i > 0. Similarly:hy � ej ; t(1; �n�1; �n�1)i = hA�1(an;"n)(x+ f(s))� ej ; t(1; �n�1; �n�1)i= hx+ f(s)�A(an;"n)ej ; tA�1(an;"n)t(1; �n�1; �n�1)i= �nhx + f(s)�A(an;"n)ej ; t(1; �n; �n)iBut it holds, by de�nition of the inidene matrix and of f :A(an;"n)ej = f(�(an;"n)(j)) = f(p) + ei + f(s) � ei + f(s);from what follows hy � ej ; t(1; �n�1; �n�1)i � 0. utLemma 3. �(an;"n) is one-to-one from S�n;�n to S�n�1;�n�1.Proof. Let (x; i�) and (x0; i0�) be two faes of S�n;�n and suppose that there is afae (y; j�) both in �(an;"n)(x; i�) and �(an;"n)((x0; i0�). By Lemma 2, we alreadyknow that (y; j�) lies in S�n�1;�n�1 . One an write y in two ways:y = A�1(an;"n)(x + f(s)) = A�1(an;"n)(x0 + f(s0));where �(an;"n)(j) = p� i� s = p0� i0� s0. We thus have x+ f(s) = x0 + f(s0).If x = x0, sine s and s0 are both su�xes of the word �(an;"n)(j), it yields s = s0,



14then i = i0 and hene (x; i�) = (x0; i0�).If x 6= x0, s and s0 are su�xes of di�erent lengths of �(an;"n)(j). Suppose forexample that s0 is shorter: one an write s = v� i0� s0: x+ f(s) = x0+ f(s0) yieldsx + f(v) + f(i0) = x0, that is, x0 � ei0 � x sine f(i0) = ei0 and f(v) � 0. Thenhx0 � ei0 ; t(1; �n; �n)i � hx; t(1; �n; �n)i > 0, what ontradits that (x0; i0�) is afae of S�n;�n . So (x; i�) = (x0; i0�) and the proof is ompleted. utLemma 4. �(an;"n) is onto from S�n;�n on S�n�1;�n�1 .Proof. Let (y; j�) be a fae of S�n�1;�n�1 . We searh for a fae (x; i�) of S�n;�nsuh that (y; j�) 2 �(an;"n)(x; i�), that is, we searh for x and a word s suhthat: 8>>>><>>>>:�(an;"n)(j) = p� i� s;y = A�1(an;"n)(x+ f(s))hx; t(1; �n; �n)i > 0 and hx � ei; t(1; �n; �n)i � 0:Let us write x = A(an;"n)y � f(s) = A(an;"n)y � (A(an;"n)ej � f(p) � ei). Aomputation similar to those e�etued in the proof of Lemma 2 easily yields:hx; t(1; �n; �n)i = u+ rjpj and hx� ei; t(1; �n; �n)i = u+ tjpj;where: u = 1�n hy; t(1; �n�1; �n�1)i;rjpj = hf(p) + ei; t(1; �n; �n)i � 1�n hej ; t(1; �n�1; �n�1)i;tjpj = rjpj � hei; t(1; �n; �n)i:Hene it su�es to prove that one an hoose the pre�x p of �(an;"n)(j) suhthat u+ tjpj � 0 < u+ rjpj (that is, suh that (x; i�) 2 S�n;�n).Let us assume that "n = 0 (the ase "n = 1 is similar). Then (y; j�) 2S�n�1;�n�1 implies 0 < u � 1�n�1 hej ; t(1; �n�1; �n�1)i, and by De�nition 5:an = � 1�n�1 � ; �n = �n�1�n�1 ; �n = 1�n�1 � � 1�n�1� and �n = �n�1:If j = 2, �(an;0)(2) = 1 fores i = 1 and p = s = � (the empty word).One then omputes r0 = he1; t(1; �n; �n)i � 1�n�1 he2; t(1; �n�1; �n�1)i = 0 andt0 = r0 � he1; t(1; �n; �n)i = �1. Sine 0 < u � 1�n�1 he2; t(1; �n�1; �n�1)i = 1,one has u + t0 = 0 < u + r0 and thus (y; 2�) = �(an;0)(x; 1�), with (x; 1�) =(A(an;0)y; 1�) 2 S�n;�n .The ase j = 3 is similar. �(an;0)(3) = 2 fores i = 2 and p = s = �. Onethen omputes r0 = �n � �n�1�n�1 = 0 and t0 = ��n. Sine 0 < u � �n�1�n�1 = �n,



15one has u + t0 = 0 < u + r0 and thus (y; 3�) = �(an;0)(x; 2�), with (x; 2�) =(A(an;0)y; 2�) 2 S�n;�n .The ase j = 1 is slightly more di�ult sine p an be hoosen among thean + 1 words 1k, k = 0 : : : an, that are pre�xes of �(an;0)(1). One has to provethat there exists k 2 0; 1; : : : ; an suh that u + tk � 0 < u + rk . One easilyomputes: rk = tk + 1 = tk+1; for k = 0 : : : an � 1;ran = 0 and tan = � 1�n�1�� 1�n�1 2 (�1; 0℄;t0 = � 1�n�1 :Moreover, one has 0 < u � 1�n�1 . Hene ~k = maxfk � an j u + tk � 0g is wellde�ned (indeed ~k = j 1�n�1 � uk) and veri�es u + r~k > 0. Sine jpj = ~k impliess = 1an�~k3, that is, f(s) = (an� ~k)e1+ e3, one has (y; 1�) = �(an;0)(x; l�), withx = A(an;0)y � f(s) 2 S�n;�n and l = 1 if ~k < an, l = 3 otherwise. utProof of Lemma 1. One an write:(y; j�) = (M�1� (x+ f(s)); j�); with �(j) = p� i� s:Roughly speaking, sine (y; i�) is in S�;� , y is not far from the ontratinginvariant plane P�;� of M�, and sine x is almost equal to M�y, jjxjj resultmainly of the ontration of jjyjj by M� .Let us write it neatly. Let u denote t(1; �; �), the left eigenvetor of M� for itsdominant eigenvalue, and let � < 1 be the onstant of Proposition 4. One has:x = M�y � f(s)= M� (hy; uiu+ (y � hy; uiu))� f(s)= hy; uiM�u+M�(y � hy; uiu)� f(s):We then use that y�hy; uiu belongs to P�;� , plane on whihM� is �-ontrating,that 0 < jhy; uij � max(1; �; �) sine (y; i�) 2 S�;� , and that jjf(s)jj � f� :=jjf(�(1)) + f(�(2)) + f(�(3))jj:jjxjj � jjhy; uiM�ujj+ �jjy � hy; uiujj+ f�� jjhy; uiM�ujj+ �jjyjj+ �jjhy; uiujj+ f�� max(1; �; �)(jjM�ujj+ �jjujj) + f�| {z }B +�jjyjj:Sine B depends only on �, for any k suh that � < k < 1 and for C = Bk�� 2 R+ ,it holds: jjyjj � C ) jjxjj � kjjyjj. ut


