
Bidimensional Sturmian Sequen
esand SubstitutionsThomas FerniqueLIRMM, 161 rue Ada 34392 Montpellier Cedex 5 - Fran
e,Pon
elet Lab., Bol'shoj Vlas'evskij Pereulok 11. 119002 Mos
ow - Russia,thomas.fernique�ens-lyon.orgAbstra
t. Substitutions are powerful tools to study 
ombinatorial prop-erties of sequen
es. There exist strong 
hara
terizations through sub-stitutions of the Sturmian sequen
es that are S-adi
, substitutive or a�xed-point of a substitution. In this paper, we de�ne a bidimensionalversion of Sturmian sequen
es and look for analogous 
hara
terizations.We prove in parti
ular that a bidimensional Sturmian sequen
e is alwaysS-adi
 and give su�
ient 
onditions under whose it is either substitutiveor a �xed-point of a substitution.Introdu
tionSubstitutions generate in�nite sequen
es by iteration, repla
ing a letter by aword. One of the most interesting property of sequen
es obtained in this wayis that they are algorithmi
ally easily generated and have a stru
ture stronglyordered, though not restri
ted to the single periodi
 
ase.The 
onne
tion between substitutions and Sturmian sequen
es has beenwidely studied. Roughly speaking, a Sturmian sequen
e S�;� over the alpha-bet f1; 2g en
odes the way the line y = �x + �, � being irrational, 
rosses theunit squares of the latti
e Z2 (see Fig. 1 and for more details [9, 11℄).
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1 1Fig. 1. The Sturmian sequen
e � � � 112111211211 � � �A sequen
e is S-adi
 (see [13℄) if it 
an be written as an in�nite 
omposition ofa �nite number of substitutions. So are Sturmian sequen
es, and more pre
isely:S�;� = �a1�
10 Æ �
10 Æ �a2�
21 Æ �
21 Æ �a3�
30 Æ �
30 Æ �a4�
41 Æ �
41 Æ � � �



2where (ai) is the 
ontinued fra
tion expansion of � and (
i) is the Ostrowskiexpansion of � (see [4℄). However, not only Sturmian sequen
es are S-adi
 (seee.g. [8℄ for more details). Being more restri
tive, one 
an 
onsider the set of thesubstitutives sequen
es, introdu
ed in [7℄, that are the sequen
es image under amorphism of a �xed-point of a (nontrivial) substitution:S�;� = �(S 0) and S 0 = �(S 0):It is proved that su
h sequen
es are exa
tly the Sturmian sequen
es S�;� witha quadrati
 irrational slope � and an inter
ept � 2 Q(�) (see [4℄). If we fur-thermore require that S�;� itself is a �xed-point of a substitution, the previous
hara
terization be
omes that � is a redu
ed quadrati
 irrational, with someadditional 
onditions on � (see e.g. [6, 14℄). Let us re
all (theorems of Lagrangeand Galois) that an irrational number is quadrati
 (resp. redu
ed quadrati
) i�its 
ontinued fra
tion expansion is eventually periodi
 (resp. purely periodi
).In this paper, we would like to pro
eed by analogy in the bidimensional 
asein order to obtain similar results. The �rst di�
ulty arises from the analogyitself, whi
h is not so obvious and with whom we deal in the �rst three se
tions.Se
tion 1 de�nes bidimensional Sturmian sequen
es, our analogue of Sturmiansequen
es. Se
tions 2 and 3 give the de�nition of, respe
tively, the bidimen-sional substitutions and the bidimensional 
ontinued fra
tion expansion we have
hosen, namely the generalized substitutions introdu
ed in [3℄ and the Brun'salgorithm (see [5℄). It is indeed a 
hoi
e sin
e there is no 
anoni
al multidimen-sional de�nition of a substitution or of a 
ontinued fra
tion expansion.Our main results are given in Se
tion 4. We here restri
ted ourselves to the
ase of homogenous bidimensional Sturmian sequen
es, whi
h 
orrespond to theSturmian sequen
es S�;� for whi
h � = 0. Theorem 3 proves that su
h bidimen-sional sequen
es are S-adi
, while Theorem 4 gives a partial 
hara
terizationvery similar to the unidimensional 
ase: a bidimensional Sturmian sequen
e isproved to be substitutive (resp. �xed-point of a substitution) if its parameters -the equivalent of the slope � of a Sturmian sequen
e - have an eventually periodi
(resp. a purely periodi
) bidimensional 
ontinued fra
tion expansion.In Se
tion 5, we examine the result of Se
tion 4 from a more pra
ti
al point ofview: 
an we use the substitutions to e�e
tively generate bidimensional Sturmiansequen
es? Though it does not 
ompletly solve the problem, Theorem 5 give anon trivial result in the substitutive 
ase. We end the paper giving in Se
tion 6future extensions of the work presented here.1 Stepped planes and bidimensional sequen
esWe here show how to asso
iate to a plane a bidimensional sequen
e, by analogyto the one-dimensional 
ase. This analogy also leads to de�ne Sturmian bidi-mensional sequen
es. One denotes (e1; e2; e3) the 
anoni
al basis of R3 .



3The fa
e (x; i�), for x 2 Z3 and i 2 f1; 2; 3g is de�ned by (see Fig. 2):(x; i�) = fx+ rej + tek j 0 � r; t � 1 and i 6= j 6= kg:
e1 e2

e3

e2
e1

e3
x

0 0 0 0Fig. 2. From left to right: the fa
es (0; i�), i = 1; 2; 3 and (x; 1�) = x+ (0; 1�).These fa
es generate the Z-module of the formal sums of weighted fa
esG = fPmx;i(x; i�) j mx;i 2 Zg, on whi
h the latti
e Z3 a
ts by translation:y +mx;i(x; i�) = mx;i(y + x; i�).One then uses fa
es to approximate planes of R3 :De�nition 1. Let P�;� be the homogenous plane of R3 de�ned by:P�;� = fx 2 R3 j hx; t(1; �; �)i = 0g:The stepped plane S�;� asso
iated to P�;� is de�ned by:S�;� = �(x; i�) j hx; t(1; �; �)i > 0 and hx � ei; t(1; �; �)i � 0	 ;and a pat
h of S�;� is a �nite subset of the fa
es of S�;�.Noti
e that a pat
h of S�;� belongs to the Z-module G, but is geometri
, thatis, without multiple fa
es. A

ording to the terminology introdu
ed by Reveillèsin [12℄, the stepped plane 
orresponds to the notion of standard arithmeti
 planein dis
rete geometry.We now re
all from [1℄ (see also [2℄) the way one 
an bije
tively en
ode astepped plane by a bidimensional sequen
e over three letters. We �rst de�ne aone-to-one map from the fa
es of a stepped plane to its set of verti
es:Proposition 1 ([1℄). Let v be the map from the fa
es of R3 to the verti
es ofZ3 de�ned by (see Fig. 3, left):v : (x; 1�)! x(x; 2�)! x+ e1(x; 3�)! x+ e1 + e2:Then v maps di�erent fa
es of a same stepped plane to di�erent verti
es.We then de�ne a bije
tive map from the verti
es of a stepped plane to Z2:



4Proposition 2 ([1℄). Let S�;� be a stepped plane. The orthogonal proje
tion �on the plane x+y+z = 0 is a bije
tion from S�;� to the latti
e Z�(e1)+Z�(e2).Thus the map ~� de�ned by ~�(x) = (m;n) i� �(x) = m�(e1) + n�(e2) is abije
tion from S�;� to Z2. Moreover, one has the expli
it formulas:~�0�pqr1A = (p� r; q � r);~��1(m;n) = 0�mn0 1A+�1� � m+ �n1 + �+ ���0�1111A :And �nally we give the en
oding U�;� of a stepped plane S�;� (where U�;�(m;n)is the letter at position (m;n) in the bidimensional sequen
e U�;�):Proposition 3 ([1℄). Let � be the map whi
h maps a stepped plane S�;� to thebidimensional sequen
e U�;� over the alphabet f1; 2; 3g de�ned by:(x; i�) 2 S�;� , U�;�(~� Æ v(x; i�)) = i;or equivalently:U�;�(m;n) = i , (v(~��1(m;n); i�); i�) 2 S�;�Then � is one-to-one from the set fS�;� j 0 < �; � < 1g to the set of the bidimen-sional sequen
es over f1; 2; 3g (see Fig. 3). Noti
e that not all the bidimensionalsequen
es over f1; 2; 3g 
orrespond to a stepped plane.One then de�nes Sturmian stepped planes and bidimensional Sturmian se-quen
es by analogy with the unidimensional 
ase:De�nition 2. A stepped plane S�;� is a Sturmian stepped plane if 1, � and� are linearly independent over Q. A bidimensional Sturmian sequen
e is theimage under � of a Sturmian stepped plane.Thus, � is a bije
tion between the Sturmian stepped planes and the bidimen-sional Sturmian sequen
es, for whi
h we furthermore have expli
it formulas.2 Generalized substitutionsWe here de�ne substitutions that a
t on stepped planes (or, equivalently, on thebidimensional sequen
es 
orresponding to stepped planes). These substitutionsare the generalized substitutions, introdu
ed in [3℄ (see also [11℄, Chap. 8).Let us re
all that the in
iden
e matrix M� of a (
lassi
) substitution � givesat position (i; j) the number of o

uren
es of the letter i in the word �(j).Moreover, � is said unimodular if detM� = �1. We are now in a position tode�ne the generalized substitutions :
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Fig. 3. From left to right: to ea
h fa
e 
orresponds a proper vertex (at its bla
ked
orner); type 1; 2 or 3 of a vertex depends on the type of its 
orresponding fa
e; theproje
tion ~� on the plane x+ y + z = 0 maps the verti
es to a 2-dimensional latti
e;we thus obtain a bidimensional sequen
e over f1; 2; 3g.De�nition 3. The generalized substitution asso
iated to the unimodular sub-stitution � is the endomorphism �� of G de�ned by:8>>>><>>>>:8i 2 A; ��(0; i�) =P3j=1Ps:�(j)=p�i�s �M�1� (f(s)); j�� ;8x 2 Z3; 8i 2 A; ��(x; i�) = M�1� x+��(0; i�);8Pm(x;i)(x; i�) 2 G; �� �Pm(x;i)(x; i�)� =Pm(x;i)��(x; i�);where f(w) = (jwj1; jwj2; jwj3) and jwji is the number of o

uren
es of the letteri in w.Example 1. Let us 
onsider the Rauzy substitution �:� : 1! 122! 133! 1 ; M� = 0�1 1 11 0 00 1 01A :� is unimodular, and one easily 
omputes (see Fig. 4):�� : (e1; 1�) 7! (e1; 1�) + (e2; 2�) + (e3; 3�);(e2; 2�) 7! (e1 � e3; 1�);(e3; 3�) 7! (e2 � e3; 2�): :We now de�ne an espe
ially interesting type of substitution:De�nition 4. A substitution � is of Pisot type if its in
iden
e matrix M� haseigenvalues �1, �2 and � satisfying 0 < j�1j; j�2j < 1 < �. The generalizedsubstitution �� is then also said of Pisot type.If � is of Pisot type and if t(1; �; �) is the left eigenve
tor of M� for thedominant eigenvalue � (that is, tM�t(1; �; �) = �t(1; �; �)), the plane P�;� is
alled the 
ontra
ting invariant plane of � and veri�es:
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Fig. 4. The endomorphism �� for the Rauzy substitution: a
tion on (ei; i�).Proposition 4. 9�, 0 < � < 1, su
h that if x 2 P�;�, then M�x 2 P�;� andone has: jjM�xjj � �jjxjj:The a
tion of �� , when of Pisot type, on the stepped plane S�;� has someni
e properties proved in [3℄. Indeed, �� maps ea
h pat
h of S�;� to a pat
hof S�;� , the unit 
ube U = f(ei; i�); i = 1; 2; 3g is always a pat
h of S�;�and the sequen
e (�n� (U)) is stri
tly in
reasing for in
lusion and thus generatesarbitrarily large pat
hes of S�;� (see Fig. 5).
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3Fig. 5. �n�(U) (top) and (�Æ�� Æ��1)n(U) (bottom) for the Rauzy substitution (whi
his of Pisot type), n = 0; 1; 2; 3; 4. Noti
e that the a
tion of �� is not so obvious.



73 Bidimensional 
ontinued fra
tionsContrary to the unidimensional 
ase with the Eu
lid's algorithm, there is no
anoni
al 
ontinued fra
tion expansion in the bidimensional 
ase. We thus �xhere the expansion we will use further, that is the one produ
ed by the modi�edJa
obi-Perron algorithm, whi
h is a two-point extension of Brun's algorithm. Letus re
all this algorithm (see e.g. [5℄ for more details):De�nition 5. Let be X = [0; 1)� [0; 1) and T the map de�ned on Xn(0; 0) by:T (�; �) = 8>><>>: ��� ; 1� � � 1��� if � � �,� 1� � j 1�k ; �� ;� if � < �.For n � 1 and if possible (that is, while �n�1 6= 0), one denotes:(�n; �n) = Tn(�; �);and de�nes: (an; "n) =8>><>>:�j 1�n�1 k ; 0� if �n�1 � �n�1,�j 1�n�1 k ; 1� if �n�1 < �n�1.The sequen
e (an; "n)n�1 is 
alled the 
ontinued fra
tion expansion of (�; �)(noti
e that an 2 N� and "n 2 f0; 1g). This sequen
e is in�nite i� 1, � and �are linearly independent over QLet us give a matri
ial point of view on this algorithm. For a 2 N� , one de�nesthe substitutions:�(a;0) : 1! a timesz }| {11 � � � 1 32! 13! 2 ; �(a;1) : 1! a timesz }| {11 � � �1 22! 33! 1 ;whose in
ident matri
es are:A(a;0) = 0�a 1 00 0 11 0 01A ; A(a;1) = 0�a 0 11 0 00 1 01A :So that, with (�0; �0) = (�; �) and �k = max(�k�1; �k�1), one has for n � 1:�ntA(an;"n)0� 1�n�n1A = 0� 1�n�1�n�11A :We 
an give an expanded formulation of the previous equality:



8Proposition 5. Let 1, � and � be linearly independent over Q and let (an; "n) bethe 
ontinued fra
tion expansion of (�; �). Then there exists a sequen
e (�n; �n)of 
ouples in [0; 1)2 su
h that:8n 2 N; 0� 1��1A = (�1�2 � � � �n)tA(a1;"1)tA(a2;"2) � � � tA(an;"n)0� 1�n�n1A :4 Substitutions and bidimensional Sturmian sequen
esThe previous se
tions have su

essively de�ned the bidimensional Sturmian se-quen
es (or, equivalently, the Sturmian stepped planes), substitutions a
ting onthese sequen
es and a bidimensional 
ontinued fra
tion expansion. We thus arenow in a position to try to extend in the bidimensional 
ase the results for (uni-dimensional) Sturmian sequen
es given in the introdu
tion. Our results are �rstgiven in terms of stepped plane, and are them summed up in terms of bidimen-sional Sturmian sequen
es at the end of the se
tion.Let us �rst de�ne a generalized substitution whi
h plays a spe
i�
 role:De�nition 6. The generalized substitution asso
iated to the unimodular sub-stitution of Pisot type �(a;") introdu
ed in Se
tion 3 is denoted �(a;"). Su
h ageneralized substitution is said of Brun type.We then have the following fundamental theorem (proved in Appendix):Theorem 1. �(an;"n) is a bije
tion from S�n;�n onto S�n�1;�n�1 .We shall stress that there is no 
ontradi
tion between Theorem 1 and theresults re
alled at the end of Se
tion 2, whi
h would yield here that �(an;"n) isa one-to-one map from the stepped plane asso
iated to its 
ontra
ting invariantplane to itself. Indeed, neither P�n;�n nor P�n�1;�n�1 are invariant planes of�(an;"n) (ex
ept if the expansion (an; "n) is purely periodi
 of period 1, in whi
h
ase all these planes are identi
al).As we did in Proposition 5, we 
an give an expanded formulation of Theorem 1:Theorem 2. Let S�;� be a Sturmian stepped plane and (an; "n) be the 
ontinuedfra
tion expansion of (�; �). Then there exists a sequen
e (S�n;�n) of Sturmianstepped planes su
h that:8n 2 N; S�;� = �(a1;"1) Æ�(a2;"2) Æ � � � Æ�(an;"n) (S�n;�n) :We thus obtain for S�;� an equation - 
alled expansion - whi
h looks like the
lassi
 S-adi
 expansion of a Sturmian sequen
e (see e.g. [13℄ for more details onS-adi
ity), though the number of di�erent substitutions of our expansion maybe unbounded. We will �x this last point thanks to the following proposition:



9Proposition 6. Let us de�ne the substitutions:�0 : 1! 12! 23! 13 ; 
0 : 1! 32! 13! 2 ; �1 : 1! 12! 123! 3 ; 
1 : 1! 22! 33! 1 :These substitutions are unimodular and verify:8(a; ") 2 N � f0; 1g; �(a;") = �a" Æ 
":An indu
tion easily proves Proposition 6. Let �" and �" be the generalizedsubstitutions asso
iated to �" and 
". A 
omputation yields ��Æ�0 = ��0 Æ �� ,and Proposition 6 allows us to rewrite Theorem 2 in the following way:Theorem 3. Let S�;� be a Sturmian stepped plane and (an; "n) be the 
ontinuedfra
tion expansion of (�; �). Then there exists a sequen
e (S�n;�n) of Sturmianstepped planes su
h that:8n 2 N; S�;� = �"1 Æ�a1"1 Æ �"2 Æ�a2"2 Æ � � � Æ �"n Æ�an"n (S�n;�n) ;where �" and �" are asso
iated to the substitutions de�ned in Proposition 6.We now 
onsider the 
ase of periodi
 expansions. Let us re
all that a sequen
e(un) is eventually periodi
 with period p and preperiod d if n > d ) un+p = un.If moreover d = 0, the sequen
e is said purely periodi
. In this 
ase, one has:Theorem 4. Let S�;� be a Sturmian stepped plane and (an; "n) be the 
ontinuedfra
tion expansion of (�; �). If this expansion is eventually periodi
, then thereexist two generalized substitutions �d and �p, and a stepped plane Sp su
h that:S�;� = �d(Sp); with Sp = �p(Sp):And if the expansion is purely periodi
, one has simply:S�;� = �p(S�;�):Proof. It follows easily from Theorem 2 with:�d = �(a1;"1) Æ�(a2;"2) Æ � � � Æ�(ad;"d);�p = �(ad+1;"d+1) Æ�(ad+2;"d+2) Æ � � � Æ�(ad+p;"d+p);Sp = S�d;�d ;where p is the period of the expansion of (�; �) and d its preperiod. utA

ording to the terminology used in the introdu
tion, Theorem 3 and 4state that a bidimensional Sturmian sequen
e U�;� has always a S-adi
 expan-sion, and is substitutive (resp. a �xed-point of a substitution) if the expansionof (�; �) is eventually periodi
 (resp. purely periodi
). Noti
e that, 
ontrary tothe unidimensional 
ase, we do not yet obtain a 
omplete 
hara
terization ofbidimensional Sturmian sequen
es that are substitutive or �xed-point of a sub-stitution. We will dis
uss this more 
arefully in the last se
tion.



105 E�e
tive generation of stepped planesIt is to noti
e that su

essive appli
ations of generalized substitutions on a �niteinitial pat
h do not ne
essarily 
over, to in�nity, the whole stepped plane butonly an in�nite subset of it (think for example about a non simply-
onne
tedsubset or a 
one . . . ). Su
h a problem, that we investigate in this se
tion, 
anhowever be of great pra
ti
al interest, for example to e�e
tively generate stan-dard arithmeti
 plane in dis
rete geometry.The following lemma, proved in Appendix, deals with the �almost� expansiv-ity of a generalized substitution of Pisot type:Lemma 1. Let � be a unimodular substitution � of Pisot type (all the notationsare those of Se
tion 2). Then there exist k 2 [0; 1) and C 2 R+ su
h that:8<: (x; i�) 2 S�;�(y; j�) 2 ��(x; i�)jjyjj � C ) jjxjj � kjjyjj:It provides us a 
ase in whi
h one we 
an generate the whole stepped plane:Theorem 5. Let S�;� be a substitutive stepped plane, that is, a stepped planesu
h that there exist two generalized substitutions �d and �p verifying:S�;� = �d(Sp); with Sp = �p(Sp):If �p is of Pisot type and bije
tive on Sp, then there exists a �nite pat
h P ofSp su
h that: S�;� = �d� limn!+1�np (P )� :Proof. Let C and k be the 
onstants of Lemma 1 for the substitution �p andlet P be the pat
h formed by the fa
es (x; i�) of Sp su
h that jjxjj � C.Let (y; j�) be a fa
e of Sp. Consider the sequen
e (ym; j�m)m�1 su
h that (y1; j�1 ) =(y; j�) and �p(ym+1; j�m+1) = (ym; j�m). This sequen
e is well de�ned sin
e �p isbije
tive. While jjymjj � C, Lemma 1 yields jjym+1jj � kjjymjj, with k < 1.Hen
e for m large enough, one has jjymjj � C, that is, (ym; j�m) 2 P and�mp (ym; j�m) = (y; j�). utIn parti
ular, by Theorem 1 and 4, the previous theorem holds if (�; �) hasan eventually periodi
 expansion of period p and preperiod d, under the hy-pothesis that �p = �(ad+1;"d+1) Æ�(ad+2;"d+2) Æ � � � Æ�(ad+p;"d+p) is of Pisot type(what 
an be false sin
e for example �(1;1) Æ�(1;0) is not of Pisot type). Propo-sition 6 
an be used in pra
ti
e to iterate on P only four di�erent generalizedsubstitutions, whatever �p may be.Example 2. Let (�; �) have the purely periodi
 expansion [(1; 1); (1; 0); (1; 0)℄�(of period 3). One 
omputes A(1;0)A(1;0)A(1;1) = M2� , where � is the Rauzysubstitution introdu
ed in Se
tion 2. Thus �p = �(1;1) Æ�(1;0) Æ�(1;0) is of Pisottype and S�;� , �xed-point of �p, 
an be generated applying �p to a �nite pat
h.



11Noti
e that it is easy to see in the previous example that �p and �� have thesame invariant plane, and thus both generate, starting from P , pat
hes of thesame stepped plane. But we shall stress that Theorem 1 yields the bije
tivityof �p as produ
t of substitutions of Brun type (see De�nition 6). TheRauzy substitution - or any substitution with the same in
iden
e matrix M� -might do not be bije
tive (more pre
isely not onto) on S�;� . We 
an 
ertainly
laim that su
h a substitution generates arbitrarily large pat
hes of S�;� , but notne
essarily the whole plane to in�nity. In fa
t, expli
it examples of substitutionsof Pisot type whi
h do not 
over the whole plane are known (though the Rauzysubstitution is not one of them).6 Perspe
tivesThis paper has de�ned the bidimensional Sturmian sequen
es (or, equivalently,the Sturmian stepped planes), on whi
h a
t the generalized substitutions in-trodu
ed in [3℄. We have proved that every bidimensional Sturmian sequen
e isS-adi
 (a

ording to the terminology of [13℄), what extends to the bidimensional
ase the analogous result already known for unidimensional Sturmian sequen
es.Similarly, the su�
ient 
ondition (on eventually or purely periodi
 
ontinuedfra
tion expansions), for unidimensional Sturmian sequen
es to be substitutiveor �xed-point of a substitution, has been here extended to an analogous 
ondi-tion (on Brun's expansions), for bidimensional Sturmian sequen
es. However, wedid not prove that our 
ondition is also ne
essary, though it holds in the unidi-mensional 
ase. A way to �x that, 
ould be to extend the notion of return word- introdu
ed in [7℄ and used to prove the unidimensional 
ase - to some suitablebidimensional analogous notion of �return pattern�. Su
h a bidimensional exten-sion of return word have already been done in [10℄. We hen
e have good hopes to
omplete our 
hara
terization of substitutive bidimensional Sturmian sequen
es.As noti
ed in the introdu
tion, we fo
used on the homogenous 
ase, that isthe analogous of the unidimensional Sturmian sequen
es with inter
ept equalsto zero (that is, S�;� with � = 0, a

ording to the notation of the introdu
tion).Indeed, instead of the plane P�;� of De�nition 1, we should 
onsider the general
ase of a plane P�;�;� = t(0; 0; �) + P�;�. In the unidimensional 
ase, takinginto a

ount an inter
ept � just leads to additional 
onditions that are, roughlyspeaking, 
onditions on the Ostrowski expansion of � similarly to the 
onditionson the 
ontinued fra
tion expansion of � (see [4℄). It remains to give and provesome similar 
onditions on the inter
ept in the bidimensional 
ase.Last, we 
ould 
arry out some improvements to the more pra
ti
al results ofSe
tion 5. Indeed, starting from a �nite initial pat
h to iterate a substitution is
ertainly more 
onvenient than starting from the whole plane. But it is not soeasy to 
ompute this �nite pat
h. Could not the unit 
ube U , whi
h is provedto be a pat
h of any stepped plane, su�
es to generate the whole plane, as it



12is the 
ase for the Rauzy substitution? Some 
ounter-examples prove that theanswer is in general negative, but it would be interesting to 
hara
terize the�good� 
ases. Similarly, 
onditions to have the substitution �p of Theorem 5 ofPisot type (and thus, suitable to generate the plane) would be interesting.A
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13AppendixProof of Theorem 1 results of the three following lemmas:Lemma 2. �(an;"n) maps a fa
e of S�n;�n to fa
es of S�n�1;�n�1.Proof. Let (x; i�) be a fa
e of S�n;�n . By de�nition:hx; t(1; �n; �n)i > 0 and hx � ei; t(1; �n; �n)i � 0:A fa
e (y; j�) of the image �(an;"n)(x; i�) 
an be written:y = A�1(an;"n)(x+ f(s)); with �(an;"n)(j) = p� i� s:It su�
es to prove that (y; j�) belongs to S�n�1;�n�1 , that is:hy; t(1; �n�1; �n�1)i > 0 and hy � ej ; t(1; �n�1; �n�1)i � 0:One has:hy; t(1; �n�1; �n�1)i = hA�1(an;"n)(x+ f(s)); t(1; �n�1; �n�1)i= hx+ f(s); tA�1(an;"n)t(1; �n�1; �n�1)i= hx+ f(s); �nt(1; �n; �n)i= �n hx; t(1; �n; �n)i| {z }>0 +�n hf(s); t(1; �n; �n)i| {z }�0 sin
e f(s);�n;�n�0So hy; t(1; �n�1; �n�1)i > 0. Similarly:hy � ej ; t(1; �n�1; �n�1)i = hA�1(an;"n)(x+ f(s))� ej ; t(1; �n�1; �n�1)i= hx+ f(s)�A(an;"n)ej ; tA�1(an;"n)t(1; �n�1; �n�1)i= �nhx + f(s)�A(an;"n)ej ; t(1; �n; �n)iBut it holds, by de�nition of the in
iden
e matrix and of f :A(an;"n)ej = f(�(an;"n)(j)) = f(p) + ei + f(s) � ei + f(s);from what follows hy � ej ; t(1; �n�1; �n�1)i � 0. utLemma 3. �(an;"n) is one-to-one from S�n;�n to S�n�1;�n�1.Proof. Let (x; i�) and (x0; i0�) be two fa
es of S�n;�n and suppose that there is afa
e (y; j�) both in �(an;"n)(x; i�) and �(an;"n)((x0; i0�). By Lemma 2, we alreadyknow that (y; j�) lies in S�n�1;�n�1 . One 
an write y in two ways:y = A�1(an;"n)(x + f(s)) = A�1(an;"n)(x0 + f(s0));where �(an;"n)(j) = p� i� s = p0� i0� s0. We thus have x+ f(s) = x0 + f(s0).If x = x0, sin
e s and s0 are both su�xes of the word �(an;"n)(j), it yields s = s0,



14then i = i0 and hen
e (x; i�) = (x0; i0�).If x 6= x0, s and s0 are su�xes of di�erent lengths of �(an;"n)(j). Suppose forexample that s0 is shorter: one 
an write s = v� i0� s0: x+ f(s) = x0+ f(s0) yieldsx + f(v) + f(i0) = x0, that is, x0 � ei0 � x sin
e f(i0) = ei0 and f(v) � 0. Thenhx0 � ei0 ; t(1; �n; �n)i � hx; t(1; �n; �n)i > 0, what 
ontradi
ts that (x0; i0�) is afa
e of S�n;�n . So (x; i�) = (x0; i0�) and the proof is 
ompleted. utLemma 4. �(an;"n) is onto from S�n;�n on S�n�1;�n�1 .Proof. Let (y; j�) be a fa
e of S�n�1;�n�1 . We sear
h for a fa
e (x; i�) of S�n;�nsu
h that (y; j�) 2 �(an;"n)(x; i�), that is, we sear
h for x and a word s su
hthat: 8>>>><>>>>:�(an;"n)(j) = p� i� s;y = A�1(an;"n)(x+ f(s))hx; t(1; �n; �n)i > 0 and hx � ei; t(1; �n; �n)i � 0:Let us write x = A(an;"n)y � f(s) = A(an;"n)y � (A(an;"n)ej � f(p) � ei). A
omputation similar to those e�e
tued in the proof of Lemma 2 easily yields:hx; t(1; �n; �n)i = u+ rjpj and hx� ei; t(1; �n; �n)i = u+ tjpj;where: u = 1�n hy; t(1; �n�1; �n�1)i;rjpj = hf(p) + ei; t(1; �n; �n)i � 1�n hej ; t(1; �n�1; �n�1)i;tjpj = rjpj � hei; t(1; �n; �n)i:Hen
e it su�
es to prove that one 
an 
hoose the pre�x p of �(an;"n)(j) su
hthat u+ tjpj � 0 < u+ rjpj (that is, su
h that (x; i�) 2 S�n;�n).Let us assume that "n = 0 (the 
ase "n = 1 is similar). Then (y; j�) 2S�n�1;�n�1 implies 0 < u � 1�n�1 hej ; t(1; �n�1; �n�1)i, and by De�nition 5:an = � 1�n�1 � ; �n = �n�1�n�1 ; �n = 1�n�1 � � 1�n�1� and �n = �n�1:If j = 2, �(an;0)(2) = 1 for
es i = 1 and p = s = � (the empty word).One then 
omputes r0 = he1; t(1; �n; �n)i � 1�n�1 he2; t(1; �n�1; �n�1)i = 0 andt0 = r0 � he1; t(1; �n; �n)i = �1. Sin
e 0 < u � 1�n�1 he2; t(1; �n�1; �n�1)i = 1,one has u + t0 = 0 < u + r0 and thus (y; 2�) = �(an;0)(x; 1�), with (x; 1�) =(A(an;0)y; 1�) 2 S�n;�n .The 
ase j = 3 is similar. �(an;0)(3) = 2 for
es i = 2 and p = s = �. Onethen 
omputes r0 = �n � �n�1�n�1 = 0 and t0 = ��n. Sin
e 0 < u � �n�1�n�1 = �n,



15one has u + t0 = 0 < u + r0 and thus (y; 3�) = �(an;0)(x; 2�), with (x; 2�) =(A(an;0)y; 2�) 2 S�n;�n .The 
ase j = 1 is slightly more di�
ult sin
e p 
an be 
hoosen among thean + 1 words 1k, k = 0 : : : an, that are pre�xes of �(an;0)(1). One has to provethat there exists k 2 0; 1; : : : ; an su
h that u + tk � 0 < u + rk . One easily
omputes: rk = tk + 1 = tk+1; for k = 0 : : : an � 1;ran = 0 and tan = � 1�n�1�� 1�n�1 2 (�1; 0℄;t0 = � 1�n�1 :Moreover, one has 0 < u � 1�n�1 . Hen
e ~k = maxfk � an j u + tk � 0g is wellde�ned (indeed ~k = j 1�n�1 � uk) and veri�es u + r~k > 0. Sin
e jpj = ~k impliess = 1an�~k3, that is, f(s) = (an� ~k)e1+ e3, one has (y; 1�) = �(an;0)(x; l�), withx = A(an;0)y � f(s) 2 S�n;�n and l = 1 if ~k < an, l = 3 otherwise. utProof of Lemma 1. One 
an write:(y; j�) = (M�1� (x+ f(s)); j�); with �(j) = p� i� s:Roughly speaking, sin
e (y; i�) is in S�;� , y is not far from the 
ontra
tinginvariant plane P�;� of M�, and sin
e x is almost equal to M�y, jjxjj resultmainly of the 
ontra
tion of jjyjj by M� .Let us write it neatly. Let u denote t(1; �; �), the left eigenve
tor of M� for itsdominant eigenvalue, and let � < 1 be the 
onstant of Proposition 4. One has:x = M�y � f(s)= M� (hy; uiu+ (y � hy; uiu))� f(s)= hy; uiM�u+M�(y � hy; uiu)� f(s):We then use that y�hy; uiu belongs to P�;� , plane on whi
hM� is �-
ontra
ting,that 0 < jhy; uij � max(1; �; �) sin
e (y; i�) 2 S�;� , and that jjf(s)jj � f� :=jjf(�(1)) + f(�(2)) + f(�(3))jj:jjxjj � jjhy; uiM�ujj+ �jjy � hy; uiujj+ f�� jjhy; uiM�ujj+ �jjyjj+ �jjhy; uiujj+ f�� max(1; �; �)(jjM�ujj+ �jjujj) + f�| {z }B +�jjyjj:Sin
e B depends only on �, for any k su
h that � < k < 1 and for C = Bk�� 2 R+ ,it holds: jjyjj � C ) jjxjj � kjjyjj. ut


