UNIVERSTITE ' ,
RBON\X .' socrorae GALILEE
S N()RD Université Sorbonne Paris Nord

UNIVERSITE Par1s XIIT — SORBONNE Par1is NORD
Ecole do&orale Sciences, Technologies, Santé GALILEE

VERS UNE THEORIE GENERALE DES
APPROXIMATIONS DANS LES LANGAGES DE
PROGRAMMATION

THESE DE DOCTORAT
présentée par

Aloys DUFOUR
Laboratoire d’Informatique de Paris-Nord (LIPN)

pour l'obtention du grade de
DOCTEUR EN INFORMATIQUE

soutenue le 15 décembre 2025 devant le jury d'examen constitué de :

MIMRAM Samuel  Fcole Polytechnique Examinateur
GUERRIERI Giulio Université de Sussex Rapporteur
MaNzoNETTO Giulio Université Paris-Cité Rapporteur
FacGian Claudia  CNRS, Université Paris-Cité Examinatrice
KERJEAN Marie CNRS, USPN Examinatrice

Mazza Damiano CNRS, USPN Direéteur de these






TABLE DES MATIERES

Introduction iii
Liste de publications ix
1 Préliminaires I
.1 Lambda-calcul . .. ... ... ... I
12 Logiquelinéaire . . ... ..... ... ... ... ... . ... 4
2 Sur les syStemes d’approximations 7
20 Exemples .. ... oL 7
2.1 Approximationsde BOEHM . . ... ... 7
2.1.2  Approximationsde TAYLOR . . . ... ........ 8

2.2 Généralisation . . . ... ... .. .. ..
2.2.1  Formalisme bicatégorique . .. ... ......... 9
2.2.2  Formalisme bisimulation . . . ... ... ....... 14
3 Sur un calcul de processus 19
30 Introduction . .. ... ... ... 19
32 SyStemederédution . ... ... o oL 20
3.3 Processus . . .. ... 23
3.4 Approximations . . ... ... ... oo 30
3.41  Approximationsde TAYLOR . . .. ... ....... 30

i



TABLE DES MATIERES

3.4.2  Approximations de BOHM et théoréeme de commu-
tation . ... .. e e e e e e e
3.4.3  Tirer en arriére le théoreme de commutation

4 Sur des applications

41 Logiquelinéaire . ... ... ... ... ... .. ... . ...
4.L.1 Preuves comme Processus

412 Typesintersection

42 Call-by-push-value . . .. ... ... ... ... .. ...
4.3 Logiqueclassique . .......... .. ... .. ... ...,
4.4 Calculsconcurrents . . ... .. .. ... .. .. ... ...

Conclusion

Bibliographie

i



INTRODUCTION

Motivations

73E A-CALCUL EST UNE PIERRE ANGULAIRE de 'informatique théorique,
9 plus précisément de la calculabilité, de la théorie des langages de pro-
grammation dits fonctionnels et de la logique. Sa §tructure intrinseque re-
pose seulement sur la notion de fonétion et de substitution. Cette simplici-
té permet de le décliner en de nombreuses variantes se prétant a analyse ou

la modélisation d’autant de systemes. Il a permis une formalisation des sys-
temes de types, et cest par ce biais qu'est arrivée la correspondance de CURRY-
HowaRrD entre les preuves en logique mathématique, et les programmes en
informatique.

Etat de lart

Durant ces dernieres décennies, I'idée qu’un langage de programmation
puisse étre approximé par le biais de du A-calcul linéaire et multilinéaire a vu
son nombre d’applications augmenter. L'origine, sans doute I'exemple le plus
connu, de cette idée eét le développement de TAYLOR du A-calcul non-typé
via le A-calcul a ressources, introduit par [27, 29]. Ce fut le point de départ
d’une longue série de résultats comme en sémantique [13], A-calcul pur [s]
ainsi qu'en calculabilité probabiliste [30, 49].

Une autre source importante d’applications provient du lien entre approxi-
mations et théorie des types intersection, pour la premiere fois décrite par DE
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INTRODUCTION

CARVALHO pour le cas non-idempotent [14], et étendu par la suite par Maz-
zZA et al. pour couvrir le cas idempotent [42]. De cette maniere, I'idée de DE
CarvaLHoO d'utiliser les types intersection pour inférer des bornes exactes sur
le temps d’exécution de programme [13] peut étre étendu dans des contextes
plus larges, permettant I’étude de 'utilisation mémoire [2, 4, 3], 'analyse de
programmes concurrents [17], ou encore allant jusqu’a prouver le théoreme
de Cooxk-LEVIN en utilisant des sy§temes de types [39].

Sujet de la these

Dans [38] il e§t proposé une approche axiomatique aux syStemes d’approxi-
mations de langages de programmation. L’idée et la suivante : une relation
d’approximation ¢ C M entre un programme approximant¢ et un programme
M devrait induire une «adjonction » entre calculs et approximations de cal-
culs, pour tout programme ) et approximation u,

M s’évalueen N tel que u & N

ssi
il existe t C M tel que ¢ s’évalue en u
ou, diagrammatiquement,
U t —— u
r ~ M
M — N M

oules flechent représentent’évaluation des programmes. L’intuition voudrait
que si I'on considere les approximations comme des morceaux d’information,
etquelonlit¢ © M comme « M contient 'information ¢ », une relation d’ap-
proximation assure qu’un programme M s’évalue en quelque chose contenant
le morceau d’information w si et seulement si une approximation de M s’éva-
lue en u lui-méme. On pourra remarquer une analogie avec la continuité au
sens topologique.

Le formalisme axiomatique encapsule toutes les inStances d’approxima-
tion de programmes connues jusqu’é maintenant, et permet d’en considérer
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INTRODUCTION

bien d’autres. Il subsiste cependant une question importante bien qu’infor-
melle : d'ozt viennent les approximations ?

Le point de départ de cette these et I'idée que, dans le contexte des lan-
gages de programmation, les approximations ont une origine géométrique.
Plus précisément, une relation d’approximation ¢ © M devrait provenir de
l'exi§tence d’une sorte de morphisme €tale de t 2 M. La notion de morphisme
étale e$t bien connue dans différents contexte géométriques (variétés différen-
tielles, schémas, topoi...) comme reformulation adaptée de la notion d’homéo-
morphisme local de la topologie.

Les intuitions ci-dessus résultent des observations que l'ont fait en regar-
dant les approximations de programmes : dans toutes les notions d’approxi-
mations, ¢ © M et vrai précisément lorsque la construction syntaxique ¢ s’en-
voie sur une conétruction syntaxique similaire de M, respectant la §tructure
syntaxique proche et, de plus, pour chaque construction syntaxique de 17, il
peut y avoir plusieurs constructions correspondantes a ¢. Ce qui semble indi-
qué que ¢ est un «espace étalé » au-dessus de M.

Il e§t 4 noter que, pour que le point de vue ci-dessus ait du sens, les pro-
grammes approximant et approximés doivent vivre dans le méme monde, dans
le cas contraire on ne pourrait pas parler de morphismes entre eux. Cela peut
d’ailleurs étre surprenant au premier abord : prenons l'exemple primordial
d’EHRHARD et REGNIER des développements de TAYLOR [27, 29], les ap-
proximations sont des A\-termes 2 ressources et les programmes approximés
sont des A\-termes, et vivent donc dans deux mondes calculatoires avec des sé-
mantiques opérationnelles bien distinctes. Cependant, comme montré dans
le A-calcul afhine infinitaire [41], il et possible de voir un programme usuel
M comme un programme infinitaire de la méme nature qu’un programme
approximant ¢, de sorte qu’il n’y a pas d’inconsi§tance dans le fait de prendre
approximant et approximés vivant dans le méme monde ; utiliser différent
langages de programmation reléve davantage de commodité que de nécessité
conceptuelle.
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Contributions

Premierement, nous avons introduit un calcul, Proc, avec une syntaxe suf-
fisamment riche pour exprimer des relations d’approximations en son sein.

Deuxiemement, nous avons développé les notions d’approximations de
BoHM et de TAYLOR pour Proc jusqu’a atteindre le théoréeme de commuta-
tion entre les deux, pour la premiere fois énoncé par EHRHARD et REGNIER [27].

Troisiemement, suivant'intuition géométrique, nous avons introduit puis
utilisé une notion de plongement afin de « tirer en arriere » a la fois ces no-
tions d’approximations, mais également ce théoreme central.

Quatriémement, nous donnons des plongements de différents calculs dans

Proc :

* le N-calcul, pour call-by-push-value,
* le calcul des piles pour la logique classique,
* le 7-calcul polyadique asynchrone,

afin d’appliquer notre formalisme et de déduire quelles sont les différentes
notions d’approximations associées, et de constater qu’elles coincident avec
les notions déja connues [27, 29, 44].

Plan de la these

Dans cette these sont présentés des résultats sur une version du théoreme
de commutation BOHM-TAYLOR appliqués a un systeme calculatoire forgé
pour l'occasion, Proc, plus général, ainsi que la définition de plongements
entre des calculs connus dans Proc permettant de retrouver ce théoreme dans
des cadres connus.

Cette these et organisée de la maniere suivante :

* Le chapitre 1 : introduit quelques définitions, rappels et notations sur
les concepts logiques de base utilisés dans cette these. A savoir le A\-calcul
ainsi que la logique linéaire qui sont les points de départs.

* Le chapitre 2 : présente les deux sy§temes d'approximations en A-calcul,
de BOHM et de TAYLOR, et esquisse une présentation axiomatique de ce
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INTRODUCTION

qui conétitue un sy§teme d’approximation en A-calcul.

* Le chapitre 3 : introduit la notion de plongement d’un calcul dans un
autre, et présente le calcul de processus Proc, inspiré du r-calcul et de
la logique linéaire différentielle. Nous utilisons cette notion de plonge-
ment pour établir les résultats généraux sur le théoreme de commuta-
tion.

* Le chapitre 4 : utilise les résultats du chapitre précédent pour les appli-
quer a différents calculs — logique linéaire et types intersections, call-by-
push-value, logique classique et une certaine variante de calcul de proces-
sus — pour retrouver les versions du théoréeme de commutation connus
dans ces calculs.

—_—_—mm e O e
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CHAPITRE 1
PRELIMINAIRES

5jOUS COMMENGONS ICI par donner quelques définitions & résultats clas-
TN siques en lambda-calcul —introduit dans les années 1930 par CHURCH—
ainsi gu'en logique linéaire —introduite en 1987 par GIRARD [32 ]— qui sont
a la base de nos travaux, et plus généralement de notre domaine d’étude.

.1 Lambda-calcul

La problématique de savoir quelle fonction et calculable fut centrale dans
les mathématiques du début du XIXe siecle. Elle seét vue obtenir au moins
trois réponses largement connues et étudiées encore aujourd’hui : le A-calcul
de CHURCH, les fon&ions p-récursives de GODEL, et les machines de TURING.
Ces trois formalismes sont les trois piliers fondateurs de I'informatique théo-
rique et sont équivalents. Celaaamené laformulation de [’bypothése de CHURCH
de la part de KLEENE : tout formalisme permettant une calculabilité effec-
tive, physique, eét au plus aussi expressive que 'un des trois piliers précédents.
Cette hypothese vérifiée jusqu’a présent, méme avec des systemes calculatoires
quantiques plus subtiles que I'élettronique classique [35].

Le principe du A-calcul eét le suivant : tout « A-terme » peut-étre vu comme
une fonétion, et formalise ’habitude mathématico-calculatoire de faire du

« chercher-remplacer » —pour utiliser un vocabulaire d’informatique pratique—

de variables ou de termes dans d’autres termes.



I — PRELIMINAIRES

Soit V un ensemble infini dénombrable utilisé pour les variables.

DEFINITION r.1. — Lensemble A des \-termes sur V, st défini par la gram-
matre grammarire I.1I.

v variable

M =
| M(N) application
|

WM  abstraltion

GRAMMAIRE 1.1 : A-calcul pur.

CONVENTION 1.2. — Afin dalléger la notation de nos \-termes, introduisons
quelgues conventions babituelles :

1. les applications s associent a gauche, et sont prioritaires sur les abstractions,
par exemple MNP signifie (MN)P ;

2. les abstraltions penvent sécrire en séquences, par exemple Avy.M signifie
Az \y.M, on encore si T = (x;)1<i<n, NT.M signifie Azy. ... \x,. M.

NOTATIONS 1.3. — Soit M € A,

* fn(()M) désigne les variables libres, o nom libres du \-terme M, définir
selon les cas

—sizeV,fn((x)={z};
—si M,N €A, fn(O)MN) =fn((O)M)Ufn(()N);
—sizeVetMeN, fin() . M) ="f(()M)— {x}.

* Lensemble des \-termes clos (sans variable libre), dits combinateurs, es?
A? = {M € A, fn(()M) = 2.

* Les variables non-libres sont dites liées, et sont susceptibles d’étre renom-
mées. Puisque y et lié dans \y.M € A, on peut remplacer y en =z :
Az.M{y/z}, on M{y/z} désigne la subStitution de toutes les occurrences
de y dans M par =. Le renommage de variables lices constitue une relation
d’équivalence sur les \-termes, I’a-équivalence, ou encore a-conversion,
par laquelle on identifiera les \-termes, et \ désignera par la suite ['en-
semble des \-termes a a-équivalence pres.

2



1.1§ LAMBDA-CALCUL

DEFINITION 1.4. — La f-réduction, notée — g, et définie comment la cloture
contextuelle de la régle
(Az.M)N — M{N/xz}

onr M{N/x} désigne la substitution simultanée dans M de toutes les occurrences
libres de © par N (usant de ['a-conversion dans M pour éviter la capture de
variables libres de N )

NoTATIONS L5 (De réécriture). — Pour toute relation, notamment —5C A x
A, nous introduisons

* —} désigne une suite de n € N relations ;

* —% la cloture transitive de —g (suite finie d’un nombre arbitraire de

réductions);

* = la B-conversion, qui est la cloture symétrique de —7,.

REMARQUE 1.6. — La S-réduction induit une certaine dynamique dans le
A-calcul, correSpondant en apparence a de simples suites de substitutions, mais
suffisant a Uinclure dans les modeles de calcul les plus expressifs. Les proprietes
de cette dynamique sont bien connues :

* confluence (CHURCH-ROSSER)

* exiStence d’une forme normale pour les réductions qui terminent (pour
M € A notée nfs(M));

* la forme normale de téte de M € A et notée hnfz(M).

EXEMPLES 1.7. — Les M-termes représentants a la fois des programmes, des fonc-
tions et des calculs a effetuer, sans compter le developpement bistorique et la
culture du domaine de recherche engendré, certains se voient attribuer des no-
tations Standards.

* [ = \u.x, identité, le neutre pour la composition ;

* K = \ay.y, la projetion sur la deuxiéme variable, combinateur histo-
rigue SKR, encode le booléen faux ;

* T = \vy.x, projection sur la premiére variable, encode le booléen vrai ;
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* A = \z.zx, opérateur qui prend une entrée pour lappliquer a elle-méme,
on 'on se rend combinatoirement compte que l'évolution de la taille des
termes est une question non-triviale ;

* Q= AA, le terme le plus simple se réduisant a lui-méme ;

Y = Af.(\z.f(zz)) Az f(zx)), combinatenr de point fixe de TURING ;

© = (Mfza(ffz)(Aza(ffz)), lautre combinatenr de point fixe.

12 Logique linéaire

Introduite par [32] et développée par la suite principalement par I'école
frangaise, italienne, et anglaise de logique, la logigue linéaire et une raffine-
mentde lalogique intuitionniste permettant notamment un suivi fin du nombre
d’utilisations des formules.

On pourra se référer a [32] et [33] pour des références historiques, [43]
pour la présentation catégorique, et [36].

DEFINITION 1.8 (Formules de LL). — Les formules de la logiques linéaires sont
construites avec les atomes (variables) et les unités (des connecleurs), a laide des
connelteurs, modalités et quantificateurs :

* un atome St une variable propositionnelle (i.e. du second ordre) o ou son
dual o, plus généralement, c’eSt un prédicat atomique oty ... t,) ou
son dual o(ty, ... t,) on les t; sont des termes du premier ordre ;

* les connecteurs multiplicatifs sont ® (‘tenseur, oz conjonction multipli-
cative) et son dual 3 (par, ou disjon&tion multiplicative); les unités cor-
reSpondantes sont 1 er L ;

* les connelteurs additifs sont & (‘avec, ou conjontion additive), et son
dual ® (plus, ou disjonction additive); les unites correspondantes sont T
et 0y

* les modalités exponentielles sont ! (bien-stir) er son dual ? (pourquoi-

pas);



1.2 § LOGIQUE LINEAIRE

* les quantificateurs sont V' et son dual 3, sappliquant a des variables du
premier ou second ordre

Si A eStun atome, A+ est son dual, en particulier A+ = A. Lanégation linéaire
est étendue a routes les formules par les lois de DE MORGAN.
L’implication linéaire es? définie par A — B := A+ ¥ B.

DEFINITION 1.9 (Séquents de LL). — Les séquents sont de la forme T on T
est une suite de formule (A;)1<i<n, avec n € N. En pratique, on identifie b T et
T, et [on écrit T+ pour (A)i<i<n, de méme pour les modalites exponentielles,
de plus, si A e5t une autre suite de formules, T = A et synonyme a + '+, A.
Un séquent et prouvable lorsqu’il peut étre dérivé en utilisant les régles sui-
vantes :

FTABA id  FAT FALA
_——— 1 cu
FT.B, A A -4 A T, A
AT FBA - A, B,T 1 - T
® oeRT -1 -+
FA®B,T,A FA®B,T =1,T
FAT EBT ~AT ~BI T
FA&B,T FAeBT ' rFAeBrD > FTT
- AT b FAT L RIAPAT Fr
1A, T F7A,T F7AT F7A,T
FAT | FAR/gT
- VEA T F3EAT

REMARQUES 1.10. —
* La régle d’échange est la seule régle Structurelle.

* Les régles des modalités exponentielles sappellent respetivement, la pro-
motion, la déréliction, [z contra&ion er [’affaiblissement.

* Dans la régle v, & ne doit pas avoir d’occurrence libre dansT.

* Dans la régle 3, T est un terme du premier ordre (5i & eSt une variable du
premier ordre) ou une formule (5i & eSt une variable du second ordre).

5



I — PRELIMINAIRES

* Par la régle d’échange, toute permutation de T' peur étre dérivée de T,
il et donc courant qu'en pratique les séquent sont considéres comme des
multi-ensembles finis, et la régle d’échange et implicite.

NoTaTIONS .11 ( Terminologie). —
* LL : Le fragment propositionnel complet de la Logique Linéaire.

* MLL : Le fragment multiplicatif de la logique linéaire (sans exponen-
tiels)

* MALL : Les fragments additifs et multiplicatifs de la logique linéaire
(sans exponentiels)

* MELL : Le fragments multiplicatif de la logique linéaire avec les expo-
nentiels.




CHAPITRE 2
SURLES SYSTEMES D’APPROXIMATIONS

o* UE CELA SOIT EN ANALYSE OU EN LANGAGES DE PROGRAMMATION,
les approximations permettent un autre point de vue sur les objets et
établissement de propriétés. On pensera aux approximations de fonctions
continues par des polyndmes via la formule de TaAyLOR que lon croise des
nos jeunes années d’études. Il en va de méme en sémantique, aussi bien qua-
litative que quantitative, comme nos deux exemples en A-calcul le montrent :
les approximations de BOEM et de TAYLOR. La troisieme section de se cha-
pitre introduit une notion axiomatique de ce qu’e& une approximation, ou
plutdt un systeme d’approximations, dans un langage de programmation.

2.1 Exemples

2.1.1  Approximations de BOuM

Les arbres de BOHM [7, 9] et leurs variantes sont un élément essentiel de
la sémantique du A-calcul. Intuitivement, il s’agit de formes normales éven-
tuellement infinies représentant l'essence du comportement d’un A-terme. En
tant que tel, ils peuvent étre considérés comme les limites d’un ensemble d’ap-
proximations finies, appelées approximations de B6Ha1, décrivant des parties
de plus en plus grandes de I'arbre de BOHM.

Il et intéressant de noter que les arbres de BOrM habituels, ainsi que les

7



2 — SUR LES SYSTEMES D’APPROXIMATIONS

arbres de BOHM appel-par-valeur, peuvent également étre considérés comme
résultant d’'une notion générale d’« arbre de BOHM » pour la logique linéaire,
ramenée le long des codages appel-par-nom et appel-par-valeur de GIRARD.
Il e§t naturel de se demander si les différentes formes du théoreme de commu-
tation sont également des « tirés-en-arriere » d’un théoréme de commutation
plus général.

2.1.2. Approximations de TAYLOR

Plus récemment, EHRHARD et REGNIER ont introduit une autre notion
d’approximation pour le A-calcul, qui sous-tend leur expansion de TayLor [27,
29]. Basée sur I'idée que les programmes peuvent étre considérés comme des
fonctions analytiques sur certains espaces vectoriels topologiques [24, 23], cette
notion peut étre allégée en oubliant ses aspects quantitatifs (les coefficients
de la série de TAYLOR) et, comme un arbre de BOHM, étre présentée comme
un ensemble dapproximations finies. Ces approximations de T4YLOR sont
syntaxiquement tres différentes des approximations de BOHM : ce ne sont
pas nécessairement des formes normales, et elles sont linéaires, au sens de la
logique linéaire [32] (elles sont apparentées aux termes avec multiplicités de
BoupoL [10]), de sorte que leur durée d’exécution eét limitée par leur taille.

Etant donné un \-terme ¢, puisqu’une approximation de BOHM eét, essen-
tiellement, aussi un A-terme, il e§t possible de prendre I'ensemble de toutes les
approximations de TAYLOR de toutes les approximations de BouM de ¢, ce
qui donne un ensemble 7(BT(t)). D’autre part, comme les approximations
de TAYLOR se normalisent toujours, il e§t possible de prendre I'ensemble de
toutes les formes normales de toutes les approximations de TAYLOR de ¢, ce
qui donne un ensemble NF(7(¢)). Un résultat clé ’EHRHARD et REGNIER,
connu sous le nom de théoréme de commutation, tipule que T(BT(t)) =
NF(T(t)). Ce lien entre les approximations de BOHM et de TAYLOR et un
outil éconnamment puissant, qui implique une multitude de théoremes fon-
damentaux dans le A-calcul pur [6].

La théorie des approximations de TAYLOR a été étendue a l'appel-par-valeur [22],
au call-by-push-value [15] et au Au-calcul [5]. Dans le cadre de 'appel par va-
leur, o1 une notion d’arbre de BOHM eét disponible, on sait que le théoreme

8



2.2.§ GENERALISATION

de commutation sapplique [44]. Ces résultats exploitent le fait qu'en réalité,
la notion d’expansion de TAYLOR exiéte dans le cadre beaucoup plus général
de la logique linéaire différentielle [20]. De maniere informelle, chaque fois
qu’un systeme S peut étre codé en logique linéaire différentielle, une notion

approximation de our eut étre “tirée-en-arriere” le long du
d’app tion de TAYLOR pour S peut étre “t ”le long d
codage.

2.2 Généralisation

2.2.1 Formalisme bicatégorique

DEFINITION 2.1. — Une double catégorie posetale esf un objet en catégorie
dans Pos, la catégorie des ensembles partiellement ordonnés avec applications
croissantes.

REMARQUE 2.2. — La donnée d’une telle catégorie, © consiste en :

(i) un ensemble ordonné (Do, <o) dont les éléments sont appelés les objets,
(i) un ensemble ordonné (D,<,) de fléches entre les objets, dont la compo-
sition dénotée par -, et Striffement associative et a des éléments neutres

Strictes id,, tels que

csifia—d,g:b=betf<iqg alorsa<obeta <o,
* sia <o b, alorsid, < idy,
*sif:a—=bg:b—c flid =V, d:V—=detf<if,q<4, alors
g-f<ig-f.
Une telle catégorie a deux opposées : une opposée verticale, D, dans laquelle

lordre des ensembles ordonnés D, et D, est inversé, ainsi qu’une opposée hori-
zontale, ©°°, dans laquelle la diretion des fléches et inversée.

DEFINITION 2.3. — Un fonlteur entre doubles catégories posetales F : © — D
est une paire (Fy : Do — D, Fy : D1 — D)) dapplications croissantes satisfai-
sants les conditions de fonclorialités habituelles er attendues :

(l) si f ta— b, 4107'5 Fl(f) : F()(a) — Fo(b),

(i) Fi(g- f) = Filg) - (f) et Fi(ids) = idp,(a-

9



2 — SUR LES SYSTEMES D’APPROXIMATIONS

REMARQUE 2.4. — Notons DBPOS la catégorie des doubles catégories posetales
muni de ses fonlleurs, elle hérite des produits de Pos.

DEFINITION 2.5. — Une transformation naturelle 0 entre deux tels foncteurs
F,G : € — D de doubles catégories posetales est une famille de fléches (,)ace,
avec ,a : Fa — Ga, Va,d' € €y, a <o a' = 0, <1 o, et qui est de plus naturel
au sens usuel du terme.

REMARQUE 2.6. — Soient deux fonlteurs F,G : € — D, on notera G < F
lorsque Fa <o Ga pour tout a € & et Ff < Gf pour tout f € €.

Une double catégorie poserale ® st dite completement dirigé lorsque (Do, <o
) et (D1, <) sont des DCPOs.

DEFINITION 2.7. — Soit (D, <) un ordre partiel,

* un sous-ensemble A C D eSt dirigé lorsquil est non-vide et Vx,y € A,
dze A,z <zety <z

* (D, <) est completement dirigé (DCPO) lorsque tous les sous-ensembles
dirigés de D ont un supremum dans D, noté \| A,

* 5i (D, <) est un DCPO et qu’il a un élément minimum L € D, alors c’est
un ordre partiel complet (CPO).

REMARQUE2.8. — Toute double catégorie posetale ne peut étre completee, mais
un critére d'existence de la complétion et donné.

LEMME 2.9. — Une double catégorie posetale est completable si

Vb<pa, Vp:b—=lV, Ip:a—d, p<ip,

Vrie—d, p<yr, Jq:d —a), idy<iq, q-p<uir,
(et doncp <, p-q<i7)

REMARQUE 2.10. — Ce qui peut se traduire par « les fléches horizontales sont
monotones », et, de plus, chaque fléche peut-étre « sur-approximee » d’une ma-
niere minimale.

La propriété devient particuliérement flagrante si l'on interpréte les objets
comme des programmes et les fléches comme des computations : si un programme
b effectue un calcul p, alors une sur-approximation a de b effectue une sur-
approximation p de p (car le calcul e5t monotone), qui est minimale dans le sens

10



2.2.§ GENERALISATION

on n’importe quelle sur-approximation de p partant d’une sur-approximation
b « plus grosse » que a et en fait une sur-approximation d’une extension de p.

Une double catégorie posetale complétable © admet une completion idéale
D, qui est complétement dirigée, et il y a un plongement pleinement fidele
y: D — .

EXEMPLE 2.11. — Dans REL,

SETED

DEFINITION 2.12. — Un sy$§teme d’approximations es? un foncteur entre doubles
catégories posetales
Apx : A X L =D

on D eSt la sous-carégorie de REL introduite tantdt, L une petite catégorie, A
petite et complétable, et telles que la condition suivante soit satisfaite. Soit un
fonlteur T : L°P — REL tel que

* sur les objets,
T(M) = {t € Ao | Apx(t, M) = 1},

* sur les fleches,
T(M L5 NY = {(u,t) € T(N) x T(M) | 3t s u.Apx(a, f) = idy }.
REMARQUE 2.13. — On peut veérifier que T est en effet un fontenr. Pour que

Apx soit un systéme dapproximations, il eSt nécessaire que :

(i) YM € Lo, Llensemble T(M) eSt dirigé (en tant que sous-ensemble ordonné
de Ay),

(i) Vf : M — N, la relation T(f) C T(N) x T(M) 5t entiére, ¢ eSt-a-dire que
Vu € T(N), 3t € T(M) tel que (u,t) € T(f).

DEFINITION 2.14. — Un morphisme de systémes d approximations de Apx, :
A X L1 — D a Apx, : AP x Lo — D est donné par deux fonlleurs F : Ay — A,

11
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G : L1 — Ly tels que

Apx,

/\

Aio X El A D

FxG Ago % £2 2

on < est Lordre entre les fonctenrs introduit tantot.

REMARQUE 2.15 (Programmes en tant que suprema de leurs approximations).
— Etant donné un syStéme dapproximations, on peut définir le tiré en arriere

g0 —— 1

|

ACOX£A—>©
px

on 1 et la catégorie a un objet, et 1 le foncteur envoyant son seul objet sur {x} de
D. 1l &St aisé de voir que £ eSt en fait une sous-catégorie de A x L. Ainsi, € est

une sous-catégorie de Ax L°P. En composant linclusion avec les deux projections,
on obtient ainsi un Span

&
N
A ECO

Par la seconde condition de la définition de systeme dapproximations, p, a la
propriété de relévement suivante : dés que lon a f - M — py(u) dans L, il existe
g : € — e dans € tel que ps(g) = [ (notons que le (=) renverse Lordre, pas le

sens des morphismes, donc il ne fait aucune différence que l'on considere f dans
L on L),

12
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REMARQUE 2.16. — On peut maintenant considérer l'extension de KAN

C 2 4 [eo

lm
A

Y

Lanpz (yp1)

~

A

qui doit étre calculee en respectant lovdre entre les foncleurs, pas les transforma-
tions naturelles (en terme double-catégoriques : ici sont considérées les transfor-
mations naturelles verticales, pas les horizontales, dans le contexte posetal, elles
sont dégénérées en ordre précédent). Le fait que A e complétement dirigée de-
vrait étre suffisant pour garantir l'exiStence de ce type d'extension de KaN, a
vérifier.

Observons de plus que cette construction donne un foncteur de site £L°, non pas
L. La signification de cela n’est pas claire. Habituellement, L et une catégorie,
donc L = L, mais en général, il y a une difference et il serait interessant de
voir pourquoi l'ordre a besoin d étre renverse.

REMARQUE 2.17. — 8i R: A® x L — © dans REL, les 2-cellules non-triviales
de © étant

_—— O
_—— O

l |

Comprendre un fonlteur C*° — D et une sous-catégorie qui et horizonta-
lement un sous-graphe (sous-catégorie méme) de C*, close vers le bas, (i.e.) si
AecSetB< Aalors BeS onS et ladite sous-catégorie. Si f : A — B e S et
fliA B eS8, avec A <A B <Betf <f,alors f 8.

SitC M, ¢ Ct, M <M, alorst' © M, et pareil pour les fleches.
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R:L — D = A, les objets sont les doubles fonlleurs entre A et D,
les morphismes entre F et G, horizontalement ce sont juste les transformations
naturelles habituelles, mais qui représentent des relations. Verticalement, n, c'est
des ordres, donc ce sont des inclusions n, - Ft C Gt.

2.2.2. Formalisme bisimulation

LTS et simulations

DEFINITION 2.18. — Un sy$teme libellé de transitions (LTS) est un quadru-
plet (S,i,2,—), on S et un ensemble d’états, i l'eérat initial du sySteme, £ un
ensemble de labels, et —C S x £ x S lensemble des transitions libellées.

Pour simplifier, on note évidemment (s,a,s') € & s - 5.

DEFINITION 2.19. — Une bisimulation entre deux LTS qui ont le méme en-
semble de labels £, (S,i, £, —) et (S',i',.L, "), eSf une relation B C S x S
telle que : (i,i') € B etV(s,s') € B,

c s t=3,s s tet(tt)eB,

s —t'=3t, s " tet(tt) e B.

REMARQUE 2.20. — La bisimilarité et plus forte que le fait d étre doublement
similaire.

Bisimulations et \-calcul

PROPOSITION 2.21. — La bisimilarité applicative coincide avec [équivalence
contextuelle : M ~.,, N < VC, (C[M] normalise < C[N| normalise).

REMARQUE 2.22. — Dans lappel par nom, solvable signifie normalisation de
téte, ou de méme, arbre de BOHM modulo expansion infinie.

DEFINITION 2.23. — Une bisimulation hnf est une relation B C A x A telle
que l'on ait lun des denx :

* ni M ni N n'ont de hnf,
o M =3 AZ.yM, ... M, et
N = AZyN; ... N, et

Vi, (M;, N;) € B.

14
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EXEMPLE 2.24. — z(y) — (Az.22){y) — (A\z.zz)(])
xy = (Az.22)y = (Azzz)l — 1T — - --.

REMARQUE 2.25. — Woir dans la thése de MoRrRIs, M -+ M, si et seulement
si Mo bnf, C[M] —* Mo, et M ~), M’ si et seulement si VC, C[M] une bnf si et
seulement si C|M'] a une hnf.

Avec le lemme : si ~ du systéme ci-dessus, M ~ M’ < M ~;, M.

Digression : applications ouvertes de JoyaL

DEFINITION 2.26. — Soit C une catégorie supposée pré-topos de HEYTING avec
un objer d’entiers naturels (le minimum pour interpréter la logique intuition-
niste du premier ordre et larithmétique).

Une classe S 5t dite classe d applications ouvertes de C lorsquelle satisfait les
axiomes suivants :

1. Tout isomorphisme appartient a S, et S &St close par composition.
2. (Stabilité) Dans n’importe quel carré cartésien
Y —— Y
|
X —— X
si f €S8, alors g aussi.

3. (Descente) Dans n’importe quel carré cartésien comme précédemment, si
g € S et p St épi, alors f € S.

4. Les morphismes 0 — 1, et 1+ 1 — 1 sont dans S.

5. (Sommes)SiY — X etY' — X' sont dans S, il en va de méme pour leur
sommeY +Y' — X 4+ X'

6. (Quatients) pour n’importe quel diagramme commutatif

Z —2 Y

N

IS
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sipestépiet ge S, alors f € S.

7. (Axiome de collection) Pour toute pairep:Y —» X et f: X — Aonp
estépi et | € S, il exiSte un carré quasi-cartésien de la forme

A s Y P v X
s s
B h s A

on h estépier g€ S.
(Un tel diagramme e5t quasi-cartésien lorsque le morphisme évident Z —s B x 4 X

est un épimorphisme.)
EXEMPLE 2.27. — Les application continues entre espaces ropologiques (?).

PROPOSITION 2.28. — Les proto-fibrations dans CAT forment une classe d ap-
plications onvertes.

Prenve. Notons .# la classe des proto-fibrations dans CAT.

1. Iso C . clair. Stabilité par composition :

51 Vel
P
& R e —
q
& qgopler) L b
Ok.
2.
Ve’ g —1¢ g(e) €--mn=Tmmmnmnn v
r
Pl
g(e") «+—— BB pogle) = foqle).
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g —— &
|
B —2 % B fle) «2— b

W, 6" e B, fle)=pl'),b=p).

Si3e’ € & telle que e eft sa projection, alors par proto-fibration g, on
releve, et on pousse par &' — &, et puisque le carré e§t commutatif, le
codomaine de la fleche obtenue eét bien e.

. 0 =@ et1 = e et une proto-fibration triviale.
1111 — 1 aussi, puisqu’il n’y a que I'identité a relever.

. Soientp,p’ € F
ENE Ve

lpﬂp’

BB

immédiat car IT dans CAT « union disjointe ».

E—Lr &

N

p étant épic, g proto-fibration, immédiat, méme si p e§t seulement essen-
tiellement surjectif et plein.

[]

7
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CHAPITRE 3
SUR UN CALCUL DE PROCESSUS

3.1 Introduction

'OBJECTIF PRINCIPAL DE CE CHAPITRE ef§t de montrer que les diffé-
) rentes formes du théoréeme de commutation sont des « tirés-en-arriere »

d’un théoréme de commutation plus général. Nous introduisons 2 cet effet
un calcul de processus correspondant a une forme de logique linéaire diffé-
rentielle, puis définissons des approximations de BOHM et de TAYLOR pour
ce calcul et prouvons le théoréme de commutation a ce niveau de générali-
té. Nous montrons également que, des qu’un sy$teme S se plonge dans Proc
de maniere suffisamment intéressante, les arbres de BOHM, le développement
de TAYLOR et le théoréme de commutation se « tirent-en-arri¢re » automa-
tiquement a S. Les théoremes de commutation connus de [27, 29, 44] sont
couverts par ces résultats et sont présentés dans le chapitre 4, de méme pour
les types intersections.

En termes de réseaux de preuves, le calcul Proc e§t une représentation du
calcul de processus de Structures de preuves non-typées (i.e. , pas nécessaire-
ment des objets logiquement correéts) de lalogique linéaire différentielle, plus
précisément, d’une version non-polarisée des structures de preuve de Hon-
DA et de LAURENT [34]. La setion 4.1.1 donne davantage de détails sur le
lien avec les preuves de la logique linéaire. Les regles de réduction de Proc re-
fletent le calcul des processus usuel et sont moins fines que celles des réseaux

9
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différentiels habituels [28, 48, 45], tout en étant sémantiquement correctes.
Il est 2 noter que Proc n'eét pas canonique : toute autre syntaxe pour la lo-
gique linéaire différentielle classique (par exemple, une extension de la syntaxe
d’AccartToui [1]) fonétionnerait probablement. Cependant, approche via
le calcul Proc fournit une syntaxe maniable.

Une autre différence et que nous ne considérons pas les sommes formelles.
Dans la littérature sur les A-calculs différentiels, les sommes formelles sont
utilisées pour représenter le non-déterminisme : un choix non-déterministe
comme t — uy €t ¢ — up et exprimé par la réduction déterministe ¢ — uy + uo.
Comme il e§t d’usage dans les calculs de processus, il n’y a pas de sommes
formelles dans Proc, et le non-déterminisme n’est pas controlé (le calcul n’est
pas confluent). En outre, ces approximations de TAYLOR sont rigides au sens
de [49, 42]. Intuitivement, cela et implicite dans la regle de communication
habituelle des calculs de processus polyadiques, qui est quelque chose comme

a<b1,b2> | a(Cl,CQ).P — P{b1/61}{b2/02}

(ct. définition 3.17, regle ® /7). Les syntaxes non-rigides comme celles habituel-
lement considérées pour définir les approximations de TAYLOR correspon-
draient a by, b, non-ordonnés dans la sortie @by, by) (1, ils forment un multi-
ensemble plutot qu’une liste) et la réduction ci-dessus deviendrait :

alby,bo) | aler, ca).P — P{by/ci}Hba/ea} + P{bafci}{b1 /ca},

cest-a-dire que nous considérons chaque ordre possible du multi-ensemble
et utilisons des sommes formelles pour rassembler tous les résultats. L'utilisa-
tion de la rigidité et 'abandon des sommes permettent d’importantes simpli-
fications syntaxiques sans aucune perte sémantique. Nous nous restreignons
ici en omettant les aspects quantitatifs (les coefficients de la série de TAYLOR).
Cette simplification fait d’autant plus sens que dans un grand nombre de cas
(par exemple ceux de [6]), ceux-ci ne sont pas nécessaires.

3.2 Systéme de réduction

En premier lieu, il convient d’introduire quelques points rapides de voca-
bulaire tirés des systemes de réduction utilisés en théorie de la réécriture [47].

20



3.2 § SYSTEME DE REDUCTION

DEFINITION 3.1 (ARS). — Un sy§teme de réduction abétrait A e un couple
formé d’un ensemble A et d’un ensemble de relations binaires —;, indexées par
un ensemble I, A= (A, {—; |ieI}).

Pour i € 1, les relations —; sont appelées rédultions ou relations de réécriture.

REMARQUE 3.2. — La définition dARS coincide a celle d’un systéme de tran-
sitions étiqueté (LTS) [46], mais pour faire de la réécriture plutor que des bisi-
mulations.

REMARQUE 3.3 (Calculs et bureaucratie). — Nowus aimerions maintenant deé-

[finir une notion dapproximation dans les calculs simples tels que le \-calcul
et certaines de ses variations, et donc dans les logiques associées. Classiquement,
une définition proche de celle de syStéme de réduction avec seulement un rype de
fléche, comme pour la B-réduction, pourrait suffire. Pour des raisons techniques
d’encodages dans le chapitre 4, nous introduisons cependant une distinction
entre fleche/réduction calculatoire et fleche/réduction administrative. Les re-
ductions administratives sont celles que « 'on doit faire », mais qui ne donnent
pas beaucoup d’information du calcul en cours, telles que lapplication de régles
Structurelles en calcul des séquents.

DEFINITION 3.4 (Sy§teme d’approximation). — Uz sy§teme d’approximation
est un ARS (A, {—,, —q, tic1jes) 0t

* lesfléches sont étiquetées par les c; sont dites calculatoires, et celle étiguetées
par les a; sont dite administrative ;

* une réduction ou un chemin et une suite de fléches ;

* une réduction est dite calculatoire si elle contient au moins une fléche
calculatoire.

DEFINITION 3.5 (Plongement). — Urn morphisme entre deux systemes d ap-
proximation et la donnée d’une application entre les fléches des graphes sous-
Jjacents telle que :

* les fléches sont envoyées sur des chemins,
* les fleches calculatoires sont envoyées sur des chemins calculatoires.

Soient S et T deux systemes dapproximation, un plongement f entre S et T
est un morphisme entre ces deux systémes et qui refléte les fleches calculatoires :
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Vs € S, f(s) =" t calculatoire impligue 3s' € S, ' —* f(s') et s —* 5’ calcula-
toire. Diagmmmatiquement :

S § e
|
T fls) —— 1 - FE(s).

REMARQUE 3.6 (Catégorique). — Lintuition issue de la théorie des catégories
et ici trés présente. En effet, les syStemes de réduction sont moralement vus
comme des catégories, les éléments de [ARS comme les objets, les morphismes
comme des foncleurs et les plongements comme des fibrations ou plutdr des skew-
proto-opfibrations. Plus précisement, le coté skew car il faut potentiellement
continuer la réduction avant de pouvoir faire le relévement, et le cté proto car
lunicité n'est pas assurée.

LEMME 3.7. — La composition de deux plongements est un plongement.

Prenve. Prenons deux p, et p; plongements qui se composent, diagrammati-

quement:
f
& S — s e
P2
4, /
f f!
& pa(er) —-------- tee o QL g
p3
4y / ,
f3 5« p3(f3)
& P30 paer) —— e ——---- » ey —— ps(ey)).

Les couleurs indiquent les étapes. Partons de la réduction f; supposée calcula-
toire, p; étant un plongement on en déduit f, calculatoire, en utilisant le fait
que p, eét un plongement on en déduit f; telle que voulue. []

REMARQUE 3.8. —

* 1l St possible de se demander « pourguoi pas un simple pré-ordre ou une
catégorie 2 » pour la définition de syStéme d approximation.
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Un probléme de la “catégorification” de cette notion est la suivante :

/

t >t
NS

en effet, dans ce genre de cas, le plongement aurait a choisir un des chemins
de réduction possible et la proprieté deviendrait fausse pour [autre dans
tous les cas. Quant aux pré-ordres, ce sont également des catégories.

* Il &St également possible de trouver deux termes tels que l'on peut passer

de l'un a lautre soit via une réduction calculatoirve, soit via une réduction
adminiStrative. En anticipant les notations le calcul des processus ci-aprés
(section 3.3) :

velz(a). P O velz(a).P

!

dans le cas on ['étape calculatoire se passe dans une boite que 'on va ou-

blier.

3.3 Processus

Fixons deux ensembles disjoints, infinis et dénombrables de noms linéaires,

désignés par a,b,c, ... et de noms cartésiens, désignés par z,y, z,... Comme il
e§t d’usage dans les calculs de processus, nous désignons par @ des suites (éven-
tuellement vides) de noms linéaires, et nous écrivons |a| pour la longueur de

a.

DEFINITION 3.9 (Pré-processus). — Les pré-processus sont définis par la gram-
maire 3.1.
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PQ == 0 prenve vide
| P|Q  mix
| a<b  axiome
| a(E) tenseur n-air
| alby  parn-air

| @(x)P  contraction n-air

| a(x)P  cocontraction n-air

| vaP coupure exponentielle
| 7(a) déréliction

| z(a) codéréliction

| lz(a).P boite exponentielle

GRAMMAIRE 3.1 : Pré-processus

Les pré-processus linéaires sont ceux engendrés uniquement par la premiere
partie. Les lettres minusculesp, q, . .. seront utilisés pour désigner les pre-processus
linéaires.
REMARQUE 3.10. — Dans la littérature sur les calculs de processus, a < b est

généralement appelé transmetteur linéaire ; nous [appellerons axiome pour sou-
ligner le lien avec les réseanx de prenves.

DEFINITION 3.11 (Contexte). — Les contextes sont définis comme des preé-
processus, mais avec lajout d’un trou {—}. Comme d’habitude, nous ne consi-
dérons que les contextes ayant exallement une occurrence du trou, et nous les
désignons par C. Nous désignons par C{P} le pré-processus obtenu en insérant
le pré-processus P dans le trou de C.

DEFINITION 3.12 (Occurrence des noms). — Un nom linéaire a est dit appa-
raitre comme sujet dans

a), a), al@)P, a(@)P, a<b, b a
Toutes les autres occurvences de a apparaissent comme obijet.
Les notations vz, a(x) et a(x) sont appelées lieurs cartésiens : dans vaP,
a(x)P et a(x)P, le nom cartésien x €5t lie, et l'a-équivalence sappligue comme
d’habitude. Un nom cartésien qui n'est pas lié est libre.
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Si un nom cartésien x apparait ailleurs que dans un lienr, il est dit appa-
raitre comme sujet, et une telle occurrence est positive si elle et de la forme
z(a), on négative si elle est de la forme x(a) ou \z(a).P.

DEFINITION 3.13 (Processus). — Un processus (linéaire) est un pré-processus
(linéaire) qui verifie :

* Chague nom linéaire apparair an maximum deux fois. Sil napparair
qu’une fois, il est libre, sinon il et 1ié er ['a-équivalence sapplique ; fn(P)
désigne l'ensemble des noms libres de P, a la fois linéaires et cartésiens.

* Dansa(z)P (re$p. a(x)P) chague occurrence libre de x dans P (sily en a)
est positive (vesp. négative).

* Dans \z(a).P, f(P) = {a} U X on X & constitué uniquement de va-
riables cartésiennes ayant des occurrences positives dans P (le cas X = ()
est autorisé).

DEFINITION 3.14 (Congruence §tructurelle). — La congruence Structurelle est
la fermeture réflexive, symétrique, transitive et contextuelle des régles suivantes :

associativité (P| Q)| R=P|(Q|R)
commutativité P|Q=Q| P
neutre P|0=P
absorbant vx0=0
extrusion de portée P | Q= B(P | Q) B lie x ¢ fn(Q)
échange de lieurs [P = ~vpP B, lieurs cartésiens,
symétrie a <> b=0b<a
coupure a < b| P = P{a/b} b € fn(P).

LEMME 3.15. — Etre un processus et préservé par la congruence Structurelle.

Prenve. Les regles d’associativité, de commutativité, du neutre, d’échange de
lieurs et de symétrie préservent la syntaxe de pré-processus et n’alterent pas les
variables ni leur §tatut liées/libres, ni leur positivité.

La regle d’absorption élimine ou introduit des variables muettes liées a une
coupure exponentielle. La regle d'extrusion de portée préte attention a ne pas
capturer de variable.
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Pour la regle de la coupure, puisqu’il n’y a qu’une unique occurrence libre
de b dans P (car nom linéaire), et qui est substituée avec a dans P{a/b}, alors
la §tructure de processus est également préservée. []

REMARQUE 3.16 (sur une traduction). — Nowus avons le « dictionnaire » sui-
vant entre le vocabulaire des calculs de processus et celui des réseanx de preuves
de la logique linéaire différentielle :

Syntaxe | Calcul des processus Logique Linéaire
0 processus terminé prenve vide
P|Q | composition paralléle Juxtaposition de réseaux
a < b | transmetteur linéaire axiome

a(b) émission atomique linéaire | tenseur n-aire
a(b) réception atomique linéaire | noeud par n-aire

vaeP | reStriction de nom conpure exponentielle (*)
a(z)P | prefixe démission contraction n-aire (**)
a(z)P | préfixe de réception cocontraltion n-aire (**)

T(a) | émission atomique neend de dérélection

x(a) | réception atomique neend de codéréliction
lw(a).P | émission répliguée (serveur) | boite exponentielle (***)

(*): les « coupures linéaires » sont représentées comme expliqué dans la défini-
tion 3.18 ci-dessous ;

(**) : Larité est le nombre d’occurrences de x dans P ;

(***) : avec une porte principale x et autant de portes auxiliaires quil n’y a
d’occurrences de noms libres dans P.

Lidée et la suivante : les noms libres d’un processus corveSpondent aux
conclusions d’un résean non-type. La congruence Structurelle correspond a l'éga-
lité des réseaux (au sens des représentations graphiques), enrichie de ['élimi-
nation des conpures avec axiomes (ceci eSt cobérent avec les réseaux d’interac-

tion [28 ], dans lesquels les axiomes sont juste des fils).

DEFINITION 3.17 (Réduttion). — Les régles de base de la réduction sont les
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sutvantes :
a) [ a(e) | P —em P{b/c} [b] = |¢], ¢ € fn(P)
d@)P [a@)Q = va(P|Q)
ve(Tl(a) | ©(b) | P) —ecod, vrP{a/b} be fn(P)
ve(C{Z(a)} | lx(b).P) — ve(C{P{a/b}} | \z(b).P)
ve(lz(a).P| Q) —w  vzQ z & fni(Q)

plus la régle

va(ly(e)-C{z(a)} [ #(b) [ P) —eod, va(ly(c)vwl{m(a)} [ y(c) [ vz(C{z(a)} | 2(b)) | P)

dans laquelle w et = sont des nowveaux noms. Dans la régle w, © ¢ fn(Q)
signifie que x na pas d’occurrence positive libre dans Q.

Seule la régle — ) ST considérée comme calculatoire pour etablir le systeme
de réductions correspondant, les autres régles étant administratives.

DEFINITION 3.18 (Processus sans coupure). —

* Une coupure linéaire dans un processus est un nom linéaire apparaissant
deux fois comme sujet.

* Une coupure cartésienne est un sous-processus de la forme v P.

* Un processus est sans coupure s’il ne contient ni coupure linéaire ni cou-
pure cartésienne.

- Un processus P aune forme sans coupure si P —* N avec N sans coupure.

REMARQUE 3.19 (sur DIiLL). — Les régles de base de la définition 3.17 sont
une reformulation des étapes d élimination des coupures des réseanx de prenve

de la logique linéaire différentielle.

* Larégle ®/% et [étape multiplicative.

* La régle |/? réduit une coupure entre une contrallion et une cocontrac-
tion. Cependant, au lieu de la régle habituelle /7 qui fait commuter les
deux, cette régle crée une coupure cartésienne (qui pourrait également étre
appeler « coupure exponentielle » ).
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* Les coupures cartésiennes doivent étre considérées comme des zones de
communication ax sens d’EHRHARD et LAURENT [26]. Un nombre
quelconque de dérélictions et de codérélictions/boites (autant que les pre-
misses de la contraction et de la cocontraction a ['origine de la coupure)
peut étre apparié de maniére non-déterministe dans une coupure carte-
sienne, en utilisant les régles cody (déréliction/codéréliction), cod, (une
codéréliction interagissant avec le bord d’une boite) ou ¢ (une dereliction
extrayant une copie d une boite).

* La régle w efface une boite lorsqu’il n’y a plus de déréliction. Ici, les zones
de communication sont considérées comme primitives, plutdr que de les
implémenter comme dans [26].

La présentation babituelle de I'élimination des coupures de la logique linéaire
différentielle est basée sur des régles plus fines que celles-ci. Dans leur codage
des calculs de processus, EHRHARD et REGNIER utilisent cette granularité plus
fine pour mettre en ceuvre des « zones de communication » garantissant que les
entrées penvent interagir avec les sorties [26]. Cela signifie, qu’ici, cette formu-
lation esT sémantiquement corvelle par rapport a la formulation babituelle :
les regles de granularité plus fine peuvent simuler nos régles. Cependant, notre
Sformulation a lavantage de correspondre a la tradition des calculs de processus,
ainsi que de résoudre les problémes signalés dans [40]. Ces problémes sont pre-
cisément dus au fait que les régles habituelles d’élimination des coupures sont
trop fines pour exprimer la concurrence de la méme maniére que les calculs de
processus.

REMARQUE 3.20 (sur les calculs de processus). — Le calcul de processus Proc
présente quelques caraltéristiques inbabituelles par rapport aux calculs de pro-
cessus Standards. La plus inbabituelle st la présence de noms linéaires et la
convention selon laguelle un nom linéaire et li¢ des qu’il apparair deux fois.
Par exemple, le processus a() | a() | b{) serait usuellement écrit va(a() | a() | b()).
Cela conduirait a une prolifération de v, c’eSt pourquoi il est ici choisi de laisser
ces restrictions de noms implicites.

Une autre différence remarquable est que la réduction a Uintérieur des
boites eSt autorisée : si P — Q, alors \z(a).P — lx(a).Q. Ceci et utile pour
coder les \-calculs dont les réductions peuvent se produire dans des positions
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arbitraires. C'est essentiel pour récupérer, par exemple, les arbres de B6HM ha-
bituels. Dans la section 4.1.2 nous considerons les rédutions superficielles, gui
ne se produisent qu'a l'extérieur des boites et correspondent a la réduction Stan-
dard des calculs de processus. Cest la notion de réduction a laquelle les types
intersection sont le plus immédiatement applicables. Elle est également utile
pour coder les Stratégies de réduction faible des N\-calculs, qui ne se réduisent
pas sous les M.

REMARQUE 3.21 (sur les coupures). — Toutes les réductions de base impliquent
une coupure. Par conséguent, un processus sans coupure est normal en ce qui
concerne la réduction. Linverse et faux : par exemple, a() | a(b) et un pro-
cessus normal contenant une coupure avec une « incompatibilité darité ». Les
coupures auxquelles aucune réduction ne sapplique sont appelées irréductibles.
D autres exemples de coupures linéaires irréductibles sont des « conflits » tels que
a(b) | a(z)P ona(b) | a(c), ou des « cercles vicieux » tels que a < a. En logique
linéaire : le premier corvespond a une coupure entre un tensenr et une contrac-
tion; le second a une coupure entre deux tenseurs; le troisiéme a une coupure
entre les deux conclusions d’un axiome. Les coupures cartésiennes irréductibles
sont de la forme va(z(a) | P) (resp. va(z(a) | P))avec P ne contenant aucune
occurrence négative (vesp. positive) de x (en logique linéaire : la premiére cor-
respond a une coupure entre une déréliction et un affaiblissement, la seconde a
une coupure entre une codéréliction et un affaiblissement). Dans la section 4.1.1,
seront introduits les types et la correction. Les premiers eliminent les collisions
et les incompatibilités darite, les seconds les cercles vicieux. En revanche, des
coupures cartésiennes irréductibles peuvent étre présentes méme dans des proces-
sus correlts bien typés. Elles corveSpondent a des situations qui, dans la syntaxe
habituelle de la logique linéaire differentielle utilisant des sommes formelles, se
réduisent a la somme vide.

LEMME 3.22. — P —* Q impligue P{a/b} —* Q{a/b}.

Démonstration. Parinduction sur lalongueur dela réduétion, nous réduisons
au cas d’une étape unique C{R} — C{R'}, cela e§t prouvé par induction sur C
et par la définition 3.17. ]
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3.4 Approximations

3.4.1 Approximations de TAYLOR

DEFINITION 3.23 (Processus de TAYLOR). — Les processus de TAYLOR sont
des processus linéaires dans lesquels certaines entrées et sorties sont marquées
comme « Spéciales » et désignées par a((b) et a(b)).

La réduction est définie comme dans les processus linéaires, avec la régle /%
de la définition 3.17, mais elle et restreinte aux paires Spécial/Spécial et non-
Spécial/non-Spécial, c’est-a-dire que ab) | a(C) et irrédudtible méme dans le
cas on |b| = |2.

Le systeme de réduction ayant comme objets les processus de TaYLOR eSt désigné

par Tay.

REMARQUE 3.24 (Oublie). — Il existe un morphisme évident Tay — LinProc
qui oublie les annotations « Spéciales ». Il ne sagit pas d’'un plongement : a(()) |
a() est envoyé sur a() | a(), qui se réduit 4 0, mais le processus original ne peut
pas se réduire.

LEMME 3.25. — Dans les processus de TAYLOR, la réduction est fortement
confluente et se termine.

Démonstration. Les seules étapes de réduction sont du type ®/%, et elles ne
peuvent pas se superposer, d’ou la confluence forte.
Quantala terminaison, définissonsla taille I’'un processus de TAYLOR comme

étant le nombre d’axiomes et de sous-processus de la forme a(b), a(b), a(b)),
a((b) qui sont présents dans le processus. En regardant la définition 3.14 et la
regle ®/%, nous voyons que la taille e§t préservée par la congruence §tructu-
relle et quelle diminue §tri¢tement sous I'effet de la réduction, ce qui implique

la terminaison. []

DEFINITION 3.26 (Approximations de TAYLOR). — La relation d’approxi-
mation de TAYLOR &St définie par les régles de la figure 3.1. Elle utilise des
jugements d’approximation de la forme p C P+ =2 out :

* p &St un processus de TAYLOR et P un processus arbitraire ;
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0C 0k a(b) © a(b) +

pC PHZZ qqCQFYT;Y

a<b>|:a<b>|—; aHb[aHbl—;

pCPHZaC ;2 bCx

o = al = [
pleEPIQFETE,T p{a/b} CvePF E 2
CPHEDC x; 2 CPHEE DL
b ’ rd = b T g
a(b) |pCa(z)PHZEZ a{(b) | pC a(x)P =2
a#b a#b
abCZT(b) FalC x; a<>bCxb)FalC x
p C Play/a} = =q; pn C Pla,/a} F Zy;
D1 {ai/a} 1 p {an/a} Via; ¢ f(P)
p|pnCla(a)PFE,. ., Epyai Ca,...,a, Cx

Fic. 3.1 : Approximations de TAYLOR. La notation @ C = signifie a; C

z,...,a, C x (olin = 0eét possible).

* 2 er =/ sont des ensembles finis disjoints de paires de la forme o C z, ont
a et un nom linéaire n apparaissant pas librement dans P, et x un nom
cartésien, tel gue chaque nom linéaire apparait an plus une fois dans ZUZ'.

REMARQUE 3.27. — Lintuition et que o T x dans = (resp. Z') signifie que
le nom linéaire a approxime une occurrence positive (vesp. négative) du nom

cartésien x.

Dans la suite, nous écrirons p C P lorsqu 'un jugement de la formep C P+ =, =/

—_ =
=/

est dérivable pour certains =, 2.

LEMME 3.28. — Soit p C P, alors :

I P =Q{a/b} si et seulement sil exiSte ¢ T Q tel que p = q{a/b} ;

2. 5t P = C{Q} avec n(Q) = {a} U X et X eST composé de noms cartésiens
avec seulement des occurrences positives, alorsp =t | q | -+ | g, pour q; et
t tels que t = C{z(a)} deés que x € fn(C{Z(a)}), et ¢; T Q{a;/a} pour tout
1 <i<n, les a; étant deux a deux distints ;
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3. P =P (re$p. p = p/) impligue p = p' pour un certain p' (resp. P = P’
pour un certain P') tel que p' = P'.

Démonstration. Le point (1) e§t prouvé par induction sur P. Le point (2) eét
prouvé par induction sur C. Le point (3) e§t prouvé en vérifiant chaque regle
de congruence $truturelle (définition 3.14) et ensuite par induétion sur les
contextes. []

REMARQUE 3.29. — Le point (3) du lemme 3.28 assure que nous ponvons utili-
ser de maniére transparente la congruence Structurelle avec les approximations
de TAYLOR, ce que nous ferons a partir de maintenant.

Prouvons maintenant les deux propriétés fondamentales des approxima-
tions de TAYLOR, a savoir quelles peuvent étre tirées-en-arriere le long de ré-
ductions arbitraires et poussées-en-avant le long de réductions a des formes
sans coupure.

LEMME 3.30 (Tiré-en-arrie¢re). — Soit P —* Q et ¢ C Q, alors, il existe p C P
tel que p —* q. Diagrammatiquement :

P4>*Q P—>*Q
g U L
q p—¢

Démonstration. Commengons par prouver le lemme lorsque P = R, Q = R’
et R — R’ au moyen d’une des regles de réduction de base (définition 3.17).

* Les cas ®/% et !/? sont des applications du point (1) du lemme 3.28.

* Pour les cas cody, cody, c et w, on montre que ¢ C R’ implique ¢ C R, donc
le tiré-en-arriere est la réduction vide. Cette affirmation et directe pour
les regles codp, cod; et w; pour la regle ¢, le point (2) du lemme 3.28 eét
utilisé.

Ensuite, prouvons le lemme pour la réduction en une étape, ceét-a-dire

lorsque P = C{R}, Q = C{R'} et R — R’ alaide d’'une regle de base. Définis-
sons la profondenr du contexte C comme étant le nombre de boites imbriquées

al'intérieur desquelles se trouve le trou. La preuve se fait par induction sur la
profondeur de C.
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» Sila profondeur et nulle, alors C = vZ(S | {-}) pour un certain S, dott
I'on déduit ¢ = (s | 7)o ot s = S, 7' © R’ et o e§t une substitution.

* Appliquons le résultat que nous avons prouvé ci-dessus, et obtenons r

R tel que r —* ¢’ Ensuite, prenons p := (s | r)o, alors p C P et tel que,
enutilisantlelemme 3.22, p —* ¢ comme souhaité. Si C aune profondeur
de d + 1, alors C = vZ(S | z(a).C’) pour un processus S et un contexte C'
de profondeur d.
Nousobtenonsdoncg = (s | q | -~ | ¢u)oavecs C Setq; © C'{R'}a;/a}
pour tout 1 < i < n. Par hypothese et par le lemme 3.22, nous avons
C'{R}a;/a} — C'{R'}{a;/a}, appliquons donc 'hypothese d’induction
a chaque ¢; et obtenons p; © C'{R}{a;/a} tel que p; —* ¢;. Ensuite, en
posantp := (s | pi |-+ | p,)o, nous avons p C P tel que p —* ¢, et nous
concluons.

Enfin, prouvons la version générale du lemme par induction sur la lon-
gueur de la réduction P —* Q. L’énoncé eét vrai pour la longueur zéro car
P = Q. Pour une Iongueur de k + 1, nous avons P — P, —* Q avec P, —* Q
de longueur . Etant donné ¢ C O, Phypothese d’induction donne p, C P; tel
que p; —* ¢. Ensuite, appliquons a p; le cas prouvé ci-dessus en une étape et
nous obtenons le p C P souhaité, tel que p —* p; —* q. []

LEMME 3.31. — Soit p C P tel que p a une forme sans coupure et p — p' (vé-
dultion en une étape). 1l existe alors des réductions p' —* q et P — Q telles que
q C Q. Diagrammatiquement :

P P > Q)
L ==
p—— 7 p P Y g

Démonstration. La preuve se fait par induction sur la §tructure de P. Nous
n’incluons que les cas compliqués, c’est-a-dire lorsque P et une composition
parallele, une boite ou une reétriction.

* Si P = P | P, alors nous savons que p = p1 | p2 avec p; C P,. La ré-
duction peut étre effeCtuée dans 'un des p;, auquel cas il suffit dutiliser
I'hypothese d’induétion pour conclure, ou il peut sagir d’'une réduction
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entre une sortie dans, disons, p; et une entrée dans p,. Via la figure 3.1,

cela signifie que P eét de la forme a(b) | P/ ou a(z)P], et P, de la forme
duale, de sorte que P peut se réduire via une communication.

* Si P =lz(a).P,alorsp = pi |- | p, avec p; C P'{a;/a}. Létape p — p'
ne peut pas se produire a cause d’'une communication entre deux p; dis-
tincts.

Si ¢’était le cas, un nom libre b apparaitrait comme sujet d’entrée dans
certains p;. Or, il n'e§t pas possible que b = a;, car a; n'apparait dans
aucun autre p; avec j # i. Ainsi, puisque les boites ne peuvent pas avoir
de nom linéaire libre, b doit approximer un nom cartésien libre de 7/,
mais ce$t impossible car les noms cartésiens libres des boites ne peuvent
apparaitre qu'en tant que sorties, et les approximations des sorties sont
toujours des sorties, nous obtenons donc p; — p; pour un certain j, et
pr=pil-|p;l|pa

Comme les approximations n’introduisent pas de coupures, la coupure
réduite dans p; — p/; provient d’'une coupure de P'. Une telle coupure in-
duit une coupure dans chague p;, car ces coupures approximent toutes
P'. Mais p a une forme sans coupure, donc toutes ces coupures sont ré-
ductibles, donc p; — p} pour tout i.

L’hypothese d’induétion donne alors p, —* ¢; et P’ — Q) telsque ¢; C Q.
Cependant, comme cest la méme coupure de P’ qui eét réduite dans
chaque P" — @/, tous les @} sont en fait égaux a certains ', on obtient
donc comme souhaité !z(a).P —* w(a).Q" etqy | - | ¢, T '2(a).Q'.

* Si P =vaP,alorsp = p{a/b}avecp, C P eta,b approximent x comme
sortie et entrée, respectivement.

Silaréduction p — p' et déja présente dans py, cest-a-dire sip’ = p) {a/b}
avec p; — p}, Phypothese d’induction permet de conclure.

Sinon, la réduction est rendue possible par la substitution de a; 2 b; pour
un certain , cela signifie qu’il existe une occurrence de = en entrée corres-
pondant a une occurrence de = en sortie dans P;. De telles occurrences
sont uniquement déterminées par I'indice i et induisent une réduction
en une étape dans P.
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Plus précisément, nous avons P = vaC{R} et R —, R’ ol x et 'une de
cody, cod; ou c. A ce §tade, la preuve se divise en deux cas, selon la forme
de C.

— SiCest peu profond (c’eét-a-dire que le trou n’est pas sous une boite),
alors nous concluons directement.

— Dans le cas ou le trou eét sous une boite, nous utilisons le méme
argument que ci-dessus (pour le cas P = !z(a).P’) pour conclure
que I’étape p — p’ peut étre « complétée » en réduisant les autres
coupures dans p approximativement a la coupure correspondant a
R —, R/, cela donne le poussé-en-avant désiré. ]

LEMME 3.32 (Poussé-en-avant). — Soient p C P et p —* n tels que n soit sans
coupure, alors, il existe une réduction P —* Q telle que n C Q. Diagrammati-
quement :

P P—Q
L = LI L
p—n p——n

Démonstration. Prouvons le résultat suivant, qui e$t une généralisation du
lemme 3.31 aux réductions de longueur arbitraire : pour tout p C P avec p
ayant une forme sans coupure et pour tout p —* p/, il existe p) —* get P —=* Q
de sorte que ¢ C Q. Diagrammatiquement :

P P : 0
L] = U
p—— 1 P oy " g

Le lemme eét le cas particulier dans lequel p’ et sans coupure, cela implique
_ /
q=7Dr.
La preuve se fait par induction sur la longueur de la réduction p —* p'.
- Sila longueur eét nulle, alors p et elle-méme sans coupure et affirma-
tion e§t immédiate.
* Supposons que lalongueur eét k£ + 1. Cela signifie que p — p; —* p/, avec
—* dénotant une réduction en k étapes.
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Diagrammatiquement, la preuve peut étre représentée comme suit :

P > Q1 FQ
« 1 4> q H q

\/2>/

P1 *HU

ou (1) eét valable par le lemme 3.31, (2) par le lemme 3.25 (confluence forte) et

(3) par Phypothese d’induction. En effet,

* par le lemme 3.31, il exi$te des réductions p; —* ¢ et P —* Q telles que
¢ C Q1. Or, il e§t bien connu que, dans un sy$teme fortement confluent,
les deux cotés des diamants de confluence ont la méme longueur, c’est-a-
dire que sit —™ t' ett —" ¢”, il exifte u tel que ¢/ =" wett” =™ u.

+ Par conséquent, et par lemme 3.25, il exiéte ¢ tel que p’ —* ¢ et ¢ —* ¢'.

q p 3.25 q
Mais ¢, a toujours une forme sans coupure, car cest un réduit de p.
q ) purc, Z

L’hypothese d’induction permet alors de conclure. L]

REMARQUE 3.33. — Le lemme 3.32 et la raison pour laquelle les entréees er
sorties « $péciales » sont requises pour les dpproximﬂiom de TAYLOR. Si, par
exemple a(x) P était approximé para(b) | p plutét quea((b)) | p, alors la propriété
de poussé-en-avant ne serait pas vérifiée : par exemple, a(x) | a() ne peut pas se
réduire, mais serait approximé para() | a(), qui lui se réduit a 0. Ceci est lié au
Jait que lapplication doubli Tay — LinProc n'est pas un plongement, comme
déja signalé dans la remarque 3.24.

3.4.2  Approximations de BOHM et théoreme de commutation

DEFINITION 3.34. — Soient P et Q) deux processus de Proc, notons P <o Q
lorsque P &St obtenu a partir de Q en remplagant un nombre quelconque de ses
boites (i.e. de sous-processus de la forme x(a).R) par 0.

La relation d’approximation de BOHM entre deux processus est la suivante :
N < P si

* N est sans coupure,
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* il exite P' tel que P —* P’ et N <, P

REMARQUE 3.35. — Le définition 3.34 sapplique également aux processus de
TayLor. Cependant, dans ce cas, <, dégénére en égalité, car il n’y a pas de
boites dans les processus de TAYLOR. Ainsi n < p signifie simplement que n est
la forme sans coupure de p, tous les processus de TAYLOR n'en ayant pas.

LEMME 3.36. — Pour tout processus de TAYLOR sans coupure n, n C P si et
seulement s’il exiSte un processus sans coupure N tel que n = N <o P.

Démonstration. Formellement, les deux diretions se font par induétion sur
P, ici sont esquissés les points clefs.

Pour le sens direct, la seule fagon pour les approximations de TAYLOR
d’« oublier » des coupures est d'approximer une boite avec 0. Donc, sin C P
avec n sans coupure, soit P e§t déja sans coupure, et c’eét terminé, soit toutes
ses coupures sont a 'intérieur de boites approximées par 0 dans n. Par consé-
quent, il suffit de prendre N comme P dans lequel ces mémes boites sont rem-
placées par 0, et nous obtenons N sans coupure tel que n © N <, P.

La réciproque ne dépend méme pas de I'absence de coupure : nous avons
n C N et N et obtenu a partir de P en remplagant certaines boites par 0,
mais 0 e§t une approximation de TAYLOR de n’importe quelle boite, donc
n C P. L]

THEOREME 3.37 (de commutation BOHM-TAYLOR). — Les relations C< et
<C coincident.

Démonstration. La preuve se trouve dans le diagramme suivant :

P—5Q > N

oWy @

p——n = n
En effet, par définition n C< P et équivalent a la situation décrite dans la
partie rouge du diagramme, pour certains () et N sans coupure.

De méme, n <C P et équivalent a la situation décrite dans la partie verte
du diagramme, pour un certain p.
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Pour rouge implique vert, remarquons que les approximations de Tay-
LOR n’introduisent pas de coupures, donc N sans coupure implique n sans
coupure. Nous obtenons donc le carré (2) par le lemme 3.36, et le lemme 3.30
donne le carré (1).

Pour vert implique rouge, le carré (1) est donné par le lemme 3.32 et le carré
(2) par le lemme 3.36. ]

3.4.3 Tirer en arriere le théoreme de commutation

La conséquence la plus importante du théoreme 3.37 eét que, des qu’un
sySteme de réduction S peut étre encodé, plonge dans Proc, nous disposons
d’une notion d’approximations de BOrM et de TAYLOR pour S pour laquelle
le théoreme de commutation habituel sapplique.

Dans ce qui suit, nous fixons un sy§teme de réduction arbitraire S équipé
d’un plongement f : S — Proc, au sens technique de la définition 3.s.

DEFINITION 3.38 (Arbre de BOEM). — Soit s un objet de S, une approxima-
tion de BOHM de s est un processus sans coupure N tel gue s —* s' et N <q f(s').

L’arbre de BOBM de s, noté BT (s), st l'ensemble de toutes les approxima-
tions de BOHM de s.

REMARQUE 3.39. — Il aurait ¢t¢ possible de définir les approximations de
BOHA en demandant que f(s) —* f(s') et N <o f(s'). Le lemme 3.41 montre
que c st équivalent, car f est un plongement.

LEMME 3.40. — Pour tout processus P et processus sans coupure N, N <, P et
P —* P impligue N <, P'.

Démonstration. Puisque N eft sans coupure et que N ne differe de P que par
le fait que certaines boites de P sont remplacées par 0 dans N, alors toute cou-
pure de P eét a l'intérieur d’'une boite. Par conséquent, P’ ne differe de P qu’a
Pintérieur de certaines boites. En les remplagant par 0, on obtient a nouveau

N. []

LEMME 3.41. — Pour tout objet s de S, N 5t une approximation de BOHa de
s st et seulement si f(s) —* f(s) tel que N <o f(s').
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Démonstration. Diagrammatiquement :

S s —3 ¢

|

Proc f(s) — f(s') o= N.

Pour le sens direct : par définition, nous avons une réduction s —* s’ dans
S telle que N <, f(s'), donc il suffit de prendre la rédution f(s) —* f(s')
obtenue car f e§t un morphisme de sy§temes d’approximation (autres voca-
bulaires : par monotonicité, par fonctorialité).

Réciproquement, supposons que f(s) —* f(s'). Par définition de plonge-
ment, il exiSte s” tel que f(s') =" f(s”) et s =* §". Or, par le lemme 3.40,
N <o f(¢') implique N < f(s”), donc nous concluons. [

REMARQUE 3.42. — La terminologie « arbre de BOHM » et un abus de lan-
gage car, a proprement parler, BT(s) na rien d’un arbre. Cependant, dans
certains cas, il posséde les proprietés des arbres de BoHa. Tour dabord, il de-
coule immédiatement de la définition que s —* s’ impliqgue BT(s') C BT (s).

Dans le cas on S et confluent, c’est-a-dire si route paire de réductions de
la forme sy*« s —* s1 peut étre fermee par une paire de rédultions de la
forme si —* §'* so, alors Uimplication inverse sapplique également, ceSt la
proposition 3.43 suivante.

PROPOSITION 3.43. — Soit S confluent, alors s —* s' impligue BT(s) = BT(s').

Démonstration. 1l suttit de montrer que BT(s) C BT(s'). Soit N € BT(s). Par
définition, s —* s tels que N <o f(s1). Par confluence, il existe s” tel que
s’ —* s et s; —* ", donc la conclusion suit par lemme 3.40. [
REMARQUE 3.44. — En outre, lorsque S &5t confluent, BT (s) peut étre conside-
ré comme un processus sans coupure éventuellement infini, au sens on l'on prend
la conStruction \v(a).P de maniére coindultive dans le lemme 3.45 suivant.

LEMME 3.45. — Soit S confluent, alors BT (s) est soit vide, soit un idéal par
rapport a <.
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Démonstration. Lafermeture vers le bas est immédiate du fait de la définition
et de la transitivité de <. Il refte 2 prouver que Ny, N, € BT(s) implique qu’il
exifte N € BT(s) tel que Ny, N5 <o N.

Commencons par prouver que, étant donné un processus arbitraire P, le
poset {Q | Q <o P} ordonné par <, possede un suprema binaire.

Soit 7p la forét enracinée dont les noeuds sont les boites de P et telle qu’il
exiSte une aréte de R vers S si S e§t un sous-processus de R. Par définition, @ <
P si @ e$t obtenu en remplagant certaines boites de P par 0, de sorte que le po-
set {Q | Q <o P} et isomorphe au poset {7 | 7 e§t une forét enracinée de 7p}
ordonné par inclusion enracinée de foréts, et ce dernier possede évidemment
un suprema binaire.

Maintenant, par définition, N;, N, € BT (s) signifie que s —* s; et s —* s,
tels que Ny <o f(s1) et Ny <o f(s2). Par confluence, on a s’ tel que s; —* &' et
sy —* ¢ Par le lemme 3.40 et le fait que f e§t un morphisme, Ny, N> <o f(s),
prenons donc N comme étant le supremum de NV; et No. []

DEFINITION 3.46 (Développement de TAYLOR). — Soit s un objet de S. Une
approximation de TAYLOR de s eSf un processus de TAYLOR p tel que p C f(s).
Le Développement de TAYLOR de s, noté T(s), est lensemble de toutes les
approximations de TAYLOR de s.

Le déploiement de TAYLOR de l'arbre de BOBM de s et l'ensemble suivant
de processus de TAYLOR :

T(BT(s)) :=={nC N | N € BT(s)}.

Remarquez que, puisque les approximations de BOHa sont sans coupure, T(BT(s))
est en fait un ensemble de processus linéaires sans coupure.

DEFINITION 3.47. — Soit X un ensemble arbitraire de processus de TAYLOR,
NF(X) désigne L'ensemble des formes sans coupure des processus dans X :

NF(X) := {n sans coupure | 3p € X tel que p —* n}.

THEOREME 3.48 (de commutation BOHM-TAYLOR, tiré en arriére). — Pour
tout objet s de S,

NF(T(s)) = T(BT(s)).
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Démonstration. Endéroulantles définitions, nousavonsn € NF(7(s))sin <C
f(s). De méme, n € T(BT(s)) sin ©< f(s): 'implication directe est immé-
diate a partir des définitions et du fait que f e§t un morphisme; la réciproque
découle du lemme 3.41, concluons alors par le théoreme 3.37. [

—_ e eee————————
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CHAPITRE 4
SUR DES APPLICATIONS

5JOUS NOUS APPLIQUONS ICI 4 UTILISER L4 THEORIE précédemment
_' i construite. Dans section 4.1 sont développé les notions de corretion
et e3%“%typage pour le calcul de processus Proc, puis les types intersections qui
peuvent également se faire « tirer-en-arriere » le long de certains plongements.
Les sections suivantes développent des encodages du Al-calcul, du Ap-caleul,
ainsi que d’une variante polyadique hyperlocalisée du n-calcul dans Proc.

4.1 Logique linéaire

4.1.1 Preuves comme Processus

Le calcul des séquents de la logique linéaire classique est présenté dans la
figure 4.1, dans lequel sont omis les connecteurs additifs car non-essentiels a
notre propos. Les séquents sont divisés en trois parties, pour correspondre a
notre calcul de processus. La proposition 4.1 présentation est équivalente a
une présentation plus §tandard, telle que celle de GIRARD.

PROPOSITION 4.1. — Un séquent + ©;0";T et prouvable dans le calcul des
séquents de la figure 4.1 si le séquent - 70,10, T et prouvable dans le calcul des
séquents de la logique linéaire classique donné dans [32].

Démonstration. Observons que la traduction de chaque regle de la figure 4.1
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- @1;@’1;F,AL F Oy 05 A A

CoAL
Fis A% 4 - ©1,0,;0], 04T, A
O, AL AL OLT R O,05, 4 A FO,0:T,A,,...,A,
FO1,0,;,0,0, A FO,0: AN A,
H @1;@/1;F17A1 l_@h@;—“]-—‘naAn
|_®177®n7@/177®;7F177Fn7141®®An
FO:;0: T, A FO,A,...,A,0,T FO;; A FO;0 AT
FO ,A;0,T FO;e:I,7A - O; A; FO;0:T,!A

Fic. 4.1 : Logique linéaire. Les regles d’échange (applicables a chaque segment
de séquent) sont implicites.

est dérivable dans le calcul de GIRARD. Réciproquement, chaque regle du cal-
cul de GIRARD eét dérivable dans celui-ci. La dérivation de la contraction et de
la promotion introduit des coupures, en utilisant la dérivabilité de - A;; 1A+

Les regles de contraction et de promotion sont plus subrtiles, elles néces-
sitent d’introduire des coupures. Pour la contraction, en commengant avec
F; T, 74,74 et, en exploitant la dérivabilité de - A;;!A*, nous obtenons
A, A;;T via deux coupures, a partir desquelles se dérive +;; ', ?A. Pour la pro-
motion, il suffit de procéder de méme. []

REMARQUE 4.2. — Le calcul des séquents de la figure 4.1 peut étre décoré avec
des processus et converti en un systéeme de types. Ceci correSpond a une présen-
tation «a la CURRY » de la correspondance entre nos processus et la logique
linéaire classique. Nous optons plutdt pour une présentation « a la CHURCH »
dans la définition 4.3 suivante.

DEFINITION 4.3 (Processus typé). — Un processus typé est un processus dans
lequel chaque occurrence de nom (sauf dans les lieurs) est deécorée par une for-
mule de la logique linéaire, de relle sorte que :

* dans a* < bB, B=A';
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* deux occurrences du méme nom linéaire sont décorées par la méme for-
mule si ['une est sujer et lautre objet, ou par des formules doubles si elles
sont toutes les deux sujet on toutes les deux objet ;

* dans a (b, ... bE) (resp. a7, .. 0B)), A = By ® -+ ® B, (reSp.
A=B %3 B,);

* toutes les occurrences de méme polarité d’'un nom cartésien sont décorées
par la méme formule ;

* dans vz P, les occurrences positives et négatives de x (le cas échéant) sont
décorées par des formules duales ;

* dans a*(z)P (resp. a*(x)P), A =B (reSp. A =B), on B est la formule
décorant x dans P, ou eSt arbitraire si x ¢ fn(P);

* dans 7(aP) et x4 (aP), nous avons A = B; de méme, dans 'x*(a).P, la
décoration de a dans P (qui doit apparaitre) et A.

Le type d’une occurrence libre de nom comme sujet (vesp. comme objet) e5t sa
décoration (vesp. la négation de sa décoration).

Le séquent & ©;0";T &St dit associé 3 P lorsque © (resp. ©, T) contient
tous les rypes de toutes les occurvences libres cartésiennes positives (vesp. négatives,
cartésiennes, linéaires) de variables. Ceci eSt unique a une permutation des oc-
currences prés. Dans la suite nous parlerons du « séquent » associé a P.

REMARQUE 4.4 (Sur la correction et le typage). — 1l est important de noter
que le fait d’étre typé nimplique pas d’étre logiqguement correct. Par exemple,
at & a? st typé, mais le séquent qui lui est associé est vide. Dans la littérature
sur la logique linéaire, il existe des criteres de correction [32, 18] pour isoler les
objets « semblables a des preuves ». Ici la présentation dans la figure 4.2 est
indultive. Un jugement P > =Z;Z/;T signifie que P eI corre(t et que ses noms
cartésiens positifs libres (vesp. cartésiens négatifs, linéaires) sont dans = (resp. =,
). De plus, suivant les usages en logique linéaire, le typage et la correction sont
des notions indépendantes : un processus correct n'est pas nécessairement typable,
et vice versa.
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a#b Pe>z=ZhTa Q> ZEE5Aa
a<b>Z=Z;a,b PlQ>ZE=,25:T,A
- P>z =T,b
a(by > Z;5a,b

alb) | Pr>Z:2:T,a

= = =. =/ .
P =Zx,2T Q> =22 A

ve(P | Q) > 52,25 T, A T(a) > E, 1550
a(z)Pr> =2 a lz(a).P > Z;a; a(z)P > =21, a

Fia. 4.2 : Processus correéts.

PROPOSITION 4.5. — Un séquent et prouvable dans le calcul des séquents de
la figure 4.1 5il et associ€ a un processus typé correct. De plus, les prenves sans
coupure correSpondent a des processus sans coupure.

Démonstration. Les deux directions se font par induction, sur la derniere regle
de la preuve du calcul des séquents ou sur la derniere regle de la dérivation de
la correétion. [

REMARQUE 4.6. — Les processus typés corrells peuvent donc étre considerés
comme des prenves de la logique linéaire, et la réduction comme une procédure
d’élimination des coupures. La question de la confluence et de la terminaison
se pose. Elles doivent pouvoir étre prouvées pour les processus typés corrects, cela
pourra faire Lobjet de travanx futurs. Observons cependant que la figure 4.2 peut
Jacilement étre étendu pour inclure la corretion des processus non-déterminisies.
1l suffir de remplacer la derniere régle de la figure 4.2 par la régle ci-dessous a
gauche, et dajouter la régle ci-dessous a droite :

Pr>=Z,s0 - P,>== a1,
a(@)(Py || P)>=E,,...,2:T,....,Tha v{a) > E; 250

Les processus typés corrects (pour cette notion étendue de corvection) correspondent
aux prenves de la logique linéaire différentielle (avec promotion mais sans zéro
ni somme).
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REMARQUE 4.7 (Correction des regles de mélange). — 11 et également pos-
sible d ajouter la corretion de ce que l'on appelle les regles de mélange : nowus
ajoutons une régle nullaire deérivant 0 1>;; et une régle binaire derivant P, |
P> =24 25T, Ty de P> 25Ty, 0 € {1,2} ¢

==, =. =
P> == Q> 2 A
0r;; — — —
Y P|lQo> ==L, 25T A

Cette notion plus geénérale de correction, pour les processus non déterministes
et avec des régles de mélange, est celle que nous examinerons dans la section
suivante.

4.1.2 Types intersection

Les types intersetion [16, 8], en particulier dans leur version non-idem-
potente [31, 13], sont liés aux approximations de TAYLOR [14, 22, 42].

Un sy§teme de types intersection non-idempotents est ici fourni pour Proc
et nous montrons comment ce systéme se « tire-en-arriere » le long des plon-
gements, caratérisant automatiquement l'existence de formes normales via
Pinférence de types, tant que celles-ci sont corretement reflétées dans Proc.

Les exemples connus, tels que ceux cités ci-dessus ou ceux de [11], s’ins-
crivent dans ce cadre. D’apres [42], nous savons que d’autres formes de types
intersection (affine, idempotente) peuvent étre traitées de maniere similaire.
Nous nous limitons ici au cas linéaire non idempotent.

DEFINITION 4.8. —

* Les types interseltions sont définis dans la grammaire 4.1. La dualité
(i.e. négation linéaire) et définie de maniére usuelle, avec N dual a v.

* Un jugement de type d’intersection et de la forme P + Z;Z2;T on =
et = (reSp. ') contiennent des déclarations de type de la forme = : A
(resp. a : A) avec x un nom cartésien (vesp. a un nom linéaire) et A un
type intersection. Le méme nom cartésien peut apparaitre dans plusienrs
déclarations de type dans = et =/, méme plusienrs fois avec le méme type
(cela signifie que nous considérons des types intersection non idempotents).
En revanche, un nom linéaire ne peut étre déclaré qu’une seule fois dans
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AB = X
X+
| A®---®A4,
| A®---WA,
| ATA---NA,
| AiVv---VA,.

GRAMMAIRE 4.1 : Types intersections.

. Le systeme de types intersection pour les processus est donné dans la
Sfigure 4.3.

DEFINITION 4.9. — Un processus de TAYLOR typé et défini comme dans
la définition 4.3, avec lajout des contraintes gue dans a*(by*, ... b)) (resp.
a? (b, ... bB"Y) ) nous avons A= By ---V B, (reSp. A= By A+ A By).

REMARQUE 4.10. — Les processus de TAYLOR n'ont pas de noms cartésiens, de
sorte que le séquent associé a un processus de TAYLOR typé est de la formet-;; T,
que nous écrivons simplement - T'. Si p St un processus de TAYLOR typé, nous
écrivons p~ pour le processus sous-jacent, sans les décorations. Dans ce qui suit,
la correction St entendue au sens généralisé de la fin de la secfion 4.1.1 (avec
mélange).

LEMME 4.11. — Si p et un processus de TAYLOR type correlt, alors p~ a une
forme sans coupure.

Démonstration. Les processus de TAYLOR sont linéaires, donc la réduétion
se termine toujours (lemme 3.25). Il suffit alors de montrer qu’il n’y a pas de
coupures irréductibles. En effet, les coupures irréductibles sont incorrectes ou
non typables et la réduction préserve la correction et les décorations de type.

[]

REMARQUE 4.12. — La suite est une reformulation des résultats de [42], on
un lien générale entre les approximations de TAYLOR et les types intersection est
détaillé.

48



41§ LOGIQUE LINEAIRE

PFEZLEET [a: Al QFZy 25 A [a: AL
0t:; P|lQFZ, 25225, A abbia: Ab: AL

a(by,...,by) l-;;a:@iAi,bl:Af...,bn:Ai

alby,...,bp) Fysa: 28, A by s AT oL by s A

PEEx: Ay 2 A EiT QFEg 2 0 AL, o A A
(P’Q> ‘—'17‘—'27:/17:/27FA

Pr=Z2:A,...,0:A,;Z;T
a(x)P+Z2Ta:V, A

Pz Ay o0 PoEEGEL Ay Ty,
a(l)( ‘ ’P) '—*177\—'n7:,17;—*n7F177Fn;a/\1Az
Tla) Fx: Ajya: AL zla) Fyx: Aja: AL
PrZy50a:Ar ... PFHZ.a:A,

lx(a).PFZq,...,Zpx s Ay, o Ap;

Fic. 4.3 : Types intersetion. Dans la deuxieme regle du haut, les déclarations
a: Aeta: At sont soit toutes les deux présentes, soit toutes les deux absentes
(la regle est une coupure dans le premier cas, un mélange dans le second).

PROPOSITION 4.13. — Le jugement P+ =, Z;T et dérivable dans le systéme
de la figure 4.3 5’il existe un processus de TAYLOR typé corre(t p dont le séquent
associé estt- 2,2\ T tel que p~ C P.

squisse de prenve. Intuitivement, le résultat suit de l'observation que la fi-
E. d Intuit t, 1 Itat suit de I'observation que la fi
gure 4.3 e§t une superposition des figure 3.1 et figure 4.2 (avec les regles sup-
plémentaires données a la fin de la section 4.1.1), annotée avec des types. [
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LEMME 4.14 (Expansion du sujet). — Si Q & ; Z; " esf dérivable et P est correlt
de sorte que P — Q, alors P+ ;22T et dérivable.

Démonstration. Le résultat e§t une reformulation du lemme 3.30 a Iaide de
la proposition 4.13, il faut néanmoins ajouter des décorations de type. La cor-
reftion de P garantit que l'approximation tirée-en-arriere et également cor-

rette. []
DEFINITION 4.15 (Superficialité). —

* Un contexte est dit superficiel si le trou n apparait pas a Uintérienr d’une
boite.

* Une réduction superficielle est notée —.

* Un processus eSt dit sans coupure superficielle lorsgue toutes ses coupures,
D 1 D s e A
sl y en a, sont a Uintérienr de boites.

DEFINITION 4.16 (Réduction peu profonde). — Une réduction est dite peu
profonde lorsquelle suit la définition 3.17 modifiée comme suit : la régle de
réduction cod, eSt supprimée, c estreStreint an cas C = Q | {—}, avec Q arbitraire.
Les régles de réduction ne sont fermées que pour les contextes peu profonds.

LEMME 4.17 (Progres). — Soit P+ Z;Z/; T est dérivable et soit p est le processus
de TAYLOR typé associé selon la proposition 4.13. Alors, soit P est sans coupure
superficielle, soit P — Q et il existe une dérivation Q & Z;Z'; T dont le processus
de TAYLOR associé q et tel que p~ — ¢~

Démonstration. En observant la figure 3.1, nous voyons qu’une coupure peu
profonde dans P produit une coupure dans p. Comme observé dans le lemme 4.11,
une telle coupure ne peut pas étre irréductible, donc nous avons p — ¢ en
la réduisant. En supprimant les annotations de type, nous avons p~ C P et
p~ — ¢ ,nous appliquons donc les lemme 3.32 et proposition 4.13. [

REMARQUE 4.18. — Le lemme 4.17 ne sapplique pas anx coupures générales :
puisque les boites penvent étre approximées par 0, P peut contenir une coupure a
Uintérieur d’une boite qui et invisible pour la dérivation du type d’intersection.
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THEOREME 4.19. — Un processus P eSt typable comme dans la figure 4.3 57l
est correct (au sens généralisé de la fin de la seftion 4.1.1) et P —} Py avec Py
superficiel et sans coupure.

Démonstration. Soit P un processus typable. La corretion e§t immédiate a
partir des regles de typage : elles sont essentiellement une décoration de la fi-
gure 4.2 plus les regles de correction supplémentaires a la fin de la setion 4.1.1.
Nous devons montrer que P se réduit & un processus sans coupure peu pro-
fond.

Soit p l'approximation de TAYLOR typée donnée par la proposition 4.13.
Nous raisonnons par induction sur la taille de p~, telle que définie dans la
preuve du lemme 3.25.

Nousappliquonslelemme 4.17 et concluonsimmédiatement car P eét sans
coupure superficielle ou obtenons P —* @ avec @ typable avec une approxi-
mation associée ¢ telle que p~ — ¢ . Cela implique que la taille de ¢~ e$t §tric-
tement plus petite que la taille de p~, donc nous concluons par ’hypothese
d’induction.

Supposons maintenant que P —; P, avec P, sans coupure peu profonde.
Il est facile de prouver, par induction sur F, que P eét typable. Intuitivement,
nous approximons toutes les boites par 0 et le typage et alors garanti par 'exac-
titude et 'absence de coupures. Nous concluons par le lemme 4.14. ]

REMARQUE 4.20. — 8i f : & — Proc &St un morphisme de syStémes de ré-
duction, alors nous ponvons dire qu’un objet de s est typable dans les types
intersetion si f(s) et typable selon la figure 4.3.

DEFINITION 4.21. — Soit Procy le syStéme de réduction avec les processus comme
objets mais avec —}; comme réductions. Dans ce qui suit, nous considérons un
systéme de réduction S avec un ensemble distingué d’objers appelé de maniére
suggestive « normal ». Un plongement f : S — Proc, €St dit consi§tant lorsque

* pour tout objet s, f(s) eSt corvect (au sens genéralisé);
* pour tout objet s, sy €St normal si f(sy) et sans coupure superficielle.

THEOREME 4.22. — Soit f : S — Procy un plongement consistant, alors, un
objet s de S est typable dans les types intersection si s —* sy avec sy normal.
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Démonstration. Supposons que s et typable, ce qui signifie que f(s) I'eét. Par
le théoreme 4.19, f(s) —; Py avec P, superficiel et sans coupure. Puisque f eét
un plongement, nous avons Py —3 f(so) tel que s — so. Mais 7 est sans cou-
pure superficielle, donc f(sy) = P, et nous concluons que s, est normal par
consistance.

Supposonsa présentque s —* sq avec so normal, ce quiimplique f(s) = f(so).
Par consistance, f(so) eét correct et sans coupure superficielle, il est donc ty-
pable. Par consistance et par le lemme 4.14, f(s) et typable, donc s eét typable
par définition. ]

4.2 Call-by-push-value

Il e§t connu que l'appel-par-valeur de Paul LEvY [37] peut étre exprimé
en logique linéaire intuitionniste [21], ce qui donne le bang-calcul [25], ou A!-
calcul. Ici eét utilisée une reformulation récente due a BUCCIARELLI e 4l. [11],
qui permet de montrer en méme temps comment les substitutions explicites
d’AccaTtToLrr et KESNER «aditance » peuvent étre manipulées sans heurts.

DEFINITION 4.23 (\!-calcul). —

* Les termes sont définis par la grammaire 4.2 o1 x s’étend sur un ensemble

tu = =z variable
| .t abstraltion
| tu application
| 1 modalité bien-siir
| dert déréliction
|

tlz =] substitution explicite

GRAMMAIRE 4.2 : M-calcul

denombrable de variables, pris, par commodite, pour l'ensemble des noms
cartésiens.

* Pour obrenir les contextes, il suffit d ajouter un trou {—} a la grammaire.

52



4.2§ CALL-BY-PUSH-VALUE

* La notation t[—| désigne un terme de la forme t[x, = w]- - [z, := u,),
o1t n peut étre nul.

* Le conStrulteur \(—) est prioritaire sur les constructeurs binaires, i.e., ltu et
lt[x := u] doivent étre compris comme (t)u et (It)[x = ul, respetivement.

DEFINITION 4.24 (Réduétion ). — La réduction et la fermeture contex-
tuelle des régles suivantes :

Ax.t)[~]u — tlx = u][-]
tlr = lu[-]] — t{u/z}[-]
der(t[—]) — t[-]

on t{u/x} désigne la substitution, sans capture, usuelle de v a toutes les occur-
rences libres de x dans t.

Ceci induit un systéme de réduction A,

Nous définissons inductivement une famille dapplications (—)a : Ay — Proc
paramétrées par un nom linéaire a :

(x)a = T{a) (Ax.t)a := alc,d) | e(x)(t)d
(tu)a := ()b | b{c,a) | (u)c ("t)a = a(z)!z(b).(t)b
(dert)a :=¢(2)z(a) | (t)c (t[z := ul)a := b(x)(t)a | (u)b

REMARQUE 4.25. — Dans [11] et également introduit la réduction faible
pour le N-calcul, qui ne se réduit pas sous \(—), notons A le systéme de ré-
duction correspondant. Dans ce systéeme nous nous restreignons aux formes nor-
males qui sont des termes dont les redex et les clashes (configurations indésirables
définies dans [11]) napparaissent que sous un !(—).

PROPOSITION 4.26. — Pour tout nom linéaire a, (—)a st un plongement. De
plus, considére comme une application Ny — Proco, c'eSt un plongement consis-
tant.

REMARQUE 4.27 (Sur M et call-by-push-value). — Les résultats de section 3.4.3
penvent étre formulés diretement dans la syntaxe du N-calcul. Les arbres de
BOHM sont comme attendues : étant donné un N-terme t, si la réduction faible
pourt ne se termine pas, alors BT(t) = L. Sinon, elle se termine sur un terme
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de la forme C{lu, ..., u,} on C &5t un contexte a trous multiples ne contenant
pas de \(—), alors, BT(t) = C{!BT(w1),...,'BT(u,)}. Remarquons que 1 et L
sont des arbres de BOHM différents.

Le développement de TayLor de call-by-push-value a déja été défini et
étudié dans [15 ). Cela donne ici une reformulation dans le contexte du \! avec
des substitutions explicites. Les termes d approximation de TAYLOR sont définis
dans la grammaire 4.3, on a sétend sur les variables linéaires, i.e. , ancune

r,s u=
| Aa).r
| rs
| (ri,...,70)
| derr
|

r[(a) := s]

GRAMMAIRE 4.3 : A\ & CbPV

variable napparait deux fois et chaque variable de @ dans les lieurs \(a).t ou
t[(a) := u] doit apparaitre libre danst. Les régles de réduction sont les suivantes :

(Ma).r)s — r[(a) := s],
rl{a) == (5)] = r{s/a},

der(r) — r,

avec la condition que, dans la deuxiéme régle, |a| = |3|. La relation dap-
proximation et définie a laide des jugements = - r T t avec = consistant en des
déclarations de la forme o T x, sans quancune variable linéaire napparaisse
deux fois dans =. La relation eSt définie par la figure 4.4.

Par proposition 4.26 et theéoréme 3.48, nous savons que les arbres de BOHM et
les approximations de TAYLOR ci-dessus interagissent bien. La proposition 4.26
implique également les résultats de section 4.1.2. Nous ne les détaillerons pas ici,
mais ils nous permettent d obtenir immédiatement le systéme de types intersec-
tion de [11}], ainsi que la propriété qu’il caracterise les termes avec des formes
normales faiblement sans conflit.
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4.2§ CALL-BY-PUSH-VALUE

ZaCzhkrcCt
aCzhaCz = AG)r T Aot
=krct THsCu Ell_rllzt Enl_T"rLEt
E,TFrsC tu E,..,2 (M)l

Skt ZaCaxkFrct ThEsCu
EF derr C dert E, T Fr[{a) = s] C tr:=u]

Fic. 4.4 : Approximations de TAYLOR dans le Al-calcul.

Les articles [15 ] et [11] considérent tous deux les plongements bien connus de
Lappel-par-nom et de lappel-par-valenr du \-calcul dans call-by-push-value,
et extrapolent a partir de ces plongements des notions appropriées d approxima-
tions de TAYLOR et de systémes de types intersection pour lappel-par-nom et
lappel-par-valeur, en récupérant les résultats de [27, 29, 22, 44] et [31, 14, 13,
22 . Dans notre cadre, il sagit de plongements au sens technique de la défini-
tion 3.5. Comme les plongements se composent, nous retrouvons également ces
résultats de maniére uniforme.

REMARQUE 4.28. — En outre, nous récupérons les arbres de BOHM habi-
tuels [7] et les arbres de BOHM appel par valenr de [44], ainsi que les théoremes
de commutation correSpondants [27, 29, 44/ Cependant, les arbres de BOHM
ne sont pas n’importe quels processus, ils ont une Structure qui est dictée par la
syntaxe du calcul plongé dans Proc. En effet, si f : S — Proc est un plonge-
ment et si s &5t un terme du calcul S, BT (s) au sens de la définition 3.38 est un
ensemble de processus sans coupures de Proc obtenus a partir de processus de la
forme f(s) on s parcourt les réduits de s, en remplagant éventuellement des 0
la on f insere des boites.

1l e§t donc possible de « tirer-en-arriére » les processus de BT (s) le long de
f, et le réécrire comme des termes (normaux) de S avec éventuellement des |
quelgue part, correspondant aux 0. Si cela est fait dans le cas des plongements du
A-calcul appel-par-nom et appel-par-valeur, alors les arbres de BOHM classiques
sont obtenus.

Reformulé dans lautre sens : soit un \-terme t et définissons son arbre de
BoHM appel-par-nom on appel-par-valenr de la maniére classique, comme un
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idéal BT (t) de \-termes normanx avec éventuellement des L. Ensuite, définis-
sons un codage de ces termes avec 1 dans Proc, qui est exaltement le plongement
[ appel-par-nom ou appel-par-valeur, et qui envoie L sur le processus 0. Ain-
si, st ce codage eST appliqué terme a terme a BT(t), nous obtenons exactement
BT(f(t)) (de la définition 3.38).

Certe remarque sapplique a Uidentique an développement de TAYLOR (dé-
finition 3.46). Les approximations de TAYLOR sont des processus de Proc qui
approximent (figure 3.1) des traduits de termes du calcul de départ. La Struc-
ture du calcul source se réfléchir donce dans la Structure de ces approximants, et
il et en général facile de les décrire directement dans une sytaxe similaire a celle
du langage source.

4.3 Logique classique

DEFINITION 4.29. — Le calcul des piles /12 ] et un calcul pour le calcul clas-
sique, intégrant le \pi-calcul. Sa syntaxe comporte piles m, termes ¢ er processus
P, et eSt donnée par la grammaire 4.4, on o sétend sur un ensemble infini

_| t-m

| ti(m)

t = paP
| hd(n)

P = (t,m

GRAMMAIRE 4.4 : Calcul des piles

de variables de pile, considéré comme un sous-ensemble des noms cartésiens de
processus.
La construction o et un lieur. La réduction et définie donnée par :

(uo. Py — P{m/a} hd(t-7) — ¢ th(t-7) — 7.

DEFINITION 4.30 (Plongements pour le calcul des piles). — Soient Stk, Term
et StkProc les syStemes de réduction induits par la grammaire 4.4, avec respec-
tivement les piles, les termes et les processus comme objets. Nous définissons deux
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Jamilles dapplications (—)a : Stk — Proc et (—)a : Term — Proc, paramétrées
par un nom linéaire a, ainsi qu'une application (—) : StkProc — Proc de la
maniere suivante :

PROPOSITION 4.31. — Les applications de la définition 4.30 précédente sont
des plongements.

REMARQUE 4.32. — Comme mentionné dans Uintroduction, 'encodage du \.-
calcul dans le calcul des piles n'est pas un plongement dans notre sens technique,
nous ne pouvons donc pas appliquer direllement nos résultats au \p-calcul.

Néanmoins, nous diSposons maintenant d’une nonvelle theorie opération-
nelle des arbres de BOHA et du développement de TAYLOR pour un calcul
CURRY-HOWARD-isomorphe a la logique classique (ce qui est mentionné comme
question ouverte dans [5 [ pour le contexte du \p-calenl). Nous laissons ['étude de
cette théorie, en particulier la signification des arbres de BOHM, a des travaux
Sfuturs.

4.4 Calculs concurrents

DEFINITION 4.33. — Le r-calcul polyadique asynchrone esf défini par la
grammaire 4.5, o1 nous supposons que les noms sont les noms cartésiens des
processus (de Proc).

La congruence Structurelle et la réduction sont Standard, avec les régles sui-
vantes :

() [ 2(2).P — P{y/z} [ =(2).P
ve(lz(y).P | Q) — vaQ
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0

PQ =
| PlQ
| wvaP
| Z(Y)
|

lx(y).P

GRAMMAIRE 4.5 : 7w-calcul polyadique asynchrone.

a condition, dans la deuxiéme régle, que x ne soit pas le sujet d’une sortie dans

Q.

REMARQUE 4.34. — Nowus considérons ici la variante hyperlocalisée du cal-
cul [17 ], qui eSt définie en se limitant aux processus tels que, dans \x(y).P, aucun
nom libve de P napparait en tant que sujet d'une entrée. En outre, la réduc-
tion n'est autorisée que dans le cadre d’une restriction. Comme le montre [17], il
sagit d’un calcul raisonnablement expressif, avec un non-déterminisme compler
ainsi que des verrous.

Soit IT le systeme de réduction correspondant au calcul ci-dessus. En utili-
sant la notation (z = y) := !2(¢).y(c) (en tant que processus de Proc), nous
définissons une application (—| : II — Procy en laissant

@y, oy = 7(a) [alb, b)) [1(20) (20 = 91) [+ [ ba(20) (20 = )
ey, ya)-P) = 2(a).(alby, -, ba) | Dr(yr) - Du(yn) (P))

et en faisant en sorte que (—) agisse de maniere homomorphe sur 0, la compo-
sition parallele et la restriction.

PROPOSITION 4.35. — Lapplication (| est un plongement.

REMARQUE 4.36. — Le plongement ci-dessus n'eSt cependant pas consistant
au regard de toute notion raisonnable de forme normale pour le w-calcul, car
(P) n'eSt pas nécessairement correct (les processus peuvent avoir toutes sortes de
cercles vicieux).

Cela n’empéche pas de prendyre le systéme de types intersection de setion 4.1.2
et de lutiliser comme point de départ pour trouver un systéme de types inter-
section fonctionnel pour le w-calcul hyperlocalise. C'eSt exactement la genése de
larticle [17].
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CONCLUSION

50US AVONS GENERALISE DANS CETTE THESE un résultat central en
N théorie desapproximations de programmes en proposant une approche
aiiornatique des approximations. Pour ce faire, nous avons proposé un cadre
pour parler de plongements entre calculs. Nous avons montré que le théo-
reme de commutation entre les approximation de BOHM et de TAYLOR, dt
a EHRHARD et REGNIER, eét une instance du théoréme 3.48 mais « tiré-en-
arriere ». Une fois notre théorie posée, nous avons donc pu l'appliquer a dif-

férents calculs de la littérature.

Pour ce faire, notre approche a été d’introduire un calcul de processus,
Proc, inspiré de la logique linéaire différentielle, puis d’introduire les notions
d’approximations de BOHM et de TAYLOR dans ce calcul, et de démontrer le
théoreme de commutation entre les deux dans son cas particulier. Utilisé de
concert avec la notion de plongement, cela permet de relever ces des outils de la
logique linéaire dans d’autres calculs : Al-calcul, Api-caleul, calculs concurrents.

Concernantl’applicabilité de ces résultats, il est a souligner quele fait qu’un
plongement & — Proc établisse immédiatement une élégante théorie des ap-
proximations de BOHM et de TAYLOR pour S ne dit rien sur intérét réel de
cette théorie. Tout dabord, en I’état, la théorie e§t formulée dans la syntaxe
de Proc, et la reformuler dans une syntaxe « adaptée a S » n’eét pas automa-
tique : le cas dela section 4.2 avec call-by-push-value en e§t un exemple. Deuxie-
mement, sa pertinence et son utilité doivent étre vérifiées au cas par cas. Par
exemple, nous n’avons pas encore étudié les arbres de BOrM pour le calcul
des piles ou pour le fragment du calcul 7 présenté dans la section 4.3 et la sec-
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tion 4.4.

Enfin, une emphase et a mettre concernant la notion de plongement pro-
posée a la définition 3.5. Bien que cette notion suffise pour les exemples pré-
sentés ici, de nombreux encodages, en particulier des calculs de processus, ne
sont pas des plongements au sens technique décrit. Généralement parce qu’ils
sont a équivalence pres. Par exemple, l'encodage du Api-calcul dans le calcul des
piles mentionné dans la section 4.3 et a g-équivalence, et n’e§t donc pas direc-
tement couvert. Lextension de ces résultats de la se&tion 3.4.3 et la se&tion 4.1.2
a une classe plus générale de plongements eét un sujet intéressant pour les tra-
vaux futurs.

_—_—-———o e e—e—™
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