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Introduction

Motivations

LL
e λ-calcul est une pierre angulaire de l’informatique théorique,

plus précisément de la calculabilité, de la théorie des langages de pro-
grammation dits fonctionnels et de la logique. Sa structure intrinsèque re-
pose seulement sur la notion de fonction et de substitution. Cette simplici-
té permet de le décliner en de nombreuses variantes se prêtant à l’analyse ou
la modélisation d’autant de systèmes. Il a permis une formalisation des sys-
tèmes de types, et c’est par ce biais qu’est arrivée la correspondance de Curry-
Howard entre les preuves en logique mathématique, et les programmes en
informatique.

État de l’art
Durant ces dernières décennies, l’idée qu’un langage de programmation

puisse être approximé par le biais de du λ-calcul linéaire et multilinéaire a vu
son nombre d’applications augmenter. L’origine, sans doute l’exemple le plus
connu, de cette idée est le développement de Taylor du λ-calcul non-typé
via le λ-calcul à ressources, introduit par [27, 29]. Ce fut le point de départ
d’une longue série de résultats comme en sémantique [13], λ-calcul pur [5]
ainsi qu’en calculabilité probabiliste [30, 49].

Une autre source importante d’applications provient du lien entre approxi-
mations et théorie des types intersection, pour la première fois décrite par de
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Introduction

Carvalho pour le cas non-idempotent [14], et étendu par la suite par Maz-
za et al. pour couvrir le cas idempotent [42]. De cette manière, l’idée de de
Carvalho d’utiliser les types intersection pour inférer des bornes exactes sur
le temps d’exécution de programme [13] peut être étendu dans des contextes
plus larges, permettant l’étude de l’utilisation mémoire [2, 4, 3], l’analyse de
programmes concurrents [17], ou encore allant jusqu’à prouver le théorème
de Cook-Levin en utilisant des systèmes de types [39].

Sujet de la thèse
Dans [38] il est proposé une approche axiomatique aux systèmes d’approxi-

mations de langages de programmation. L’idée est la suivante  : une relation
d’approximation t ⊏ M entre un programme approximant t et un programme
M devrait induire une «adjonction» entre calculs et approximations de cal-
culs, pour tout programme M et approximation u,

M s’évalue en N tel que u ⊏ N
ssi

il existe t ⊏ M tel que t s’évalue en u

ou, diagrammatiquement,

u

M N

⊏ ⇔
t u

M

⊏

où les flèchent représentent l’évaluation des programmes. L’intuition voudrait
que si l’on considère les approximations comme des morceaux d’information,
et que l’on lit t ⊏ M comme «M contient l’information t», une relation d’ap-
proximation assure qu’un programmeM s’évalue en quelque chose contenant
le morceau d’information u si et seulement si une approximation de M s’éva-
lue en u lui-même. On pourra remarquer une analogie avec la continuité au
sens topologique.

Le formalisme axiomatique encapsule toutes les instances d’approxima-
tion de programmes connues jusqu’à maintenant, et permet d’en considérer
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Introduction

bien d’autres. Il subsiste cependant une question importante bien qu’infor-
melle : d’où viennent les approximations  ?

Le point de départ de cette thèse est l’idée que, dans le contexte des lan-
gages de programmation, les approximations ont une origine géométrique.
Plus précisément, une relation d’approximation t ⊏ M devrait provenir de
l’existence d’une sorte de morphisme étale de t à M . La notion de morphisme
étale est bien connue dans différents contexte géométriques (variétés différen-
tielles, schémas, topoi…) comme reformulation adaptée de la notion d’homéo-
morphisme local de la topologie.

Les intuitions ci-dessus résultent des observations que l’ont fait en regar-
dant les approximations de programmes : dans toutes les notions d’approxi-
mations, t ⊏ M est vrai précisément lorsque la construction syntaxique t s’en-
voie sur une construction syntaxique similaire de M , respectant la structure
syntaxique proche et, de plus, pour chaque construction syntaxique de M , il
peut y avoir plusieurs constructions correspondantes à t. Ce qui semble indi-
qué que t est un «espace étalé» au-dessus de M .

Il est à noter que, pour que le point de vue ci-dessus ait du sens, les pro-
grammes approximant et approximés doivent vivre dans le même monde, dans
le cas contraire on ne pourrait pas parler de morphismes entre eux. Cela peut
d’ailleurs être surprenant au premier abord : prenons l’exemple primordial
d’Ehrhard et Regnier des développements de Taylor [27, 29], les ap-
proximations sont des λ-termes à ressources et les programmes approximés
sont des λ-termes, et vivent donc dans deux mondes calculatoires avec des sé-
mantiques opérationnelles bien distinctes. Cependant, comme montré dans
le λ-calcul affine infinitaire [41], il est possible de voir un programme usuel
M comme un programme infinitaire de la même nature qu’un programme
approximant t, de sorte qu’il n’y a pas d’inconsistance dans le fait de prendre
approximant et approximés vivant dans le même monde  ; utiliser différent
langages de programmation relève davantage de commodité que de nécessité
conceptuelle.
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Introduction

Contributions
Premièrement, nous avons introduit un calcul, Proc, avec une syntaxe suf-

fisamment riche pour exprimer des relations d’approximations en son sein.
Deuxièmement, nous avons développé les notions d’approximations de

Böhm et de Taylor pour Proc jusqu’à atteindre le théorème de commuta-
tion entre les deux, pour la première fois énoncé par Ehrhard et Regnier [27].

Troisièmement, suivant l’intuition géométrique, nous avons introduit puis
utilisé une notion de plongement afin de «tirer en arrière» à la fois ces no-
tions d’approximations, mais également ce théorème central.

Quatrièmement, nous donnons des plongements de différents calculs dans
Proc :

• le λ!-calcul, pour call-by-push-value,
• le calcul des piles pour la logique classique,
• le π-calcul polyadique asynchrone,

afin d’appliquer notre formalisme et de déduire quelles sont les différentes
notions d’approximations associées, et de constater qu’elles coïncident avec
les notions déjà connues [27, 29, 44].

Plan de la thèse
Dans cette thèse sont présentés des résultats sur une version du théorème

de commutation Böhm-Taylor appliqués à un système calculatoire forgé
pour l’occasion, Proc, plus général, ainsi que la définition de plongements
entre des calculs connus dans Proc permettant de retrouver ce théorème dans
des cadres connus.

Cette thèse est organisée de la manière suivante :

• Le chapitre 1 : introduit quelques définitions, rappels et notations sur
les concepts logiques de base utilisés dans cette thèse. À savoir le λ-calcul
ainsi que la logique linéaire qui sont les points de départs.

• Le chapitre 2 : présente les deux systèmes d’approximations en λ-calcul,
de Böhm et de Taylor, et esquisse une présentation axiomatique de ce
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qui constitue un système d’approximation en λ-calcul.

• Le chapitre 3 : introduit la notion de plongement d’un calcul dans un
autre, et présente le calcul de processus Proc, inspiré du π-calcul et de
la logique linéaire différentielle. Nous utilisons cette notion de plonge-
ment pour établir les résultats généraux sur le théorème de commuta-
tion.

• Le chapitre 4 : utilise les résultats du chapitre précédent pour les appli-
quer à différents calculs — logique linéaire et types intersections, call-by-
push-value, logique classique et une certaine variante de calcul de proces-
sus — pour retrouver les versions du théorème de commutation connus
dans ces calculs.
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Chapitre 1
Préliminaires

NN
ous commençons ici par donner quelques définitions & résultats clas-
siques en lambda-calcul —introduit dans les années 1930 par Church—

ainsi qu’en logique linéaire —introduite en 1987 par Girard [32]— qui sont
à la base de nos travaux, et plus généralement de notre domaine d’étude.

1.1 Lambda-calcul
La problématique de savoir quelle fonction est calculable fut centrale dans

les mathématiques du début du XIXe siècle. Elle s’est vue obtenir au moins
trois réponses largement connues et étudiées encore aujourd’hui : le λ-calcul
de Church, les fonctions µ-récursives de Gödel, et les machines de Turing.
Ces trois formalismes sont les trois piliers fondateurs de l’informatique théo-
rique et sont équivalents. Cela a amené la formulation de l’hypothèse de Church
de la part de Kleene : tout formalisme permettant une calculabilité effec-
tive, physique, est au plus aussi expressive que l’un des trois piliers précédents.
Cette hypothèse vérifiée jusqu’à présent, même avec des systèmes calculatoires
quantiques plus subtiles que l’électronique classique [35].

Le principe duλ-calcul est le suivant : tout «λ-terme» peut-être vu comme
une fonction, et formalise l’habitude mathématico-calculatoire de faire du
«chercher-remplacer» —pour utiliser un vocabulaire d’informatique pratique—
de variables ou de termes dans d’autres termes.
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1 — Préliminaires

Soit V un ensemble infini dénombrable utilisé pour les variables.

Définition 1.1. — L’ensemble Λ des λ-termes sur V, est défini par la gram-
maire grammaire 1.1.

M ::= v variable
| M(N) application
| λv.M abstraction

Grammaire 1.1 : λ-calcul pur.

Convention 1.2. — Afin d’alléger la notation de nos λ-termes, introduisons
quelques conventions habituelles :
1. les applications s’associent à gauche, et sont prioritaires sur les abstractions,
par exemple MNP signifie (MN)P   ;

2. les abstractions peuvent s’écrire en séquences, par exemple λxy.M signifie
λx.λy.M , ou encore si x⃗ = (xi)1⩽i⩽n, λx⃗.M signifie λx1. . . . λxn.M .

Notations 1.3. — Soit M ∈ Λ,
• fn(()M) désigne les variables libres, ou nom libres du λ-terme M , définit
selon les cas

– si x ∈ V , fn(()x) = {x} ;
– si M,N ∈ Λ, fn(()MN) = fn(()M) ∪ fn(()N) ;
– si x ∈ V et M ∈ Λ, fn(()λx.M) = fn(()M)− {x}.

• L’ensemble des λ-termes clos (sans variable libre), dits combinateurs, est
Λ∅ := {M ∈ Λ, fn(()M) = ∅}.

• Les variables non-libres sont dites liées, et sont susceptibles d’être renom-
mées. Puisque y est lié dans λy.M ∈ Λ, on peut remplacer y en z :
λz.M{y/z}, où M{y/z} désigne la substitution de toutes les occurrences
de y dansM par z. Le renommage de variables liées constitue une relation
d’équivalence sur les λ-termes, l’α-équivalence, ou encore α-conversion,
par laquelle on identifiera les λ-termes, et Λ désignera par la suite l’en-
semble des λ-termes à α-équivalence près.
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1.1 § Lambda-calcul

Définition 1.4. — La β-réduction, notée→β, est définie comment la clôture
contextuelle de la règle

(λx.M)N →M{N/x}

oùM{N/x} désigne la substitution simultanée dansM de toutes les occurrences
libres de x par N (usant de l’α-conversion dans M pour éviter la capture de
variables libres de N).

Notations 1.5 (De réécriture). — Pour toute relation, notamment→β⊂ Λ×
Λ, nous introduisons

• →n
β désigne une suite de n ∈ N relations ;

• →∗
β la clôture transitive de →β (suite finie d’un nombre arbitraire de

réductions) ;

• =β la β-conversion, qui est la clôture symétrique de→∗
β.

Remarque 1.6. — La β-réduction induit une certaine dynamique dans le
λ-calcul, correspondant en apparence à de simples suites de substitutions, mais
suffisant à l’inclure dans les modèles de calcul les plus expressifs. Les propriétés
de cette dynamique sont bien connues :

• confluence (Church-Rosser)

• existence d’une forme normale pour les réductions qui terminent (pour
M ∈ Λ notée nfβ(M)) ;

• la forme normale de tête de M ∈ Λ est notée hnfβ(M).

Exemples 1.7. — Les λ-termes représentants à la fois des programmes, des fonc-
tions et des calculs à effectuer, sans compter le développement historique et la
culture du domaine de recherche engendré, certains se voient attribuer des no-
tations standards.

• I = λx.x, l’identité, le neutre pour la composition ;

• K = λxy.y, la projection sur la deuxième variable, combinateur histo-
rique SKR, encode le booléen faux ;

• T = λxy.x, projection sur la première variable, encode le booléen vrai ;

3



1 — Préliminaires

• ∆ = λx.xx, opérateur qui prend une entrée pour l’appliquer à elle-même,
où l’on se rend combinatoirement compte que l’évolution de la taille des
termes est une question non-triviale ;

• Ω = ∆∆, le terme le plus simple se réduisant à lui-même ;

• Y = λf.(λx.f(xx))(λx.f(xx)), combinateur de point fixe de Turing  ;

• Θ = (λfx.x(ffx))(λfx.x(ffx)), l’autre combinateur de point fixe.

1.2 Logique linéaire
Introduite par [32] et développée par la suite principalement par l’école

française, italienne, et anglaise de logique, la logique linéaire est une raffine-
ment de la logique intuitionniste permettant notamment un suivi fin du nombre
d’utilisations des formules.

On pourra se référer à [32] et [33] pour des références historiques, [43]
pour la présentation catégorique, et [36].

Définition 1.8 (Formules de LL). — Les formules de la logiques linéaires sont
construites avec les atomes (variables) et les unités (des connecteurs), à l’aide des
connecteurs, modalités et quantificateurs :

• un atome est une variable propositionnelle (i.e. du second ordre) α ou son
dual α⊥, plus généralement, c’est un prédicat atomique α(t1, . . . , tn) ou
son dual α(t1, . . . , tn) où les ti sont des termes du premier ordre ;

• les connecteurs multiplicatifs sont ⊗ ( tenseur, ou conjonction multipli-
cative) et son dual ` ( par, ou disjonction multiplicative) ; les unités cor-
respondantes sont 1 et ⊥ ;

• les connecteurs additifs sont & ( avec, ou conjonction additive), et son
dual ⊕ ( plus, ou disjonction additive) ; les unités correspondantes sont ⊤
et 0 ;

• les modalités exponentielles sont ! ( bien-sûr) et son dual ? ( pourquoi-
pas) ;
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1.2 § Logique linéaire

• les quantificateurs sont ∀ et son dual ∃, s’appliquant à des variables du
premier ou second ordre

SiA est un atome,A⊥ est son dual, en particulierA⊥⊥ = A. La négation linéaire
est étendue à toutes les formules par les lois de de Morgan.
L’ implication linéaire est définie par A ⊸ B := A⊥ `B.

Définition 1.9 (Séquents de LL). — Les séquents sont de la forme ⊢ Γ où Γ

est une suite de formule (Ai)1⩽i⩽n, avec n ∈ N. En pratique, on identifie ⊢ Γ et
Γ, et l’on écrit Γ⊥ pour (A⊥

i )1⩽i⩽n, de même pour les modalités exponentielles,
de plus, si ∆ est une autre suite de formules, Γ ⊢ ∆ est synonyme à ⊢ Γ⊥,∆.
Un séquent est prouvable lorsqu’il peut être dérivé en utilisant les règles sui-
vantes :

⊢ Γ, A,B,∆ ex
⊢ Γ, B,A,∆

id
⊢ A,A⊥

⊢ A,Γ ⊢ A⊥,∆ cut
⊢ Γ,∆

⊢ A,Γ ⊢ B,∆
⊗

⊢ A⊗ B,Γ,∆

⊢ A,B,Γ `
⊢ A`B,Γ

1
⊢ 1

⊢ Γ ⊥
⊢ ⊥,Γ

⊢ A,Γ ⊢ B,Γ
&

⊢ A&B,Γ

⊢ A,Γ
⊕1⊢ A⊕ B,Γ

⊢ B,Γ
⊕2⊢ A⊕ B,Γ

⊤
⊢ ⊤,Γ

⊢ A, ?Γ !p
⊢!A, ?Γ

⊢ A,Γ ?d
⊢?A,Γ

⊢?A, ?A,Γ ?c
⊢?A,Γ

⊢ Γ ?w
⊢?A,Γ

⊢ A,Γ
∀

⊢ ∀ξ.A,Γ
⊢ A[τ/ξ],Γ

∃
⊢ ∃ξ.A,Γ

Remarques 1.10. —

• La règle d’échange est la seule règle structurelle.

• Les règles des modalités exponentielles s’appellent respectivement, la pro-
motion, la déréliction, la contraction et l’affaiblissement.

• Dans la règle ∀, ξ ne doit pas avoir d’occurrence libre dans Γ.

• Dans la règle ∃, τ est un terme du premier ordre (si ξ est une variable du
premier ordre) ou une formule (si ξ est une variable du second ordre).

5



1 — Préliminaires

• Par la règle d’échange, toute permutation de Γ peut être dérivée de Γ,
il est donc courant qu’en pratique les séquent sont considérés comme des
multi-ensembles finis, et la règle d’échange est implicite.

Notations 1.11 (Terminologie). —

• LL : Le fragment propositionnel complet de la Logique Linéaire.

• MLL : Le fragment multiplicatif de la logique linéaire (sans exponen-
tiels).

• MALL : Les fragments additifs et multiplicatifs de la logique linéaire
(sans exponentiels).

• MELL : Le fragments multiplicatif de la logique linéaire avec les expo-
nentiels.

6



Chapitre 2
Sur les systèmes d’approximations

QQ
ue cela soit en analyse ou en langages de programmation ,

les approximations permettent un autre point de vue sur les objets et
l’établissement de propriétés. On pensera aux approximations de fonctions
continues par des polynômes via la formule de Taylor que l’on croise dès
nos jeunes années d’études. Il en va de même en sémantique, aussi bien qua-
litative que quantitative, comme nos deux exemples en λ-calcul le montrent :
les approximations de Böhm et de Taylor. La troisième section de se cha-
pitre introduit une notion axiomatique de ce qu’est une approximation, ou
plutôt un système d’approximations, dans un langage de programmation.

2.1 Exemples

2.1.1 Approximations de Böhm
Les arbres de Böhm [7, 9] et leurs variantes sont un élément essentiel de

la sémantique du λ-calcul. Intuitivement, il s’agit de formes normales éven-
tuellement infinies représentant l’essence du comportement d’un λ-terme. En
tant que tel, ils peuvent être considérés comme les limites d’un ensemble d’ap-
proximations finies, appelées approximations de Böhm, décrivant des parties
de plus en plus grandes de l’arbre de Böhm.

Il est intéressant de noter que les arbres de Böhm habituels, ainsi que les

7



2 — Sur les systèmes d’approximations

arbres de Böhm appel-par-valeur, peuvent également être considérés comme
résultant d’une notion générale d’«arbre de Böhm» pour la logique linéaire,
ramenée le long des codages appel-par-nom et appel-par-valeur de Girard.
Il est naturel de se demander si les différentes formes du théorème de commu-
tation sont également des «tirés-en-arrière» d’un théorème de commutation
plus général.

2.1.2 Approximations de Taylor

Plus récemment, Ehrhard et Regnier ont introduit une autre notion
d’approximation pour leλ-calcul, qui sous-tend leur expansion de Taylor [27,
29]. Basée sur l’idée que les programmes peuvent être considérés comme des
fonctions analytiques sur certains espaces vectoriels topologiques [24, 23], cette
notion peut être allégée en oubliant ses aspects quantitatifs (les coefficients
de la série de Taylor) et, comme un arbre de Böhm, être présentée comme
un ensemble d’approximations finies. Ces approximations de Taylor sont
syntaxiquement très différentes des approximations de Böhm : ce ne sont
pas nécessairement des formes normales, et elles sont linéaires, au sens de la
logique linéaire [32] (elles sont apparentées aux termes avec multiplicités de
Boudol [10]), de sorte que leur durée d’exécution est limitée par leur taille.

Étant donné un λ-terme t, puisqu’une approximation de Böhm est, essen-
tiellement, aussi un λ-terme, il est possible de prendre l’ensemble de toutes les
approximations de Taylor de toutes les approximations de Böhm de t, ce
qui donne un ensemble T (BT(t)). D’autre part, comme les approximations
de Taylor se normalisent toujours, il est possible de prendre l’ensemble de
toutes les formes normales de toutes les approximations de Taylor de t, ce
qui donne un ensemble NF(T (t)). Un résultat clé d’Ehrhard et Regnier,
connu sous le nom de théorème de commutation, stipule que T (BT(t)) =

NF(T (t)). Ce lien entre les approximations de Böhm et de Taylor est un
outil étonnamment puissant, qui implique une multitude de théorèmes fon-
damentaux dans le λ-calcul pur [6].

La théorie des approximations de Taylor a été étendue à l’appel-par-valeur [22],
au call-by-push-value [15] et au λµ-calcul [5]. Dans le cadre de l’appel par va-
leur, où une notion d’arbre de Böhm est disponible, on sait que le théorème

8



2.2 § Généralisation

de commutation s’applique [44]. Ces résultats exploitent le fait qu’en réalité,
la notion d’expansion de Taylor existe dans le cadre beaucoup plus général
de la logique linéaire différentielle [20]. De manière informelle, chaque fois
qu’un système S peut être codé en logique linéaire différentielle, une notion
d’approximation de Taylor pour S peut être “tirée-en-arrière” le long du
codage.

2.2 Généralisation

2.2.1 Formalisme bicatégorique
Définition 2.1. — Une double catégorie posetale est un objet en catégorie
dans Pos, la catégorie des ensembles partiellement ordonnés avec applications
croissantes.

Remarque 2.2. — La donnée d’une telle catégorie, D consiste en :
(i) un ensemble ordonné (D0,⩽0) dont les éléments sont appelés les objets,
(ii) un ensemble ordonné (D1,⩽1) de flèches entre les objets, dont la compo-

sition dénotée par ·, est strictement associative et a des éléments neutres
strictes ida, tels que

• si f : a→ a′, g : b→ b′ et f ⩽1 g, alors a ⩽0 b et a′ ⩽0 b
′,

• si a ⩽0 b, alors ida ⩽1 idb,
• si f : a→ b, g : b→ c, f ′ : a′ → b′, g′ : b′ → c′ et f ⩽1 f

′, g ⩽1 g
′, alors

g · f ⩽1 g
′ · f ′.

Une telle catégorie a deux opposées : une opposée verticale, Dco, dans laquelle
l’ordre des ensembles ordonnés D0 et D1 est inversé, ainsi qu’une opposée hori-
zontale, Dop, dans laquelle la direction des flèches est inversée.

Définition 2.3. — Un foncteur entre doubles catégories posetales F : D→ D′

est une paire (F0 : D0 → D′
0, F1 : D1 → D′

1) d’applications croissantes satisfai-
sants les conditions de fonctorialités habituelles et attendues :
(i) si f : a→ b, alors F1(f) : F0(a)→ F0(b),
(ii) F1(g · f) = F1(g) · (f) et F1(ida) = idF0(a).
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2 — Sur les systèmes d’approximations

Remarque 2.4. — Notons DbPos la catégorie des doubles catégories posetales
muni de ses foncteurs, elle hérite des produits de Pos.

Définition 2.5. — Une transformation naturelle θ entre deux tels foncteurs
F,G : C → D de doubles catégories posetales est une famille de flèches (θa)a∈C0

avec θaa : Fa → Ga, ∀a, a′ ∈ C0, a ⩽0 a′ ⇒ θa ⩽1 θa′, et qui est de plus naturel
au sens usuel du terme.

Remarque 2.6. — Soient deux foncteurs F,G : C → D, on notera G ⩽ F

lorsque Fa ⩽0 Ga pour tout a ∈ C0 et Ff ⩽ Gf pour tout f ∈ C1.
Une double catégorie posetaleD est dite complètement dirigé lorsque (D0,⩽0

) et (D1,⩽1) sont des DCPOs.

Définition 2.7. — Soit (D,⩽) un ordre partiel,
• un sous-ensemble ∆ ⊆ D est dirigé lorsqu’il est non-vide et ∀x, y ∈ ∆,
∃z ∈ ∆, x ⩽ z et y ⩽ z,

• (D,⩽) est complètement dirigé (DCPO) lorsque tous les sous-ensembles
dirigés de D ont un supremum dans D, noté ∨∆,

• si (D,⩽) est un DCPO et qu’il a un élément minimum ⊥ ∈ D, alors c’est
un ordre partiel complet (CPO).

Remarque 2.8. — Toute double catégorie posetale ne peut être complétée, mais
un critère d’existence de la complétion est donné.

Lemme 2.9. — Une double catégorie posetale est complétable si

∀b ⩽0 a, ∀p : b→ b′, ∃p̂ : a→ a′, p ⩽1 p̂,

∀r : c→ c′, p ⩽1 r, ∃q : a′ → a′1, idb′ ⩽1 q, q · p̂ ⩽1 r,

(et donc p ⩽1 p̂ · q ⩽1 r).

Remarque 2.10. — Ce qui peut se traduire par « les flèches horizontales sont
monotones», et, de plus, chaque flèche peut-être « sur-approximée» d’une ma-
nière minimale.

La propriété devient particulièrement flagrante si l’on interprète les objets
comme des programmes et les flèches comme des computations : si un programme
b effectue un calcul p, alors une sur-approximation a de b effectue une sur-
approximation p̂ de p (car le calcul est monotone), qui est minimale dans le sens

10
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où n’importe quelle sur-approximation de p partant d’une sur-approximation
b «plus grosse» que a est en fait une sur-approximation d’une extension de p̂.

Une double catégorie posetale complétable D admet une completion idéale
D̂, qui est complètement dirigée, et il y a un plongement pleinement fidèle
y : D→ D̂.

Exemple 2.11. — Dans Rel,

∅ {∗} ⊇

Définition 2.12. — Un système d’approximations est un foncteur entre doubles
catégories posetales

Apx : Aco × L → D

où D est la sous-catégorie de Rel introduite tantôt, L une petite catégorie, A
petite et complétable, et telles que la condition suivante soit satisfaite. Soit un
foncteur T : Lop → Rel tel que

• sur les objets,
T (M) := {t ∈ A0 | Apx(t,M) = 1},

• sur les flèches,

T (M N
f

) := {(u, t) ∈ T (N)× T (M) | ∃t u.Apx(a, f) = id1
a }.

Remarque 2.13. — On peut vérifier que T est en effet un foncteur. Pour que
Apx soit un système d’approximations, il est nécessaire que :
(i) ∀M ∈ L0, l’ensemble T (M) est dirigé (en tant que sous-ensemble ordonné

de A0),
(ii) ∀f : M → N , la relation T (f) ⊆ T (N)× T (M) est entière, c’est-à-dire que
∀u ∈ T (N), ∃t ∈ T (M) tel que (u, t) ∈ T (f).

Définition 2.14. — Un morphisme de systèmes d’approximations de Apx1 :

Aco
1 ×L1 → D à Apx2 : Aco

2 ×L2 → D est donné par deux foncteurs F : A1 → A2,

11



2 — Sur les systèmes d’approximations

G : L1 → L2 tels que

Aco
1 × L1 D

Aco
2 × L2

Apx1

F×G

⩽

Apx2

où ⩽ est l’ordre entre les foncteurs introduit tantôt.

Remarque 2.15 (Programmes en tant que suprema de leurs approximations).
— Étant donné un système d’approximations, on peut définir le tiré en arrière

Eco 1

Aco × L D

1

Apx

où 1 est la catégorie à un objet, et 1 le foncteur envoyant son seul objet sur {∗} de
D. Il est aisé de voir que Eco est en fait une sous-catégorie de Aco×L. Ainsi, E est
une sous-catégorie deA×Lop. En composant l’inclusion avec les deux projections,
on obtient ainsi un span

E

A Lco

p1 p2

Par la seconde condition de la définition de système d’approximations, p2 a la
propriété de relèvement suivante : dès que l’on a f : M → p2(u) dans L, il existe
g : e′ → e dans E tel que p2(g) = f (notons que le (−)co renverse l’ordre, pas le
sens des morphismes, donc il ne fait aucune différence que l’on considère f dans
L ou Lco).

12
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Remarque 2.16. — On peut maintenant considérer l’extension de Kan

C Lco

A

Â

p1

p2

Lanp2 (yp1)

y

qui doit être calculée en respectant l’ordre entre les foncteurs, pas les transforma-
tions naturelles (en terme double-catégoriques : ici sont considérées les transfor-
mations naturelles verticales, pas les horizontales, dans le contexte posetal, elles
sont dégénérées en ordre précédent). Le fait que Â est complètement dirigée de-
vrait être suffisant pour garantir l’existence de ce type d’extension de Kan, à
vérifier.
Observons de plus que cette construction donne un foncteur de site Lco, non pas
L. La signification de cela n’est pas claire. Habituellement, L est une catégorie,
donc Lco = L, mais en général, il y a une différence et il serait intéressant de
voir pourquoi l’ordre a besoin d’être renversé.
Remarque 2.17. — Si R : Aco × L → D dans Rel, les 2-cellules non-triviales
de D étant

0 0

1 1

1 1

id0

z

id1

Comprendre un foncteur Cco → D est une sous-catégorie qui est horizonta-
lement un sous-graphe (sous-catégorie même) de Cco, close vers le bas, (i.e.) si
A ∈ S et B ⩽ A alors B ∈ S où S est ladite sous-catégorie. Si f : A→ B ∈ S et
f ′ : A′ → B′ ∈ S, avec A′ ⩽ A, B′ ⩽ B et f ′ ⩽ f , alors f ′ ∈ S.

Si t ⊏ M , t′ ⊑ t, M ⩽ M ′, alors t′ ⊏ M ′, et pareil pour les flèches.

13
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R̂ : L → DAco
=: Â, les objets sont les doubles foncteurs entre Aco et D,

les morphismes entre F et G, horizontalement ce sont juste les transformations
naturelles habituelles, mais qui représentent des relations. Verticalement, η, c’est
des ordres, donc ce sont des inclusions ηt : Ft ⊆ Gt.

2.2.2 Formalisme bisimulation

LTS et simulations

Définition 2.18. — Un système libellé de transitions (LTS) est un quadru-
plet (S, i,L ,→), où S est un ensemble d’états, i l’état initial du système, L un
ensemble de labels, et→⊆ S ×L × S l’ensemble des transitions libellées.
Pour simplifier, on note évidemment (s, a, s′) ∈→ ⇔ s s′

a .
Définition 2.19. — Une bisimulation entre deux LTS qui ont le même en-
semble de labels L , (S, i,L ,→) et (S ′, i′,L ,→′), est une relation B ⊆ S × S ′

telle que : (i, i′) ∈ B et ∀(s, s′) ∈ B,
• s t

a ⇒ ∃t′, s′ t′
a et (t, t′) ∈ B,

• s′ t′ ⇒ ∃t, s t
a et (t, t′) ∈ B.

Remarque 2.20. — La bisimilarité est plus forte que le fait d’être doublement
similaire.

Bisimulations et λ-calcul

Proposition 2.21. — La bisimilarité applicative coïncide avec l’équivalence
contextuelle : M ≃ctx N ⇔ ∀C,

(
C[M ] normalise⇔ C[N ] normalise).

Remarque 2.22. — Dans l’appel par nom, solvable signifie normalisation de
tête, ou de même, arbre de Böhm modulo expansion infinie.
Définition 2.23. — Une bisimulation hnf est une relation B ⊆ Λ × Λ telle
que l’on ait l’un des deux :

• ni M ni N n’ont de hnf,
• M →∗

h λx⃗.yM1 . . .Mm et
N →∗

h λx⃗.yN1 . . . Nn et
∀i, (Mi, Ni) ∈ B.

14
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Exemple 2.24. — x⟨y⟩ → (λz.zz)⟨y⟩ → (λz.zz)⟨I⟩
xy → (λz.zz)y → (λz.zz)I −→ II → · · · .
Remarque 2.25. — Voir dans la thèse de Morris,M M0

C si et seulement
si M0 hnf, C[M ]→∗ M0, et M ≃h M ′ si et seulement si ∀C, C[M ] une hnf si et
seulement si C[M ′] a une hnf.

Avec le lemme : si ≈ du système ci-dessus, M ≈M ′ ⇔ M ≃h M ′.

Digression : applications ouvertes de Joyal

Définition 2.26. — Soit C une catégorie supposée pré-topos de Heyting avec
un objet d’entiers naturels (le minimum pour interpréter la logique intuition-
niste du premier ordre et l’arithmétique).
Une classe S est dite classe d’applications ouvertes de C lorsqu’elle satisfait les
axiomes suivants :
1. Tout isomorphisme appartient à S, et S est close par composition.

2. (Stabilité) Dans n’importe quel carré cartésien

Y ′ Y

X ′ X

g
⌜

f

p

si f ∈ S, alors g aussi.

3. (Descente) Dans n’importe quel carré cartésien comme précédemment, si
g ∈ S et p est épi, alors f ∈ S.

4. Les morphismes 0→ 1, et 1 + 1→ 1 sont dans S.

5. (Sommes) Si Y → X et Y ′ → X ′ sont dans S, il en va de même pour leur
somme Y + Y ′ → X +X ′.

6. (Quotients) pour n’importe quel diagramme commutatif

Z Y

B

p

g f

15
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si p est épi et g ∈ S, alors f ∈ S.

7. (Axiome de collection) Pour toute paire p : Y X et f : X A où p

est épi et f ∈ S, il existe un carré quasi-cartésien de la forme

Z Y X

B A

g

p

f

h

où h est épi et g ∈ S.
(Un tel diagramme est quasi-cartésien lorsque le morphisme évidentZ B ×A X

est un épimorphisme.)

Exemple 2.27. — Les application continues entre espaces topologiques (?).

Proposition 2.28. — Les proto-fibrations dans Cat forment une classe d’ap-
plications ouvertes.

Preuve. Notons F la classe des proto-fibrations dans Cat.

1. Iso ⊆ F clair. Stabilité par composition  :

E1 ∀e1

E2 p(e1) e2

E3 q ◦ p(e1) b

p

q

∃g

∀f

Ok.

2.

∀e′ E ′ E q(e) b′

g(e′′) b B′ B p ◦ g(e′) = f ◦ q(e′).

q

g
⌜

f

∃

∀a p

16
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3.
E ′ E

B′ B f(e) b

g f

p ∀a

∃b′, b′′ ∈ B′, f(e) = p(b′′), b = p(b′).
Si ∃e′ ∈ E ′ telle que e est sa projection, alors par proto-fibration g, on
relève, et on pousse par E ′ → E , et puisque le carré est commutatif, le
codomaine de la flèche obtenue est bien e.

4. 0 = ∅ et 1 = • est une proto-fibration triviale.
1⨿ 1→ 1 aussi, puisqu’il n’y a que l’identité à relever.

5. Soient p, p′ ∈ F ,
E ⨿ E ′ ∀e

B ⨿ B′

p⨿p′

immédiat car ⨿ dans Cat « union disjointe ».

6.
E E ′

B

p

g

f

p étant épic, g proto-fibration, immédiat, même si p est seulement essen-
tiellement surjectif et plein.
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Chapitre 3
Sur un calcul de processus

3.1 Introduction

LL
’objectif principal de ce chapitre est de montrer que les diffé-

rentes formes du théorème de commutation sont des «tirés-en-arrière»
d’un théorème de commutation plus général. Nous introduisons à cet effet
un calcul de processus correspondant à une forme de logique linéaire diffé-
rentielle, puis définissons des approximations de Böhm et de Taylor pour
ce calcul et prouvons le théorème de commutation à ce niveau de générali-
té. Nous montrons également que, dès qu’un système S se plonge dans Proc
de manière suffisamment intéressante, les arbres de Böhm, le développement
de Taylor et le théorème de commutation se «tirent-en-arrière» automa-
tiquement à S. Les théorèmes de commutation connus de [27, 29, 44] sont
couverts par ces résultats et sont présentés dans le chapitre 4, de même pour
les types intersections.

En termes de réseaux de preuves, le calcul Proc est une représentation du
calcul de processus de structures de preuves non-typées (i.e. , pas nécessaire-
ment des objets logiquement corrects) de la logique linéaire différentielle, plus
précisément, d’une version non-polarisée des structures de preuve de Hon-
da et de Laurent [34]. La section 4.1.1 donne davantage de détails sur le
lien avec les preuves de la logique linéaire. Les règles de réduction de Proc re-
flètent le calcul des processus usuel et sont moins fines que celles des réseaux
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différentiels habituels [28, 48, 45], tout en étant sémantiquement correctes.
Il est à noter que Proc n’est pas canonique : toute autre syntaxe pour la lo-
gique linéaire différentielle classique (par exemple, une extension de la syntaxe
d’Accattoli [1]) fonctionnerait probablement. Cependant, l’approche via
le calcul Proc fournit une syntaxe maniable.

Une autre différence est que nous ne considérons pas les sommes formelles.
Dans la littérature sur les λ-calculs différentiels, les sommes formelles sont
utilisées pour représenter le non-déterminisme : un choix non-déterministe
comme t→ u1 et t→ u2 est exprimé par la réduction déterministe t→ u1 + u2.
Comme il est d’usage dans les calculs de processus, il n’y a pas de sommes
formelles dans Proc, et le non-déterminisme n’est pas contrôlé (le calcul n’est
pas confluent). En outre, ces approximations de Taylor sont rigides au sens
de [49, 42]. Intuitivement, cela est implicite dans la règle de communication
habituelle des calculs de processus polyadiques, qui est quelque chose comme

a⟨b1, b2⟩ | a(c1, c2).P → P{b1/c1}{b2/c2}

(cf. définition 3.17, règle⊗/`). Les syntaxes non-rigides comme celles habituel-
lement considérées pour définir les approximations de Taylor correspon-
draient à b1, b2 non-ordonnés dans la sortie a⟨b1, b2⟩ (ı, ils forment un multi-
ensemble plutôt qu’une liste) et la réduction ci-dessus deviendrait :

a⟨b1, b2⟩ | a(c1, c2).P → P{b1/c1}{b2/c2}+ P{b2/c1}{b1/c2},

c’est-à-dire que nous considérons chaque ordre possible du multi-ensemble
et utilisons des sommes formelles pour rassembler tous les résultats. L’utilisa-
tion de la rigidité et l’abandon des sommes permettent d’importantes simpli-
fications syntaxiques sans aucune perte sémantique. Nous nous restreignons
ici en omettant les aspects quantitatifs (les coefficients de la série de Taylor).
Cette simplification fait d’autant plus sens que dans un grand nombre de cas
(par exemple ceux de [6]), ceux-ci ne sont pas nécessaires.

3.2 Système de réduction
En premier lieu, il convient d’introduire quelques points rapides de voca-

bulaire tirés des systèmes de réduction utilisés en théorie de la réécriture [47].
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Définition 3.1 (ARS). — Un système de réduction abstrait A est un couple
formé d’un ensemble A et d’un ensemble de relations binaires→i, indexées par
un ensemble I, A = (A, {→i | i ∈ I}).
Pour i ∈ I, les relations→i sont appelées réductions ou relations de réécriture.

Remarque 3.2. — La définition d’ARS coïncide à celle d’un système de tran-
sitions étiqueté (LTS) [46], mais pour faire de la réécriture plutôt que des bisi-
mulations.

Remarque 3.3 (Calculs et bureaucratie). — Nous aimerions maintenant dé-
finir une notion d’approximation dans les calculs simples tels que le λ-calcul
et certaines de ses variations, et donc dans les logiques associées. Classiquement,
une définition proche de celle de système de réduction avec seulement un type de
flèche, comme pour la β-réduction, pourrait suffire. Pour des raisons techniques
d’encodages dans le chapitre 4, nous introduisons cependant une distinction
entre flèche/réduction calculatoire et flèche/réduction administrative. Les ré-
ductions administratives sont celles que « l’on doit faire», mais qui ne donnent
pas beaucoup d’information du calcul en cours, telles que l’application de règles
structurelles en calcul des séquents.

Définition 3.4 (Système d’approximation). — Un système d’approximation
est un ARS (A, {→ci ,→aj}i∈I,j∈J) où

• les flèches sont étiquetées par les ci sont dites calculatoires, et celle étiquetées
par les aj sont dite administrative ;

• une réduction ou un chemin est une suite de flèches ;
• une réduction est dite calculatoire si elle contient au moins une flèche
calculatoire.

Définition 3.5 (Plongement). — Un morphisme entre deux systèmes d’ap-
proximation est la donnée d’une application entre les flèches des graphes sous-
jacents telle que :

• les flèches sont envoyées sur des chemins,
• les flèches calculatoires sont envoyées sur des chemins calculatoires.

Soient S et T deux systèmes d’approximation, un plongement f entre S et T
est un morphisme entre ces deux systèmes et qui reflète les flèches calculatoires :
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∀s ∈ S, f(s) →∗ t′ calculatoire implique ∃s′ ∈ S, t′ →∗ f(s′) et s →∗ s′ calcula-
toire. Diagrammatiquement :

S s s′

T f(s) t′ f(s′).

f

∗

∗ ∗

Remarque 3.6 (Catégorique). — L’intuition issue de la théorie des catégories
est ici très présente. En effet, les systèmes de réduction sont moralement vus
comme des catégories, les éléments de l’ARS comme les objets, les morphismes
comme des foncteurs et les plongements comme des fibrations ou plutôt des skew-
proto-opfibrations. Plus précisément, le côté skew car il faut potentiellement
continuer la réduction avant de pouvoir faire le relèvement, et le côté proto car
l’unicité n’est pas assurée.

Lemme 3.7. — La composition de deux plongements est un plongement.

Preuve. Prenons deux p2 et p3 plongements qui se composent, diagrammati-
quement :

E1 e1 e′′′1

E2 p2(e1) e′′2 e′′′2

E3 p3 ◦ p2(e1) e′3 e′′3 p3(e
′′′
2 ).

p2

∗

f1 ∗

p3

∗

f2 ∗ f ′
2 ∗

f3 ∗ f ′
3 ∗ p3(f ′

2) ∗

Les couleurs indiquent les étapes. Partons de la réduction f3 supposée calcula-
toire, p3 étant un plongement on en déduit f2 calculatoire, en utilisant le fait
que p2 est un plongement on en déduit f1 telle que voulue.

Remarque 3.8. —

• Il est possible de se demander «  pourquoi pas un simple pré-ordre ou une
catégorie  ? » pour la définition de système d’approximation.
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Un problème de la “catégorification” de cette notion est la suivante :

t t′

·

s · · s′

·

en effet, dans ce genre de cas, le plongement aurait à choisir un des chemins
de réduction possible et la propriété deviendrait fausse pour l’autre dans
tous les cas. Quant aux pré-ordres, ce sont également des catégories.

• Il est également possible de trouver deux termes tels que l’on peut passer
de l’un à l’autre soit via une réduction calculatoire, soit via une réduction
administrative. En anticipant les notations le calcul des processus ci-après
(section 3.3) :

νx!x(a).P νx!x(a).P

0

⊗/` ∗

w
w

dans le cas où l’étape calculatoire se passe dans une boîte que l’on va ou-
blier.

3.3 Processus
Fixons deux ensembles disjoints, infinis et dénombrables denoms linéaires,

désignés par a, b, c, . . . et de noms cartésiens, désignés par x, y, z, . . . Comme il
est d’usage dans les calculs de processus, nous désignons par ã des suites (éven-
tuellement vides) de noms linéaires, et nous écrivons |ã| pour la longueur de
ã.

Définition 3.9 (Pré-processus). — Les pré-processus sont définis par la gram-
maire 3.1.
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P,Q ::= 0 preuve vide
| P | Q mix
| a↔ b axiome
| a⟨̃b⟩ tenseur n-air
| a⟨̃b⟩ par n-air

| a(x)P contraction n-air
| a(x)P cocontraction n-air
| νxP coupure exponentielle
| x⟨a⟩ déréliction
| x⟨a⟩ codéréliction
| !x(a).P boîte exponentielle

Grammaire 3.1 : Pré-processus

Les pré-processus linéaires sont ceux engendrés uniquement par la première
partie. Les lettresminuscules p, q, . . . seront utilisés pour désigner les pré-processus
linéaires.
Remarque 3.10. — Dans la littérature sur les calculs de processus, a ↔ b est
généralement appelé transmetteur linéaire ; nous l’appellerons axiome pour sou-
ligner le lien avec les réseaux de preuves.
Définition 3.11 (Contexte). — Les contextes sont définis comme des pré-
processus, mais avec l’ajout d’un trou {−}. Comme d’habitude, nous ne consi-
dérons que les contextes ayant exactement une occurrence du trou, et nous les
désignons par C. Nous désignons par C{P} le pré-processus obtenu en insérant
le pré-processus P dans le trou de C.
Définition 3.12 (Occurrence des noms). — Un nom linéaire a est dit appa-
raître comme sujet dans

a⟨̃b⟩, a⟨̃b⟩, a(x)P, a(x)P, a↔ b, b↔ a.

Toutes les autres occurrences de a apparaissent comme objet.
Les notations νx, a(x) et a(x) sont appelées lieurs cartésiens : dans νxP ,

a(x)P et a(x)P , le nom cartésien x est lié, et l’α-équivalence s’applique comme
d’habitude. Un nom cartésien qui n’est pas lié est libre.
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Si un nom cartésien x apparaît ailleurs que dans un lieur, il est dit appa-
raître comme sujet, et une telle occurrence est positive si elle est de la forme
x⟨a⟩, ou négative si elle est de la forme x⟨a⟩ ou !x(a).P .

Définition 3.13 (Processus). — Un processus (linéaire) est un pré-processus
(linéaire) qui vérifie :

• Chaque nom linéaire apparaît au maximum deux fois. S’il n’apparaît
qu’une fois, il est libre, sinon il est lié et l’α-équivalence s’applique ; fn(P )

désigne l’ensemble des noms libres de P , à la fois linéaires et cartésiens.
• Dans a(x)P (resp. a(x)P ) chaque occurrence libre de x dans P (s’il y en a)
est positive (resp. négative).

• Dans !x(a).P , fn(P ) = {a} ∪ X où X est constitué uniquement de va-
riables cartésiennes ayant des occurrences positives dans P (le cas X = ∅
est autorisé).

Définition 3.14 (Congruence structurelle). — La congruence structurelle est
la fermeture réflexive, symétrique, transitive et contextuelle des règles suivantes :

associativité (P | Q) | R ≡ P | (Q | R)

commutativité P | Q ≡ Q | P
neutre P | 0 ≡ P

absorbant νx0 ≡ 0

extrusion de portée βP | Q ≡ β(P | Q) β lie x ̸∈ fn(Q)

échange de lieurs βγP ≡ γβP β, γ lieurs cartésiens,
symétrie a↔ b ≡ b↔ a

coupure a↔ b | P ≡ P{a/b} b ∈ fn(P ).

Lemme 3.15. — Être un processus est préservé par la congruence structurelle.

Preuve. Les règles d’associativité, de commutativité, du neutre, d’échange de
lieurs et de symétrie préservent la syntaxe de pré-processus et n’altèrent pas les
variables ni leur statut liées/libres, ni leur positivité.

La règle d’absorption élimine ou introduit des variables muettes liées à une
coupure exponentielle. La règle d’extrusion de portée prête attention à ne pas
capturer de variable.
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Pour la règle de la coupure, puisqu’il n’y a qu’une unique occurrence libre
de b dans P (car nom linéaire), et qui est substituée avec a dans P{a/b}, alors
la structure de processus est également préservée.

Remarque 3.16 (sur une traduction). — Nous avons le «dictionnaire» sui-
vant entre le vocabulaire des calculs de processus et celui des réseaux de preuves
de la logique linéaire différentielle :

Syntaxe Calcul des processus Logique Linéaire
0 processus terminé preuve vide

P | Q composition parallèle juxtaposition de réseaux
a↔ b transmetteur linéaire axiome
a⟨̃b⟩ émission atomique linéaire tenseur n-aire
a⟨̃b⟩ réception atomique linéaire nœud par n-aire
νxP restriction de nom coupure exponentielle (*)
a(x)P préfixe d’émission contraction n-aire (**)
a(x)P préfixe de réception cocontraction n-aire (**)
x⟨a⟩ émission atomique nœud de dérélection
x⟨a⟩ réception atomique nœud de codéréliction

!x(a).P émission répliquée (serveur) boîte exponentielle (***)

(*) : les «  coupures linéaires » sont représentées comme expliqué dans la défini-
tion 3.18 ci-dessous ;
(**) : l’arité est le nombre d’occurrences de x dans P ;
(***) : avec une porte principale x et autant de portes auxiliaires qu’il n’y a
d’occurrences de noms libres dans P .

L’idée est la suivante : les noms libres d’un processus correspondent aux
conclusions d’un réseau non-typé. La congruence structurelle correspond à l’éga-
lité des réseaux (au sens des représentations graphiques), enrichie de l’élimi-
nation des coupures avec axiomes (ceci est cohérent avec les réseaux d’interac-
tion [28], dans lesquels les axiomes sont juste des fils).

Définition 3.17 (Réduction). — Les règles de base de la réduction sont les
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suivantes :

a⟨̃b⟩ | a⟨c̃⟩ | P →⊗/` P{b̃/c̃} |̃b| = |c̃|, c̃ ⊆ fn(P )

a(x)P | a(x)Q →!/? νx(P | Q)

νx(x⟨a⟩ | x⟨b⟩ | P ) →cod0 νxP{a/b} b ∈ fn(P )

νx(C{x⟨a⟩} | !x(b).P ) →c νx(C{P{a/b}} | !x(b).P )

νx(!x(a).P | Q) →w νxQ x ̸∈ fn+(Q)

plus la règle

νx(!y(c).C{x⟨a⟩} | x⟨b⟩ | P ) →cod! νx(!y(c).νwC{w⟨a⟩} | y⟨c⟩ | νz(C{z⟨a⟩} | z⟨b⟩) | P )

dans laquelle w et z sont des nouveaux noms. Dans la règle w, x ̸∈ fn+(Q)

signifie que x n’a pas d’occurrence positive libre dans Q.
Seule la règle →⊗/` est considérée comme calculatoire pour établir le système
de réductions correspondant, les autres règles étant administratives.

Définition 3.18 (Processus sans coupure). —

• Une coupure linéaire dans un processus est un nom linéaire apparaissant
deux fois comme sujet.

• Une coupure cartésienne est un sous-processus de la forme νxP .

• Un processus est sans coupure s’il ne contient ni coupure linéaire ni cou-
pure cartésienne.

• Un processus P a une forme sans coupure si P →∗ N avec N sans coupure.

Remarque 3.19 (sur DiLL). — Les règles de base de la définition 3.17 sont
une reformulation des étapes d’élimination des coupures des réseaux de preuve
de la logique linéaire différentielle.

• La règle ⊗/` est l’étape multiplicative.
• La règle !/? réduit une coupure entre une contraction et une cocontrac-
tion. Cependant, au lieu de la règle habituelle !/? qui fait commuter les
deux, cette règle crée une coupure cartésienne (qui pourrait également être
appeler « coupure exponentielle»).
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• Les coupures cartésiennes doivent être considérées comme des zones de
communication au sens d’Ehrhard et Laurent [26]. Un nombre
quelconque de dérélictions et de codérélictions/boîtes (autant que les pré-
misses de la contraction et de la cocontraction à l’origine de la coupure)
peut être apparié de manière non-déterministe dans une coupure carté-
sienne, en utilisant les règles cod0 (déréliction/codéréliction), cod! (une
codéréliction interagissant avec le bord d’une boîte) ou c (une déréliction
extrayant une copie d’une boîte).

• La règle w efface une boîte lorsqu’il n’y a plus de déréliction. Ici, les zones
de communication sont considérées comme primitives, plutôt que de les
implémenter comme dans [26].

La présentation habituelle de l’élimination des coupures de la logique linéaire
différentielle est basée sur des règles plus fines que celles-ci. Dans leur codage
des calculs de processus, Ehrhard et Regnier utilisent cette granularité plus
fine pour mettre en œuvre des «zones de communication» garantissant que les
entrées peuvent interagir avec les sorties [26]. Cela signifie, qu’ici, cette formu-
lation est sémantiquement correcte par rapport à la formulation habituelle :
les règles de granularité plus fine peuvent simuler nos règles. Cependant, notre
formulation a l’avantage de correspondre à la tradition des calculs de processus,
ainsi que de résoudre les problèmes signalés dans [40]. Ces problèmes sont pré-
cisément dus au fait que les règles habituelles d’élimination des coupures sont
trop fines pour exprimer la concurrence de la même manière que les calculs de
processus.

Remarque 3.20 (sur les calculs de processus). — Le calcul de processus Proc
présente quelques caractéristiques inhabituelles par rapport aux calculs de pro-
cessus standards. La plus inhabituelle est la présence de noms linéaires et la
convention selon laquelle un nom linéaire est lié dès qu’il apparaît deux fois.
Par exemple, le processus a⟨⟩ | a⟨⟩ | b⟨⟩ serait usuellement écrit νa(a⟨⟩ | a⟨⟩ | b⟨⟩).
Cela conduirait à une prolifération de ν, c’est pourquoi il est ici choisi de laisser
ces restrictions de noms implicites.

Une autre différence remarquable est que la réduction à l’intérieur des
boîtes est autorisée : si P → Q, alors !x(a).P → !x(a).Q. Ceci est utile pour
coder les λ-calculs dont les réductions peuvent se produire dans des positions
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arbitraires. C’est essentiel pour récupérer, par exemple, les arbres de Böhm ha-
bituels. Dans la section 4.1.2 nous considérons les réductions superficielles, qui
ne se produisent qu’à l’extérieur des boîtes et correspondent à la réduction stan-
dard des calculs de processus. C’est la notion de réduction à laquelle les types
intersection sont le plus immédiatement applicables. Elle est également utile
pour coder les stratégies de réduction faible des λ-calculs, qui ne se réduisent
pas sous les λ.

Remarque 3.21 (sur les coupures). — Toutes les réductions de base impliquent
une coupure. Par conséquent, un processus sans coupure est normal en ce qui
concerne la réduction. L’inverse est faux : par exemple, a⟨⟩ | a⟨b⟩ est un pro-
cessus normal contenant une coupure avec une « incompatibilité d’arité». Les
coupures auxquelles aucune réduction ne s’applique sont appelées irréductibles.
D’autres exemples de coupures linéaires irréductibles sont des «conflits» tels que
a⟨b⟩ | a(x)P ou a⟨b⟩ | a⟨c⟩, ou des «cercles vicieux» tels que a↔ a. En logique
linéaire : le premier correspond à une coupure entre un tenseur et une contrac-
tion ; le second à une coupure entre deux tenseurs ; le troisième à une coupure
entre les deux conclusions d’un axiome. Les coupures cartésiennes irréductibles
sont de la forme νx(x⟨a⟩ | P ) (resp. νx(x⟨a⟩ | P )) avec P ne contenant aucune
occurrence négative (resp. positive) de x (en logique linéaire : la première cor-
respond à une coupure entre une déréliction et un affaiblissement, la seconde à
une coupure entre une codéréliction et un affaiblissement). Dans la section 4.1.1,
seront introduits les types et la correction. Les premiers éliminent les collisions
et les incompatibilités d’arité, les seconds les cercles vicieux. En revanche, des
coupures cartésiennes irréductibles peuvent être présentes même dans des proces-
sus corrects bien typés. Elles correspondent à des situations qui, dans la syntaxe
habituelle de la logique linéaire différentielle utilisant des sommes formelles, se
réduisent à la somme vide.

Lemme 3.22. — P →∗ Q implique P{a/b} →∗ Q{a/b}.

Démonstration. Par induction sur la longueur de la réduction, nous réduisons
au cas d’une étape unique C{R} → C{R′}, cela est prouvé par induction sur C
et par la définition 3.17.
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3.4 Approximations

3.4.1 Approximations de Taylor
Définition 3.23 (Processus de Taylor). — Les processus de Taylor sont
des processus linéaires dans lesquels certaines entrées et sorties sont marquées
comme «spéciales» et désignées par a⟨⟨̃b⟩⟩ et a⟨⟨̃b⟩⟩.
La réduction est définie comme dans les processus linéaires, avec la règle ⊗/`
de la définition 3.17, mais elle est restreinte aux paires spécial/spécial et non-
spécial/non-spécial, c’est-à-dire que a⟨̃b⟩ | a⟨⟨c̃⟩⟩ est irréductible même dans le
cas où |̃b| = |c̃|.
Le système de réduction ayant comme objets les processus de Taylor est désigné
par T ay.

Remarque 3.24 (Oublie). — Il existe un morphisme évident T ay → LinProc
qui oublie les annotations «spéciales». Il ne s’agit pas d’un plongement : a⟨⟨⟩⟩ |
a⟨⟩ est envoyé sur a⟨⟩ | a⟨⟩, qui se réduit à 0, mais le processus original ne peut
pas se réduire.

Lemme 3.25. — Dans les processus de Taylor, la réduction est fortement
confluente et se termine.

Démonstration. Les seules étapes de réduction sont du type ⊗/`, et elles ne
peuvent pas se superposer, d’où la confluence forte.
Quant à la terminaison, définissons la taille d’un processus de Taylor comme
étant le nombre d’axiomes et de sous-processus de la forme a⟨̃b⟩, a⟨̃b⟩, a⟨⟨̃b⟩⟩,
a⟨⟨̃b⟩⟩ qui sont présents dans le processus. En regardant la définition 3.14 et la
règle ⊗/`, nous voyons que la taille est préservée par la congruence structu-
relle et qu’elle diminue strictement sous l’effet de la réduction, ce qui implique
la terminaison.

Définition 3.26 (Approximations de Taylor). — La relation d’approxi-
mation de Taylor est définie par les règles de la figure 3.1. Elle utilise des
jugements d’approximation de la forme p ⊏ P ⊢ Ξ;Ξ′ où :

• p est un processus de Taylor et P un processus arbitraire ;
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0 ⊏ 0 ⊢; a⟨̃b⟩ ⊏ a⟨̃b⟩ ⊢; a⟨̃b⟩ ⊏ a⟨̃b⟩ ⊢; a↔ b ⊏ a↔ b ⊢;

p ⊏ P ⊢ Ξ;Ξ′ q ⊏ Q ⊢ Υ;Υ′

p | q ⊏ P | Q ⊢ Ξ,Υ;Ξ′,Υ′

p ⊏ P ⊢ Ξ, ã ⊏ x; Ξ′, b̃ ⊏ x
|ã| = |̃b|

p{ã/b̃} ⊏ νxP ⊢ Ξ;Ξ′

p ⊏ P ⊢ Ξ, b̃ ⊏ x; Ξ′
x ̸∈ Ξ

a⟨⟨̃b⟩⟩ | p ⊏ a(x)P ⊢ Ξ;Ξ′

p ⊏ P ⊢ Ξ;Ξ′, b̃ ⊏ x
x ̸∈ Ξ′

a⟨⟨̃b⟩⟩ | p ⊏ a(x)P ⊢ Ξ;Ξ′

a ̸= b
a↔ b ⊏ x⟨b⟩ ⊢ a ⊏ x;

a ̸= b
a↔ b ⊏ x⟨b⟩ ⊢; a ⊏ x

p1 ⊏ P{a1/a} ⊢ Ξ1; · · · pn ⊏ P{an/a} ⊢ Ξn; ∀i ai ̸∈ fn(P )
p1 | · · · | pn ⊏ !x(a).P ⊢ Ξ1, . . . ,Ξn; a1 ⊏ x, . . . , an ⊏ x

Fig. 3.1 : Approximations de Taylor. La notation ã ⊏ x signifie a1 ⊏
x, . . . , an ⊏ x (où n = 0 est possible).

• Ξ et Ξ′ sont des ensembles finis disjoints de paires de la forme a ⊏ x, où
a est un nom linéaire n’apparaissant pas librement dans P , et x un nom
cartésien, tel que chaque nom linéaire apparaît au plus une fois dans Ξ∪Ξ′.

Remarque 3.27. — L’intuition est que a ⊏ x dans Ξ (resp. Ξ′) signifie que
le nom linéaire a approxime une occurrence positive (resp. négative) du nom
cartésien x.
Dans la suite, nous écrirons p ⊏ P lorsqu’un jugement de la forme p ⊏ P ⊢ Ξ;Ξ′

est dérivable pour certains Ξ,Ξ′.

Lemme 3.28. — Soit p ⊏ P , alors :

1. P = Q{a/b} si et seulement s’il existe q ⊏ Q tel que p = q{a/b} ;

2. si P = C{Q} avec fn(Q) = {a} ∪ X et X est composé de noms cartésiens
avec seulement des occurrences positives, alors p ≡ t | q1 | · · · | qn pour qi et
t tels que t ⊏ C{x⟨a⟩} dès que x ∈ fn(C{x⟨a⟩}), et qi ⊏ Q{ai/a} pour tout
1 ⩽ i ⩽ n, les ai étant deux à deux distincts ;
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3. P ≡ P ′ (resp. p ≡ p′) implique p ≡ p′ pour un certain p′ (resp. P ≡ P ′

pour un certain P ′) tel que p′ ⊏ P ′.

Démonstration. Le point (1) est prouvé par induction sur P . Le point (2) est
prouvé par induction sur C. Le point (3) est prouvé en vérifiant chaque règle
de congruence structurelle (définition 3.14) et ensuite par induction sur les
contextes.

Remarque 3.29. — Le point (3) du lemme 3.28 assure que nous pouvons utili-
ser de manière transparente la congruence structurelle avec les approximations
de Taylor, ce que nous ferons à partir de maintenant.

Prouvons maintenant les deux propriétés fondamentales des approxima-
tions de Taylor, à savoir qu’elles peuvent être tirées-en-arrière le long de ré-
ductions arbitraires et poussées-en-avant le long de réductions à des formes
sans coupure.

Lemme 3.30 (Tiré-en-arrière). — Soit P →∗ Q et q ⊏ Q, alors, il existe p ⊏ P

tel que p→∗ q. Diagrammatiquement :

P Q

q

∗

⊏ =⇒
P Q

p q

∗

⊏

∗

⊏

Démonstration. Commençons par prouver le lemme lorsque P = R, Q = R′

et R→ R′ au moyen d’une des règles de réduction de base (définition 3.17).

• Les cas ⊗/` et !/? sont des applications du point (1) du lemme 3.28.
• Pour les cas cod0, cod!, c et w, on montre que q ⊏ R′ implique q ⊏ R, donc

le tiré-en-arrière est la réduction vide. Cette affirmation est directe pour
les règles cod0, cod! et w ; pour la règle c, le point (2) du lemme 3.28 est
utilisé.

Ensuite, prouvons le lemme pour la réduction en une étape, c’est-à-dire
lorsque P ≡ C{R}, Q ≡ C{R′} et R→ R′ à l’aide d’une règle de base. Définis-
sons la profondeur du contexteC comme étant le nombre de boîtes imbriquées
à l’intérieur desquelles se trouve le trou. La preuve se fait par induction sur la
profondeur de C.
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• Si la profondeur est nulle, alors C ≡ νz̃(S | {−}) pour un certain S, d’où
l’on déduit q ≡ (s | r′)σ où s ⊏ S, r′ ⊏ R′ et σ est une substitution.

• Appliquons le résultat que nous avons prouvé ci-dessus, et obtenons r ⊏
R tel que r →∗ r′. Ensuite, prenons p := (s | r)σ, alors p ⊏ P est tel que,
en utilisant le lemme 3.22, p→∗ q comme souhaité. SiC a une profondeur
de d+ 1, alors C ≡ νz̃(S | !x(a).C′) pour un processus S et un contexte C′

de profondeur d.
Nous obtenons donc q ≡ (s | q1 | · · · | qn)σ avec s ⊏ S et qi ⊏ C′{R′}{ai/a}
pour tout 1 ⩽ i ⩽ n. Par hypothèse et par le lemme 3.22, nous avons
C′{R}{ai/a} → C′{R′}{ai/a}, appliquons donc l’hypothèse d’induction
à chaque qi et obtenons pi ⊏ C′{R}{ai/a} tel que pi →∗ qi. Ensuite, en
posant p := (s | p1 | · · · | pn)σ, nous avons p ⊏ P tel que p→∗ q, et nous
concluons.

Enfin, prouvons la version générale du lemme par induction sur la lon-
gueur de la réduction P →∗ Q. L’énoncé est vrai pour la longueur zéro car
P ≡ Q. Pour une longueur de k + 1, nous avons P → P1 →∗ Q avec P1 →∗ Q

de longueur k. Étant donné q ⊏ Q, l’hypothèse d’induction donne p1 ⊏ P1 tel
que p1 →∗ q. Ensuite, appliquons à p1 le cas prouvé ci-dessus en une étape et
nous obtenons le p ⊏ P souhaité, tel que p→∗ p1 →∗ q.

Lemme 3.31. — Soit p ⊏ P tel que p a une forme sans coupure et p→ p′ (ré-
duction en une étape). Il existe alors des réductions p′ →∗ q et P → Q telles que
q ⊏ Q. Diagrammatiquement :

P

p p′

⊏ =⇒
P Q

p p′ q

⊏

∗

⊏

Démonstration. La preuve se fait par induction sur la structure de P . Nous
n’incluons que les cas compliqués, c’est-à-dire lorsque P est une composition
parallèle, une boîte ou une restriction.

• Si P = P1 | P2, alors nous savons que p = p1 | p2 avec pi ⊏ Pi. La ré-
duction peut être effectuée dans l’un des pi, auquel cas il suffit d’utiliser
l’hypothèse d’induction pour conclure, ou il peut s’agir d’une réduction
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entre une sortie dans, disons, p1 et une entrée dans p2. Via la figure 3.1,
cela signifie que P1 est de la forme a⟨̃b⟩ | P ′

1 ou a(x)P ′
1, et P2 de la forme

duale, de sorte que P peut se réduire via une communication.

• Si P = !x(a).P ′, alors p = p1 | · · · | pn avec pi ⊏ P ′{ai/a}. L’étape p→ p′

ne peut pas se produire à cause d’une communication entre deux pi dis-
tincts.
Si c’était le cas, un nom libre b apparaitrait comme sujet d’entrée dans
certains pi. Or, il n’est pas possible que b = ai, car ai n’apparaît dans
aucun autre pj avec j ̸= i. Ainsi, puisque les boîtes ne peuvent pas avoir
de nom linéaire libre, b doit approximer un nom cartésien libre de P ′,
mais c’est impossible car les noms cartésiens libres des boîtes ne peuvent
apparaître qu’en tant que sorties, et les approximations des sorties sont
toujours des sorties, nous obtenons donc pj → p′j pour un certain j, et
p′ = p1 | · · · | p′j | · · · | pn.
Comme les approximations n’introduisent pas de coupures, la coupure
réduite dans pj → p′j provient d’une coupure de P ′. Une telle coupure in-
duit une coupure dans chaque pi, car ces coupures approximent toutes
P ′. Mais p a une forme sans coupure, donc toutes ces coupures sont ré-
ductibles, donc pi → p′i pour tout i.
L’hypothèse d’induction donne alors p′i →∗ qi et P ′ → Q′

i tels que qi ⊏ Q′
i.

Cependant, comme c’est la même coupure de P ′ qui est réduite dans
chaque P ′ → Q′

i, tous les Q′
i sont en fait égaux à certains Q′, on obtient

donc comme souhaité !x(a).P →∗ !x(a).Q′ et q1 | · · · | qn ⊏ !x(a).Q′.

• Si P = νxP1, alors p = p1{ã/b̃} avec p1 ⊏ P1 et ã, b̃ approximent x comme
sortie et entrée, respectivement.
Si la réduction p→ p′ est déjà présente dans p1, c’est-à-dire si p′ = p′1{ã/b̃}
avec p1 → p′1, l’hypothèse d’induction permet de conclure.
Sinon, la réduction est rendue possible par la substitution de ai à bi pour
un certain i, cela signifie qu’il existe une occurrence de x en entrée corres-
pondant à une occurrence de x en sortie dans P1. De telles occurrences
sont uniquement déterminées par l’indice i et induisent une réduction
en une étape dans P .
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Plus précisément, nous avons P = νxC{R} et R→x R
′ où x est l’une de

cod0, cod! ou c. À ce stade, la preuve se divise en deux cas, selon la forme
de C.

– SiC est peu profond (c’est-à-dire que le trou n’est pas sous une boîte),
alors nous concluons directement.

– Dans le cas où le trou est sous une boîte, nous utilisons le même
argument que ci-dessus (pour le cas P = !x(a).P ′) pour conclure
que l’étape p→ p′ peut être «complétée» en réduisant les autres
coupures dans p approximativement à la coupure correspondant à
R→x R

′, cela donne le poussé-en-avant désiré.

Lemme 3.32 (Poussé-en-avant). — Soient p ⊏ P et p→∗ n tels que n soit sans
coupure, alors, il existe une réduction P →∗ Q telle que n ⊏ Q. Diagrammati-
quement :

P

p n

⊏

∗

=⇒
P Q

p n

∗
⊏

∗
⊏

Démonstration. Prouvons le résultat suivant, qui est une généralisation du
lemme 3.31 aux réductions de longueur arbitraire : pour tout p ⊏ P avec p

ayant une forme sans coupure et pour tout p→∗ p′, il existe p′ →∗ q et P →∗ Q

de sorte que q ⊏ Q. Diagrammatiquement :

P

p p′

⊏

∗

=⇒

P Q

p p′ q

∗

⊏

∗ ∗

⊏

Le lemme est le cas particulier dans lequel p′ est sans coupure, cela implique
q = p′.

La preuve se fait par induction sur la longueur de la réduction p→∗ p′.

• Si la longueur est nulle, alors p est elle-même sans coupure et l’affirma-
tion est immédiate.

• Supposons que la longueur est k+1. Cela signifie que p→ p1 →k p′, avec
→k dénotant une réduction en k étapes.

35



3 — Sur un calcul de processus

Diagrammatiquement, la preuve peut être représentée comme suit :

P Q1 Q

p (1) q1 q′ q

p1 p′

∗

⊏ ⊏

k ∗

(3) ⊏

k

∗
∗(2)

où (1) est valable par le lemme 3.31, (2) par le lemme 3.25 (confluence forte) et
(3) par l’hypothèse d’induction. En effet,

• par le lemme 3.31, il existe des réductions p1 →∗ q1 et P →∗ Q1 telles que
q1 ⊏ Q1. Or, il est bien connu que, dans un système fortement confluent,
les deux côtés des diamants de confluence ont la même longueur, c’est-à-
dire que si t→m t′ et t→n t′′, il existe u tel que t′ →n u et t′′ →m u.

• Par conséquent, et par lemme 3.25, il existe q′ tel que p′ →∗ q′ et q1 →k q′.
Mais q1 a toujours une forme sans coupure, car c’est un réduit de p.

L’hypothèse d’induction permet alors de conclure.

Remarque 3.33. — Le lemme 3.32 est la raison pour laquelle les entrées et
sorties «spéciales» sont requises pour les approximations de Taylor. Si, par
exemple a(x)P était approximé par a⟨̃b⟩ | p plutôt que a⟨⟨̃b⟩⟩ | p, alors la propriété
de poussé-en-avant ne serait pas vérifiée : par exemple, a(x) | a⟨⟩ ne peut pas se
réduire, mais serait approximé par a⟨⟩ | a⟨⟩, qui lui se réduit à 0. Ceci est lié au
fait que l’application d’oubli T ay → LinProc n’est pas un plongement, comme
déjà signalé dans la remarque 3.24.

3.4.2 Approximations de Böhm et théorème de commutation
Définition 3.34. — Soient P et Q deux processus de Proc, notons P ⩽0 Q

lorsque P est obtenu à partir de Q en remplaçant un nombre quelconque de ses
boîtes (i.e. de sous-processus de la forme !x(a).R) par 0.

La relation d’approximation de Böhm entre deux processus est la suivante :
N < P si

• N est sans coupure,
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• il existe P ′ tel que P →∗ P ′ et N ⩽0 P
′.

Remarque 3.35. — Le définition 3.34 s’applique également aux processus de
Taylor. Cependant, dans ce cas, ⩽0 dégénère en égalité, car il n’y a pas de
boîtes dans les processus de Taylor. Ainsi n < p signifie simplement que n est
la forme sans coupure de p, tous les processus de Taylor n’en ayant pas.

Lemme 3.36. — Pour tout processus de Taylor sans coupure n, n ⊏ P si et
seulement s’il existe un processus sans coupure N tel que n ⊏ N ⩽0 P .

Démonstration. Formellement, les deux directions se font par induction sur
P , ici sont esquissés les points clefs.

Pour le sens direct, la seule façon pour les approximations de Taylor
d’«oublier » des coupures est d’approximer une boîte avec 0. Donc, si n ⊏ P

avec n sans coupure, soit P est déjà sans coupure, et c’est terminé, soit toutes
ses coupures sont à l’intérieur de boîtes approximées par 0 dans n. Par consé-
quent, il suffit de prendre N comme P dans lequel ces mêmes boîtes sont rem-
placées par 0, et nous obtenons N sans coupure tel que n ⊏ N ⩽0 P .

La réciproque ne dépend même pas de l’absence de coupure : nous avons
n ⊏ N et N est obtenu à partir de P en remplaçant certaines boîtes par 0,
mais 0 est une approximation de Taylor de n’importe quelle boîte, donc
n ⊏ P .

Théorème 3.37 (de commutation Böhm-Taylor). — Les relations ⊏< et
<⊏ coïncident.

Démonstration. La preuve se trouve dans le diagramme suivant :

P Q N

p n n

∗

(1)

⩾0

(2)⊏

∗

⊏

=

⊏

En effet, par définition n ⊏< P est équivalent à la situation décrite dans la
partie rouge du diagramme, pour certains Q et N sans coupure.

De même, n <⊏ P est équivalent à la situation décrite dans la partie verte
du diagramme, pour un certain p.
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Pour rouge implique vert, remarquons que les approximations de Tay-
lor n’introduisent pas de coupures, donc N sans coupure implique n sans
coupure. Nous obtenons donc le carré (2) par le lemme 3.36, et le lemme 3.30
donne le carré (1).

Pour vert implique rouge, le carré (1) est donné par le lemme 3.32 et le carré
(2) par le lemme 3.36.

3.4.3 Tirer en arrière le théorème de commutation
La conséquence la plus importante du théorème 3.37 est que, dès qu’un

système de réduction S peut être encodé, plongé dans Proc, nous disposons
d’une notion d’approximations de Böhm et de Taylor pour S pour laquelle
le théorème de commutation habituel s’applique.

Dans ce qui suit, nous fixons un système de réduction arbitraire S équipé
d’un plongement f : S → Proc, au sens technique de la définition 3.5.

Définition 3.38 (Arbre de Böhm). — Soit s un objet de S, une approxima-
tion de Böhm de s est un processus sans coupure N tel que s→∗ s′ et N ⩽0 f(s

′).
L’arbre de Böhm de s, noté BT(s), est l’ensemble de toutes les approxima-

tions de Böhm de s.

Remarque 3.39. — Il aurait été possible de définir les approximations de
Böhm en demandant que f(s)→∗ f(s′) et N ⩽0 f(s

′). Le lemme 3.41 montre
que c’est équivalent, car f est un plongement.

Lemme 3.40. — Pour tout processus P et processus sans coupure N , N ⩽0 P et
P →∗ P ′ implique N ⩽0 P

′.

Démonstration. Puisque N est sans coupure et que N ne diffère de P que par
le fait que certaines boîtes de P sont remplacées par 0 dans N , alors toute cou-
pure de P est à l’intérieur d’une boîte. Par conséquent, P ′ ne diffère de P qu’à
l’intérieur de certaines boîtes. En les remplaçant par 0, on obtient à nouveau
N .

Lemme 3.41. — Pour tout objet s de S, N est une approximation de Böhm de
s si et seulement si f(s)→∗ f(s′) tel que N ⩽0 f(s

′).
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Démonstration. Diagrammatiquement :

S s s′

Proc f(s) f(s′) N.

f

∗

∗
0⩾

Pour le sens direct : par définition, nous avons une réduction s→∗ s′ dans
S telle que N ⩽0 f(s′), donc il suffit de prendre la réduction f(s)→∗ f(s′)

obtenue car f est un morphisme de systèmes d’approximation (autres voca-
bulaires : par monotonicité, par fonctorialité).

Réciproquement, supposons que f(s)→∗ f(s′). Par définition de plonge-
ment, il existe s′′ tel que f(s′)→∗ f(s′′) et s →∗ s′′. Or, par le lemme 3.40,
N ⩽0 f(s

′) implique N ⩽0 f(s
′′), donc nous concluons.

Remarque 3.42. — La terminologie «arbre de Böhm» est un abus de lan-
gage car, à proprement parler, BT(s) n’a rien d’un arbre. Cependant, dans
certains cas, il possède les propriétés des arbres de Böhm. Tout d’abord, il dé-
coule immédiatement de la définition que s→∗ s′ implique BT(s′) ⊆ BT(s).

Dans le cas où S est confluent, c’est-à-dire si toute paire de réductions de
la forme s2

∗← s →∗ s1 peut être fermée par une paire de réductions de la
forme s1 →∗ s′ ∗← s2, alors l’implication inverse s’applique également, c’est la
proposition 3.43 suivante.

Proposition 3.43. — Soit S confluent, alors s→∗ s′ impliqueBT(s) = BT(s′).

Démonstration. Il suffit de montrer que BT(s) ⊆ BT(s′). Soit N ∈ BT(s). Par
définition, s →∗ s1 tels que N ⩽0 f(s1). Par confluence, il existe s′′ tel que
s′ →∗ s′′ et s1 →∗ s′′, donc la conclusion suit par lemme 3.40.

Remarque 3.44. — En outre, lorsque S est confluent, BT(s) peut être considé-
ré comme un processus sans coupure éventuellement infini, au sens où l’on prend
la construction !x(a).P de manière coinductive dans le lemme 3.45 suivant.

Lemme 3.45. — Soit S confluent, alors BT(s) est soit vide, soit un idéal par
rapport à ⩽0.
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3 — Sur un calcul de processus

Démonstration. La fermeture vers le bas est immédiate du fait de la définition
et de la transitivité de ⩽0. Il reste à prouver que N1, N2 ∈ BT(s) implique qu’il
existe N ∈ BT(s) tel que N1, N2 ⩽0 N .

Commençons par prouver que, étant donné un processus arbitraire P , le
poset {Q | Q ⩽0 P} ordonné par ⩽0 possède un suprema binaire.

Soit τP la forêt enracinée dont les nœuds sont les boîtes de P et telle qu’il
existe une arête deR versS siS est un sous-processus deR. Par définition,Q ⩽0

P si Q est obtenu en remplaçant certaines boîtes de P par 0, de sorte que le po-
set {Q | Q ⩽0 P} est isomorphe au poset {τ | τ est une forêt enracinée de τP}
ordonné par inclusion enracinée de forêts, et ce dernier possède évidemment
un suprema binaire.

Maintenant, par définition, N1, N2 ∈ BT(s) signifie que s →∗ s1 et s →∗ s2

tels que N1 ⩽0 f(s1) et N2 ⩽0 f(s2). Par confluence, on a s′ tel que s1 →∗ s′ et
s2 →∗ s′. Par le lemme 3.40 et le fait que f est un morphisme, N1, N2 ⩽0 f(s

′),
prenons donc N comme étant le supremum de N1 et N2.

Définition 3.46 (Développement de Taylor). — Soit s un objet de S. Une
approximation de Taylor de s est un processus de Taylor p tel que p ⊏ f(s).
Le Développement de Taylor de s, noté T (s), est l’ensemble de toutes les
approximations de Taylor de s.

Le déploiement de Taylor de l’arbre de Böhm de s est l’ensemble suivant
de processus de Taylor :

T (BT(s)) := {n ⊏ N | N ∈ BT(s)}.

Remarquez que, puisque les approximations de Böhm sont sans coupure, T (BT(s))
est en fait un ensemble de processus linéaires sans coupure.

Définition 3.47. — Soit X un ensemble arbitraire de processus de Taylor,
NF(X) désigne l’ensemble des formes sans coupure des processus dans X :

NF(X) := {n sans coupure | ∃p ∈ X tel que p→∗ n}.

Théorème 3.48 (de commutation Böhm-Taylor, tiré en arrière). — Pour
tout objet s de S,

NF(T (s)) = T (BT(s)).
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3.4 § Approximations

Démonstration. En déroulant les définitions, nous avonsn ∈ NF(T (s)) sin <⊏
f(s). De même, n ∈ T (BT(s)) si n ⊏< f(s) : l’implication directe est immé-
diate à partir des définitions et du fait que f est un morphisme; la réciproque
découle du lemme 3.41, concluons alors par le théorème 3.37.
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Chapitre 4
Sur des applications

NN
ous nous appliquons ici à utiliser la théorie précédemment

construite. Dans section 4.1 sont développé les notions de correction
et de typage pour le calcul de processus Proc, puis les types intersections qui
peuvent également se faire «tirer-en-arrière» le long de certains plongements.
Les sections suivantes développent des encodages du λ!-calcul, du λµ-calcul,
ainsi que d’une variante polyadique hyperlocalisée du π-calcul dans Proc.

4.1 Logique linéaire

4.1.1 Preuves comme Processus
Le calcul des séquents de la logique linéaire classique est présenté dans la

figure 4.1, dans lequel sont omis les connecteurs additifs car non-essentiels à
notre propos. Les séquents sont divisés en trois parties, pour correspondre à
notre calcul de processus. La proposition 4.1 présentation est équivalente à
une présentation plus standard, telle que celle de Girard.

Proposition 4.1. — Un séquent ⊢ Θ;Θ′; Γ est prouvable dans le calcul des
séquents de la figure 4.1 si le séquent ⊢ ?Θ, !Θ′,Γ est prouvable dans le calcul des
séquents de la logique linéaire classique donné dans [32].

Démonstration. Observons que la traduction de chaque règle de la figure 4.1
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⊢; ;A⊥, A
⊢ Θ1; Θ

′
1; Γ, A

⊥ ⊢ Θ2; Θ
′
2; ∆, A

⊢ Θ1,Θ2; Θ
′
1,Θ

′
2; Γ,∆

⊢ Θ1, A
⊥, . . . , A⊥; Θ′

1; Γ ⊢ Θ2; Θ
′
2, A; ∆

⊢ Θ1,Θ2; Θ
′
1,Θ

′
2; Γ,∆

⊢ Θ;Θ′; Γ, A1, . . . , An

⊢ Θ;Θ′; Γ, A1 ` · · ·` An

⊢ Θ1; Θ
′
1; Γ1, A1 · · · ⊢ Θ1; Θ

′
n; Γn, An

⊢ Θ1, . . . ,Θn; Θ
′
1, . . . ,Θ

′
n; Γ1, . . . ,Γn, A1 ⊗ · · · ⊗ An

⊢ Θ;Θ′; Γ, A

⊢ Θ, A; Θ′; Γ

⊢ Θ, A, . . . , A; Θ′; Γ

⊢ Θ;Θ′; Γ, ?A

⊢ Θ; ;A

⊢ Θ;A;

⊢ Θ;Θ′, A; Γ

⊢ Θ;Θ′; Γ, !A

Fig. 4.1 : Logique linéaire. Les règles d’échange (applicables à chaque segment
de séquent) sont implicites.

est dérivable dans le calcul de Girard. Réciproquement, chaque règle du cal-
cul de Girard est dérivable dans celui-ci. La dérivation de la contraction et de
la promotion introduit des coupures, en utilisant la dérivabilité de ⊢ A; ; !A⊥.

Les règles de contraction et de promotion sont plus subtiles, elles néces-
sitent d’introduire des coupures. Pour la contraction, en commençant avec
⊢; ; Γ, ?A, ?A et, en exploitant la dérivabilité de ⊢ A; ; !A⊥, nous obtenons ⊢
A,A; ; Γ via deux coupures, à partir desquelles se dérive ⊢; ; Γ, ?A. Pour la pro-
motion, il suffit de procéder de même.

Remarque 4.2. — Le calcul des séquents de la figure 4.1 peut être décoré avec
des processus et converti en un système de types. Ceci correspond à une présen-
tation «à la Curry» de la correspondance entre nos processus et la logique
linéaire classique. Nous optons plutôt pour une présentation «à la Church»
dans la définition 4.3 suivante.

Définition 4.3 (Processus typé). — Un processus typé est un processus dans
lequel chaque occurrence de nom (sauf dans les lieurs) est décorée par une for-
mule de la logique linéaire, de telle sorte que :

• dans aA ↔ bB, B = A⊥ ;
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• deux occurrences du même nom linéaire sont décorées par la même for-
mule si l’une est sujet et l’autre objet, ou par des formules doubles si elles
sont toutes les deux sujet ou toutes les deux objet ;

• dans aA⟨bB1
1 , . . . , bBn

n ⟩ (resp. aA⟨bB1
1 , . . . , bBn

n ⟩), A = B1 ⊗ · · · ⊗ Bn (resp.
A = B1 ` · · ·`Bn) ;

• toutes les occurrences de même polarité d’un nom cartésien sont décorées
par la même formule ;

• dans νxP , les occurrences positives et négatives de x (le cas échéant) sont
décorées par des formules duales ;

• dans aA(x)P (resp. aA(x)P ), A = ?B (resp. A = !B), où B est la formule
décorant x dans P , ou est arbitraire si x /∈ fn(P ) ;

• dans xA⟨aB⟩ et xA⟨aB⟩, nous avons A = B ; de même, dans !xA(a).P , la
décoration de a dans P (qui doit apparaître) est A.

Le type d’une occurrence libre de nom comme sujet (resp. comme objet) est sa
décoration (resp. la négation de sa décoration).

Le séquent ⊢ Θ;Θ′; Γ est dit associé à P lorsque Θ (resp. Θ′, Γ) contient
tous les types de toutes les occurrences libres cartésiennes positives (resp. négatives,
cartésiennes, linéaires) de variables. Ceci est unique à une permutation des oc-
currences près. Dans la suite nous parlerons du «séquent» associé à P .

Remarque 4.4 (Sur la correction et le typage). — Il est important de noter
que le fait d’être typé n’implique pas d’être logiquement correct. Par exemple,
aA ↔ aA

⊥ est typé, mais le séquent qui lui est associé est vide. Dans la littérature
sur la logique linéaire, il existe des critères de correction [32, 18] pour isoler les
objets « semblables à des preuves». Ici la présentation dans la figure 4.2 est
inductive. Un jugement P ▷ Ξ;Ξ′; Γ signifie que P est correct et que ses noms
cartésiens positifs libres (resp. cartésiens négatifs, linéaires) sont dans Ξ (resp. Ξ′,
Γ). De plus, suivant les usages en logique linéaire, le typage et la correction sont
des notions indépendantes : un processus correct n’est pas nécessairement typable,
et vice versa.
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a ̸= b

a↔ b ▷ Ξ; ; a, b

P ▷ Ξ;Ξ′
1; Γ, a Q ▷ Ξ;Ξ′

2; ∆, a

P | Q ▷ Ξ;Ξ′
1,Ξ

′
2; Γ,∆

a⟨̃b⟩ ▷ Ξ; ; a, b̃
P ▷ Ξ;Ξ′; Γ, b̃

a⟨̃b⟩ | P ▷ Ξ;Ξ′; Γ, a

P ▷ Ξ, x; Ξ′
1; Γ Q ▷ Ξ;Ξ′

2, x; ∆

νx(P | Q) ▷ Ξ;Ξ′
1,Ξ

′
2; Γ,∆

x⟨a⟩ ▷ Ξ, x; ; a

P ▷ Ξ, x; Ξ′; Γ

a(x)P ▷ Ξ;Ξ′; Γ, a

P ▷ Ξ; ; a

!x(a).P ▷ Ξ; x;

P ▷ Ξ;Ξ′, x; Γ

a(x)P ▷ Ξ;Ξ′; Γ, a

Fig. 4.2 : Processus corrects.

Proposition 4.5. — Un séquent est prouvable dans le calcul des séquents de
la figure 4.1 s’il est associé à un processus typé correct. De plus, les preuves sans
coupure correspondent à des processus sans coupure.

Démonstration. Les deux directions se font par induction, sur la dernière règle
de la preuve du calcul des séquents ou sur la dernière règle de la dérivation de
la correction.

Remarque 4.6. — Les processus typés corrects peuvent donc être considérés
comme des preuves de la logique linéaire, et la réduction comme une procédure
d’élimination des coupures. La question de la confluence et de la terminaison
se pose. Elles doivent pouvoir être prouvées pour les processus typés corrects, cela
pourra faire l’objet de travaux futurs. Observons cependant que la figure 4.2 peut
facilement être étendu pour inclure la correction des processus non-déterministes.
Il suffit de remplacer la dernière règle de la figure 4.2 par la règle ci-dessous à
gauche, et d’ajouter la règle ci-dessous à droite :

P1 ▷ Ξ;Ξ′
1, x; Γ1 · · · Pn ▷ Ξ;Ξ′

n, x; Γn

a(x)(P1 | · · · | Pn) ▷ Ξ;Ξ′
1, . . . ,Ξ

′
n; Γ1, . . . ,Γn, a

x⟨a⟩ ▷ Ξ; x; a

Les processus typés corrects (pour cette notion étendue de correction) correspondent
aux preuves de la logique linéaire différentielle (avec promotion mais sans zéro
ni somme).
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Remarque 4.7 (Correction des règles de mélange). — Il est également pos-
sible d’ajouter la correction de ce que l’on appelle les règles de mélange : nous
ajoutons une règle nullaire dérivant 0 ▷; ; et une règle binaire dérivant P1 |
P2 ▷ ; Ξ′

1,Ξ
′
2; Γ1,Γ2 de Pi ▷ ; Ξ′

i; Γi, i ∈ {1, 2} :

0 ▷; ;
P ▷ Ξ;Ξ′

1; Γ Q ▷ Ξ;Ξ′
2; ∆

P | Q ▷ Ξ;Ξ′
1,Ξ

′
2; Γ,∆

Cette notion plus générale de correction, pour les processus non déterministes
et avec des règles de mélange, est celle que nous examinerons dans la section
suivante.

4.1.2 Types intersection
Les types intersection [16, 8], en particulier dans leur version non-idem-

potente [31, 13], sont liés aux approximations de Taylor [14, 22, 42].
Un système de types intersection non-idempotents est ici fourni pourProc

et nous montrons comment ce système se «tire-en-arrière» le long des plon-
gements, caractérisant automatiquement l’existence de formes normales via
l’inférence de types, tant que celles-ci sont correctement reflétées dans Proc.

Les exemples connus, tels que ceux cités ci-dessus ou ceux de [11], s’ins-
crivent dans ce cadre. D’après [42], nous savons que d’autres formes de types
intersection (affine, idempotente) peuvent être traitées de manière similaire.
Nous nous limitons ici au cas linéaire non idempotent.

Définition 4.8. —

• Les types intersections sont définis dans la grammaire 4.1. La dualité
(i.e. négation linéaire) est définie de manière usuelle, avec ∧ dual à ∨.

• Un jugement de type d’intersection est de la forme P ⊢ Ξ;Ξ′; Γ où Ξ

et Ξ′ (resp. Γ) contiennent des déclarations de type de la forme x : A

(resp. a : A) avec x un nom cartésien (resp. a un nom linéaire) et A un
type intersection. Le même nom cartésien peut apparaître dans plusieurs
déclarations de type dans Ξ et Ξ′, même plusieurs fois avec le même type
(cela signifie que nous considérons des types intersection non idempotents).
En revanche, un nom linéaire ne peut être déclaré qu’une seule fois dans
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A,B ::= X

| X⊥

| A1 ⊗ · · · ⊗ An

| A1 ` · · ·` An

| A1 ∧ · · · ∧ An

| A1 ∨ · · · ∨ An.

Grammaire 4.1 : Types intersections.

Γ. Le système de types intersection pour les processus est donné dans la
figure 4.3.

Définition 4.9. — Un processus de Taylor typé est défini comme dans
la définition 4.3, avec l’ajout des contraintes que dans aA⟨⟨bB1

1 , . . . , bBn
n ⟩⟩ (resp.

aA⟨⟨bB1
1 , . . . , bBn

n ⟩⟩) nous avons A = B1 · · · ∨ Bn (resp. A = B1 ∧ · · · ∧ Bn).

Remarque 4.10. — Les processus de Taylor n’ont pas de noms cartésiens, de
sorte que le séquent associé à un processus de Taylor typé est de la forme ⊢; ; Γ,
que nous écrivons simplement ⊢ Γ. Si p est un processus de Taylor typé, nous
écrivons p− pour le processus sous-jacent, sans les décorations. Dans ce qui suit,
la correction est entendue au sens généralisé de la fin de la section 4.1.1 (avec
mélange).

Lemme 4.11. — Si p est un processus de Taylor typé correct, alors p− a une
forme sans coupure.

Démonstration. Les processus de Taylor sont linéaires, donc la réduction
se termine toujours (lemme 3.25). Il suffit alors de montrer qu’il n’y a pas de
coupures irréductibles. En effet, les coupures irréductibles sont incorrectes ou
non typables et la réduction préserve la correction et les décorations de type.

Remarque 4.12. — La suite est une reformulation des résultats de [42], où
un lien générale entre les approximations de Taylor et les types intersection est
détaillé.
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0 ⊢; ;
P ⊢ Ξ1; Ξ

′
1; Γ, [a : A] Q ⊢ Ξ2; Ξ

′
2; ∆, [a : A⊥]

P | Q ⊢ Ξ1,Ξ2; Ξ
′
1,Ξ

′
2; Γ,∆ a↔ b ⊢; ; a : A, b : A⊥

a⟨b1, . . . , bn⟩ ⊢; ; a :
⊗

i Ai, b1 : A
⊥
1 . . . , bn : A⊥

n

a⟨b1, . . . , bn⟩ ⊢; ; a :
˙

i Ai, b1 : A
⊥
1 . . . , bn : A⊥

n

P ⊢ Ξ1, x : A1, . . . , x : An; Ξ
′
1; Γ Q ⊢ Ξ2; Ξ

′
2, x : A⊥

1 , . . . , x : A⊥
n ; ∆

νx(P | Q) ⊢ Ξ1,Ξ2; Ξ
′
1,Ξ

′
2; Γ,∆

P ⊢ Ξ, x : A1, . . . , x : An; Ξ
′; Γ

a(x)P ⊢ Ξ;Ξ′; Γ, a :
∨

i Ai

P1 ⊢ Ξ1; Ξ
′
1, x : A1; Γ1 . . . Pn ⊢ Ξn; Ξ

′
n, x : An; Γn

a(x)(P1 | · · · | Pn) ⊢ Ξ1, . . . ,Ξn; Ξ
′
1, . . . ,Ξ

′
n; Γ1, . . . ,Γn, a :

∧
i Ai

x⟨a⟩ ⊢ x : A; ; a : A⊥ x⟨a⟩ ⊢; x : A; a : A⊥

P ⊢ Ξ1; ; a : A1 . . . P ⊢ Ξn; ; a : An

!x(a).P ⊢ Ξ1, . . . ,Ξn; x : A1, . . . , x : An;

Fig. 4.3 : Types intersection. Dans la deuxième règle du haut, les déclarations
a : A et a : A⊥ sont soit toutes les deux présentes, soit toutes les deux absentes
(la règle est une coupure dans le premier cas, un mélange dans le second).

Proposition 4.13. — Le jugement P ⊢ Ξ;Ξ′; Γ est dérivable dans le système
de la figure 4.3 s’il existe un processus de Taylor typé correct p dont le séquent
associé est ⊢ Ξ,Ξ′,Γ tel que p− ⊏ P .
Esquisse de preuve. Intuitivement, le résultat suit de l’observation que la fi-
gure 4.3 est une superposition des figure 3.1 et figure 4.2 (avec les règles sup-
plémentaires données à la fin de la section 4.1.1), annotée avec des types.
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Lemme 4.14 (Expansion du sujet). — Si Q ⊢ ; Ξ′; Γ est dérivable et P est correct
de sorte que P → Q, alors P ⊢ ; Ξ′; Ξ′; Γ est dérivable.

Démonstration. Le résultat est une reformulation du lemme 3.30 à l’aide de
la proposition 4.13, il faut néanmoins ajouter des décorations de type. La cor-
rection de P garantit que l’approximation tirée-en-arrière est également cor-
recte.

Définition 4.15 (Superficialité). —

• Un contexte est dit superficiel si le trou n’apparaît pas à l’intérieur d’une
boîte.

• Une réduction superficielle est notée→0.

• Un processus est dit sans coupure superficielle lorsque toutes ses coupures,
s’il y en a, sont à l’intérieur de boîtes.

Définition 4.16 (Réduction peu profonde). — Une réduction est dite peu
profonde lorsqu’elle suit la définition 3.17 modifiée comme suit : la règle de
réduction cod! est supprimée, c est restreint au cas C = Q | {−}, avecQ arbitraire.
Les règles de réduction ne sont fermées que pour les contextes peu profonds.

Lemme 4.17 (Progrès). — Soit P ⊢ Ξ;Ξ′; Γ est dérivable et soit p est le processus
de Taylor typé associé selon la proposition 4.13. Alors, soit P est sans coupure
superficielle, soit P →∗

0 Q et il existe une dérivationQ ⊢ Ξ;Ξ′; Γ dont le processus
de Taylor associé q est tel que p− → q−.

Démonstration. En observant la figure 3.1, nous voyons qu’une coupure peu
profonde dansP produit une coupure dans p. Comme observé dans le lemme 4.11,
une telle coupure ne peut pas être irréductible, donc nous avons p→ q en
la réduisant. En supprimant les annotations de type, nous avons p− ⊏ P et
p− → q−, nous appliquons donc les lemme 3.32 et proposition 4.13.

Remarque 4.18. — Le lemme 4.17 ne s’applique pas aux coupures générales :
puisque les boîtes peuvent être approximées par 0, P peut contenir une coupure à
l’intérieur d’une boîte qui est invisible pour la dérivation du type d’intersection.
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Théorème 4.19. — Un processus P est typable comme dans la figure 4.3 s’il
est correct (au sens généralisé de la fin de la section 4.1.1) et P →∗

0 P0 avec P0

superficiel et sans coupure.

Démonstration. Soit P un processus typable. La correction est immédiate à
partir des règles de typage : elles sont essentiellement une décoration de la fi-
gure 4.2 plus les règles de correction supplémentaires à la fin de la section 4.1.1.
Nous devons montrer que P se réduit à un processus sans coupure peu pro-
fond.

Soit p l’approximation de Taylor typée donnée par la proposition 4.13.
Nous raisonnons par induction sur la taille de p−, telle que définie dans la
preuve du lemme 3.25.

Nous appliquons le lemme 4.17 et concluons immédiatement carP est sans
coupure superficielle ou obtenons P →∗ Q avec Q typable avec une approxi-
mation associée q telle que p− → q−. Cela implique que la taille de q− est stric-
tement plus petite que la taille de p−, donc nous concluons par l’hypothèse
d’induction.

Supposons maintenant que P →∗
0 P0 avec P0 sans coupure peu profonde.

Il est facile de prouver, par induction sur P0, que P0 est typable. Intuitivement,
nous approximons toutes les boîtes par 0 et le typage est alors garanti par l’exac-
titude et l’absence de coupures. Nous concluons par le lemme 4.14.

Remarque 4.20. — Si f : S → Proc est un morphisme de systèmes de ré-
duction, alors nous pouvons dire qu’un objet de s est typable dans les types
intersection si f(s) est typable selon la figure 4.3.

Définition 4.21. — SoitProc0 le système de réduction avec les processus comme
objets mais avec →∗

0 comme réductions. Dans ce qui suit, nous considérons un
système de réduction S avec un ensemble distingué d’objets appelé de manière
suggestive «normal». Un plongement f : S → Proc0 est dit consistant lorsque

• pour tout objet s, f(s) est correct (au sens généralisé) ;
• pour tout objet s0, s0 est normal si f(s0) est sans coupure superficielle.

Théorème 4.22. — Soit f : S → Proc0 un plongement consistant, alors, un
objet s de S est typable dans les types intersection si s→∗ s0 avec s0 normal.
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Démonstration. Supposons que s est typable, ce qui signifie que f(s) l’est. Par
le théorème 4.19, f(s)→∗

0 P0 avec P0 superficiel et sans coupure. Puisque f est
un plongement, nous avons P0 →∗

0 f(s0) tel que s→∗
0 s0. Mais P0 est sans cou-

pure superficielle, donc f(s0) = P0 et nous concluons que s0 est normal par
consistance.

Supposons à présent que s→∗ s0 avec s0 normal, ce qui implique f(s)→∗
0 f(s0).

Par consistance, f(s0) est correct et sans coupure superficielle, il est donc ty-
pable. Par consistance et par le lemme 4.14, f(s) est typable, donc s est typable
par définition.

4.2 Call-by-push-value
Il est connu que l’appel-par-valeur de Paul Levy [37] peut être exprimé

en logique linéaire intuitionniste [21], ce qui donne le bang-calcul [25], ou λ!-
calcul. Ici est utilisée une reformulation récente due à Bucciarelli et al. [11],
qui permet de montrer en même temps comment les substitutions explicites
d’Accattoli et Kesner «à distance» peuvent être manipulées sans heurts.

Définition 4.23 (λ!-calcul). —

• Les termes sont définis par la grammaire 4.2 où x s’étend sur un ensemble

t, u ::= x variable
| λx.t abstraction
| tu application
| !t modalité bien-sûr
| der t déréliction
| t[x := u] substitution explicite

Grammaire 4.2 : λ!-calcul

dénombrable de variables, pris, par commodité, pour l’ensemble des noms
cartésiens.

• Pour obtenir les contextes, il suffit d’ajouter un trou {−} à la grammaire.
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• La notation t[−] désigne un terme de la forme t[x1 := u1] · · · [xn := un],
où n peut être nul.

• Le constructeur !(−) est prioritaire sur les constructeurs binaires, i.e. , !tu et
!t[x := u] doivent être compris comme (!t)u et (!t)[x := u], respectivement.

Définition 4.24 (Réduction λ!). — La réduction est la fermeture contex-
tuelle des règles suivantes :

(λx.t)[−]u → t[x := u][−]
t[x := !u[−]] → t{u/x}[−]

der(!t[−]) → t[−]

où t{u/x} désigne la substitution, sans capture, usuelle de u à toutes les occur-
rences libres de x dans t.
Ceci induit un système de réduction Λ!.
Nous définissons inductivement une famille d’applications L−Ma : Λ! → Proc
paramétrées par un nom linéaire a :

LxMa := x⟨a⟩ Lλx.tMa := a⟨c, d⟩ | c(x)LtMdLtuMa := LtMb | b⟨c, a⟩ | LuMc L!tMa := a(z)!z(b).LtMbLder tMa := c(z)z⟨a⟩ | LtMc Lt[x := u]Ma := b(x)LtMa | LuMb.
Remarque 4.25. — Dans [11] est également introduit la réduction faible
pour le λ!-calcul, qui ne se réduit pas sous !(−), notons Λw

! le système de ré-
duction correspondant. Dans ce système nous nous restreignons aux formes nor-
males qui sont des termes dont les redex et les clashes (configurations indésirables
définies dans [11]) n’apparaissent que sous un !(−).

Proposition 4.26. — Pour tout nom linéaire a, L−Ma est un plongement. De
plus, considéré comme une application Λw

! → Proc0, c’est un plongement consis-
tant.

Remarque 4.27 (Sur λ! et call-by-push-value). — Les résultats de section 3.4.3
peuvent être formulés directement dans la syntaxe du λ!-calcul. Les arbres de
Böhm sont comme attendues : étant donné un λ!-terme t, si la réduction faible
pour t ne se termine pas, alors BT(t) = ⊥. Sinon, elle se termine sur un terme
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de la forme C{!u1, . . . , !un} où C est un contexte à trous multiples ne contenant
pas de !(−), alors, BT(t) = C{!BT(u1), . . . , !BT(un)}. Remarquons que ⊥ et !⊥
sont des arbres de Böhm différents.

Le développement de Taylor de call-by-push-value a déjà été défini et
étudié dans [15]. Cela donne ici une reformulation dans le contexte du λ! avec
des substitutions explicites. Les termes d’approximation de Taylor sont définis
dans la grammaire 4.3, où a s’étend sur les variables linéaires, i.e. , aucune

r, s ::= a

| λ⟨ã⟩.r
| rs

| ⟨r1, . . . , rn⟩
| der r

| r[⟨ã⟩ := s]

Grammaire 4.3 : λ! & CbPV

variable n’apparaît deux fois et chaque variable de ã dans les lieurs λ⟨ã⟩.t ou
t[⟨ã⟩ := u] doit apparaître libre dans t. Les règles de réduction sont les suivantes :

(λ⟨ã⟩.r)s→ r[⟨ã⟩ := s],

r[⟨ã⟩ := ⟨s̃⟩]→ r{s̃/ã},
der⟨r⟩ → r,

avec la condition que, dans la deuxième règle, |ã| = |s̃|. La relation d’ap-
proximation est définie à l’aide des jugements Ξ ⊢ r ⊏ t avec Ξ consistant en des
déclarations de la forme a ⊏ x, sans qu’aucune variable linéaire n’apparaisse
deux fois dans Ξ. La relation est définie par la figure 4.4.

Par proposition 4.26 et théorème 3.48, nous savons que les arbres de Böhm et
les approximations de Taylor ci-dessus interagissent bien. La proposition 4.26
implique également les résultats de section 4.1.2. Nous ne les détaillerons pas ici,
mais ils nous permettent d’obtenir immédiatement le système de types intersec-
tion de [11], ainsi que la propriété qu’il caractérise les termes avec des formes
normales faiblement sans conflit.
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a ⊏ x ⊢ a ⊏ x
Ξ, ã ⊏ x ⊢ r ⊏ t

Ξ ⊢ λ⟨ã⟩.r ⊏ λx.t

Ξ ⊢ r ⊏ t Υ ⊢ s ⊏ u

Ξ,Υ ⊢ rs ⊏ tu

Ξ1 ⊢ r1 ⊏ t · · · Ξn ⊢ rn ⊏ t

Ξ1, . . . ,Ξn ⊢ ⟨r̃⟩ ⊏ !t

Ξ ⊢ r ⊏ t

Ξ ⊢ der r ⊏ der t

Ξ, ã ⊏ x ⊢ r ⊏ t Υ ⊢ s ⊏ u

Ξ,Υ ⊢ r[⟨ã⟩ := s] ⊏ t[x := u]

Fig. 4.4 : Approximations de Taylor dans le λ!-calcul.

Les articles [15] et [11] considèrent tous deux les plongements bien connus de
l’appel-par-nom et de l’appel-par-valeur du λ-calcul dans call-by-push-value,
et extrapolent à partir de ces plongements des notions appropriées d’approxima-
tions de Taylor et de systèmes de types intersection pour l’appel-par-nom et
l’appel-par-valeur, en récupérant les résultats de [27, 29, 22, 44] et [31, 14, 13,
22]. Dans notre cadre, il s’agit de plongements au sens technique de la défini-
tion 3.5. Comme les plongements se composent, nous retrouvons également ces
résultats de manière uniforme.

Remarque 4.28. — En outre, nous récupérons les arbres de Böhm habi-
tuels [7] et les arbres de Böhm appel par valeur de [44], ainsi que les théorèmes
de commutation correspondants [27, 29, 44]. Cependant, les arbres de Böhm
ne sont pas n’importe quels processus, ils ont une structure qui est dictée par la
syntaxe du calcul plongé dans Proc. En effet, si f : S → Proc est un plonge-
ment et si s est un terme du calcul S, BT(s) au sens de la définition 3.38 est un
ensemble de processus sans coupures de Proc obtenus à partir de processus de la
forme f(s) où s′ parcourt les réduits de s, en remplaçant éventuellement des 0

là où f insère des boîtes.
Il est donc possible de « tirer-en-arrière» les processus de BT(s) le long de

f , et le réécrire comme des termes (normaux) de S avec éventuellement des ⊥
quelque part, correspondant aux 0. Si cela est fait dans le cas des plongements du
λ-calcul appel-par-nom et appel-par-valeur, alors les arbres de Böhm classiques
sont obtenus.

Reformulé dans l’autre sens : soit un λ-terme t et définissons son arbre de
Böhm appel-par-nom ou appel-par-valeur de la manière classique, comme un
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idéal BT(t) de λ-termes normaux avec éventuellement des ⊥. Ensuite, définis-
sons un codage de ces termes avec⊥ dans Proc, qui est exactement le plongement
f appel-par-nom ou appel-par-valeur, et qui envoie ⊥ sur le processus 0. Ain-
si, si ce codage est appliqué terme à terme à BT(t), nous obtenons exactement
BT(f(t)) (de la définition 3.38).

Cette remarque s’applique à l’identique au développement de Taylor (dé-
finition 3.46). Les approximations de Taylor sont des processus de Proc qui
approximent (figure 3.1) des traduits de termes du calcul de départ. La struc-
ture du calcul source se réfléchit donc dans la structure de ces approximants, et
il est en général facile de les décrire directement dans une sytaxe similaire à celle
du langage source.

4.3 Logique classique
Définition 4.29. — Le calcul des piles [12] est un calcul pour le calcul clas-
sique, intégrant le λµ-calcul. Sa syntaxe comporte piles π, termes t et processus
P , et est donnée par la grammaire 4.4, où α s’étend sur un ensemble infini

π ::= α

| t · π
| tl(π)

t ::= µα.P

| hd(π)

P ::= ⟨t, π⟩

Grammaire 4.4 : Calcul des piles

de variables de pile, considéré comme un sous-ensemble des noms cartésiens de
processus.
La construction µα est un lieur. La réduction est définie donnée par :

⟨µα.P, π⟩ → P{π/α} hd(t · π)→ t tl(t · π)→ π.

Définition 4.30 (Plongements pour le calcul des piles). — Soient Stk, T erm
et StkProc les systèmes de réduction induits par la grammaire 4.4, avec respec-
tivement les piles, les termes et les processus comme objets. Nous définissons deux
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familles d’applications L−Ma : Stk → Proc et L−Ma : T erm→ Proc, paramétrées
par un nom linéaire a, ainsi qu’une application L−M : StkProc → Proc de la
manière suivante :

LαMa := α⟨a⟩Lt · πMa := a⟨b, c⟩ | b(x)!x(d).LtMd | c(y)!y(e).LπMeLµα.P Ma := a(α)LP MLhd(π)Ma := LπMb | b⟨c, d⟩ | c(x)d(y)(x⟨a⟩)L⟨t, π⟩M := LtMa | a(x)!x(b).LπMbLtl(π)Ma := LπMb | b⟨c, d⟩ | c(x)d(y)(y⟨a⟩).
Proposition 4.31. — Les applications de la définition 4.30 précédente sont
des plongements.

Remarque 4.32. — Commementionné dans l’introduction, l’encodage du λµ-
calcul dans le calcul des piles n’est pas un plongement dans notre sens technique,
nous ne pouvons donc pas appliquer directement nos résultats au λµ-calcul.

Néanmoins, nous disposons maintenant d’une nouvelle théorie opération-
nelle des arbres de Böhm et du développement de Taylor pour un calcul
Curry-Howard-isomorphe à la logique classique (ce qui estmentionné comme
question ouverte dans [5] pour le contexte du λµ-calcul). Nous laissons l’étude de
cette théorie, en particulier la signification des arbres de Böhm, à des travaux
futurs.

4.4 Calculs concurrents
Définition 4.33. — Le π-calcul polyadique asynchrone est défini par la
grammaire 4.5, où nous supposons que les noms sont les noms cartésiens des
processus (de Proc).

La congruence structurelle et la réduction sont standard, avec les règles sui-
vantes :

x⟨ỹ⟩ | !x(z̃).P → P{ỹ/z̃} | !x(z̃).P
νx(!x(ỹ).P | Q)→ νxQ
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P,Q ::= 0

| P | Q
| νxP

| x⟨ỹ⟩
| !x(ỹ).P

Grammaire 4.5 : π-calcul polyadique asynchrone.

à condition, dans la deuxième règle, que x ne soit pas le sujet d’une sortie dans
Q.
Remarque 4.34. — Nous considérons ici la variante hyperlocalisée du cal-
cul [17], qui est définie en se limitant aux processus tels que, dans !x(ỹ).P , aucun
nom libre de P n’apparaît en tant que sujet d’une entrée. En outre, la réduc-
tion n’est autorisée que dans le cadre d’une restriction. Comme le montre [17], il
s’agit d’un calcul raisonnablement expressif, avec un non-déterminisme complet
ainsi que des verrous.

Soit Π le système de réduction correspondant au calcul ci-dessus. En utili-
sant la notation (z ⇒ y) := !z(c).y⟨c⟩ (en tant que processus de Proc), nous
définissons une application L−M : Π→ Proc0 en laissant

Lx⟨y1, . . . , yn⟩M := x⟨a⟩ | a⟨b1, . . . , bn⟩ | b1(z1)(z1 ⇒ y1) | · · · | bn(zn)(zn ⇒ yn)L!x(y1, . . . , yn).P M := !x(a).(a⟨b1, . . . , bn⟩ | b1(y1) · · · bn(yn)LP M)
et en faisant en sorte que L−M agisse de manière homomorphe sur 0, la compo-
sition parallèle et la restriction.

Proposition 4.35. — L’application L−M est un plongement.
Remarque 4.36. — Le plongement ci-dessus n’est cependant pas consistant
au regard de toute notion raisonnable de forme normale pour le π-calcul, carLP M n’est pas nécessairement correct (les processus peuvent avoir toutes sortes de
cercles vicieux).

Cela n’empêche pas de prendre le système de types intersection de section 4.1.2
et de l’utiliser comme point de départ pour trouver un système de types inter-
section fonctionnel pour le π-calcul hyperlocalisé. C’est exactement la genèse de
l’article [17].
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Conclusion

NN
ous avons généralisé dans cette thèse un résultat central en

théorie des approximations de programmes en proposant une approche
axiomatique des approximations. Pour ce faire, nous avons proposé un cadre
pour parler de plongements entre calculs. Nous avons montré que le théo-
rème de commutation entre les approximation de Böhm et de Taylor, dû
à Ehrhard et Regnier, est une instance du théorème 3.48 mais «tiré-en-
arrière». Une fois notre théorie posée, nous avons donc pu l’appliquer à dif-
férents calculs de la littérature.

Pour ce faire, notre approche a été d’introduire un calcul de processus,
Proc, inspiré de la logique linéaire différentielle, puis d’introduire les notions
d’approximations de Böhm et de Taylor dans ce calcul, et de démontrer le
théorème de commutation entre les deux dans son cas particulier. Utilisé de
concert avec la notion de plongement, cela permet de relever ces des outils de la
logique linéaire dans d’autres calculs : λ!-calcul, λµ-calcul, calculs concurrents.

Concernant l’applicabilité de ces résultats, il est à souligner que le fait qu’un
plongement S → Proc établisse immédiatement une élégante théorie des ap-
proximations de Böhm et de Taylor pour S ne dit rien sur l’intérêt réel de
cette théorie. Tout d’abord, en l’état, la théorie est formulée dans la syntaxe
de Proc, et la reformuler dans une syntaxe «adaptée à S» n’est pas automa-
tique : le cas de la section 4.2 avec call-by-push-value en est un exemple. Deuxiè-
mement, sa pertinence et son utilité doivent être vérifiées au cas par cas. Par
exemple, nous n’avons pas encore étudié les arbres de Böhm pour le calcul
des piles ou pour le fragment du calcul π présenté dans la section 4.3 et la sec-
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tion 4.4.
Enfin, une emphase est à mettre concernant la notion de plongement pro-

posée à la définition 3.5. Bien que cette notion suffise pour les exemples pré-
sentés ici, de nombreux encodages, en particulier des calculs de processus, ne
sont pas des plongements au sens technique décrit. Généralement parce qu’ils
sont à équivalence près. Par exemple, l’encodage du λµ-calcul dans le calcul des
piles mentionné dans la section 4.3 est à β-équivalence, et n’est donc pas direc-
tement couvert. L’extension de ces résultats de la section 3.4.3 et la section 4.1.2
à une classe plus générale de plongements est un sujet intéressant pour les tra-
vaux futurs.
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