GESTION DES PROCESSUS

Aloys DuFoOUR

ATER, LIPN équipe LoCal
Université Paris-Nord XIII

30 janvier 2026

1/26

GESTION DES PROCESSUS

DEFINITION
Un processus est un programme en cours d’exécution. On en distingue deux types :

LES PROCESSUS SYSTEME (DAMONS) : assurent des services généraux accessibles & tous les
utilisateurs du systéme. Le propriétaire est root et il n’est rattaché a aucun
terminal,

LES PROCESSUS UTILISATEUR : dédiés a I'exécution d’une tache particuliére. Le propriétaire est
Iutilisateur qui 'exécute et il est sous le contréle du terminal a partir duquel il a
été lancé.

2/26

GESTION DES PROCESSUS

CREATION
> Toute exécution d’un programme déclenche la création d’un processus dont

la durée de vie est la durée d’exécution du programme.

> Le systéme alloue a chaque processus un numéro d’identification unique :
PID (Process IDentifier).

> Tout processus est créé par un autre processus : son pere.

3/26

GESTION DES PROCESSUS

ExEcuTioN d’une commande : 5 modes d’exécution (sous Unix) :

» mode interactif : commande lancée a partir d’'un terminal. Le controle du
terminal n’est rendu a 'utilisateur qu’a la fin de 'exécution de la commande.
<ctrl-c>:interrompre la commande <ctrl-z> : suspendre la commande

> mode en arriére plan : permet de rendre immédiatement le controle a
Iutilisateur (command &). Si le terminal est fermé, la commande en arriére
plan est interrompue automatiquement (pour éviter ce probléme nohup
command &).

4/26

GESTION DES PROCESSUS

ExEcuTion d’une commande :

> mode différé : at permet de déclencher I'exécution d’une commande a une
date fixée.
ex:at 16:50 10/06/08 < commande.
(at -1 pour lister et at -r pour supprimer)

» mode périodique : tache exécutée de maniére périodique, grace a la crontab
par ex.

> mode batch : permet de placer une commande dans une file d’attente.

5/26

GESTION DES PROCESSUS — LA COMMANDE PS

> Visualiser les processus avec la commande : ps (options), les options les plus

intéressantes

> -—e :affichage de tous les processus
> -f :affichage détaillé

» exemple: ps -ef

UlD PID PPID
root 1 0

jean 319 300
olivier 321 319
olivier 324 321

C STIME TTY TIME COMMAND
0 Dec 6 ? 1:02 init

0 10:30:30 7 0:02 /usr/dt/bin/dtsession

0 10:30:34 ttypl 0:02 csh
0 10:32:12 ttypl 0:00 ps -ef

6/26

GESTION DES PROCESSUS — LA COMMANDE PS

Signification des différentes colonnes

UID

PID
PPID

C

STIME
TTY
TIME
COMMAND

Utilisateur qui a lancé le processus

Identifiant du procesuss

Identifiant du processus parent

Utilisation du processeur (%cpu = cputime/realtime)
Date de lancement

Terminal contrélant le processus

Durée cumulative de traitement

Nom de la commande avec ses arguments

Pour voir les process d’un seul utilisateur : ps -u olivier

7/26

GESTION DES PROCESSUS — LA COMMANDE PS

Signification des différentes colonnes

UID

PID
PPID

C

STIME
TTY
TIME
COMMAND

Utilisateur qui a lancé le processus

Identifiant du procesuss

Identifiant du processus parent

Utilisation du processeur (%cpu = cputime/realtime)
Date de lancement

Terminal contrélant le processus

Durée cumulative de traitement

Nom de la commande avec ses arguments

Pour voir les process d’un seul utilisateur : ps -u olivier
Naviguer les processus de manieére interactive (TUI) et voir leur évolution : htop

7/26

GESTION DES PROCESSUS — LES SIGNAUX

Il est possible d’agir sur le déroulement d’un p en lui envoyant un signal. POSIX standardise un
certain nombre de signaux dont :

>

4
>
>
>

man

SIGINT (signal 2) : interrompre 'exécution de p, (méme signal que <ctrl+c>),
SIGKILL (signal 9) : arrét violent de I’exécution de p (ne peut pas étre ignoré),
SIGTERM (signal 15) : arrét de I’exécution de p,

SIGTSTP (signal 19) : suspendre temporairement I'exécution de p,

SIGCONT (signal 18) : reprendre I’exécution de p précédemment suspendu par I’envoi d’un
signal SIGTSTP.

7 signal

8/26

GESTION DES PROCESSUS

Un signal peut étre envoyé par :
> le systeme (ex : sighaux d’erreur),
P un autre processus,
> [utiliateur :
> soit I'utilisateur tape des caractéres provoquant I’envoi d’un signal au processus en cours
d’exécution sur le terminal (ex : <ctrl-z> pour SIGTSTP, <ctrl-c> pour SIGINT),
> soit I'utilisateur utilise la commande kill pour envoyer un signal a un ou plusieurs processus
lorsqu’il n’a pas accés au terminal de rattachement des processus ou lorsque ces derniers sont
exécutés en arriére plan :

$ kill -signal PID
signal : nom symbolique ou num.

9/26

GESTION DES PROCESSUS — ETATS D’UN PROCESSUS

1. s’exécute en mode utilisateur

10/26

GESTION DES PROCESSUS — ETATS D’UN PROCESSUS

1. s’exécute en mode utilisateur

2. s’exécute en mode noyau

10/26

GESTION DES PROCESSUS — ETATS D’UN PROCESSUS

1. s’exécute en mode utilisateur
2. s’exécute en mode noyau

3. ne s’exécute pas mais est éligible (prét a s’exécuter)

10/26

GESTION DES PROCESSUS — ETATS D’UN PROCESSUS

> w N~

s’exécute en mode utilisateur
s’exécute en mode noyau
ne s’exécute pas mais est éligible (prét a s’exécuter)

est endormi en mémoire centrale

10/26

GESTION DES PROCESSUS — ETATS D’UN PROCESSUS

s’exécute en mode utilisateur
s’exécute en mode noyau
ne s’exécute pas mais est éligible (prét a s’exécuter)

est endormi en mémoire centrale

ok whd

est prét mais le swappeur doit le transférer en mémoire centrale pour le rendre éligible.

10/26

GESTION DES PROCESSUS — ETATS D’UN PROCESSUS

s’exécute en mode utilisateur

s’exécute en mode noyau

ne s’exécute pas mais est éligible (prét a s’exécuter)
est endormi en mémoire centrale

est prét mais le swappeur doit le transférer en mémoire centrale pour le rendre éligible.

o vk w -

est endormi en zone de swap.

10/26

GESTION DES PROCESSUS — ETATS D’UN PROCESSUS

. s’exécute en mode utilisateur

. s’exécute en mode noyau

. ne s’exécute pas mais est éligible (prét a s’exécuter)

est endormi en mémoire centrale

est prét mais le swappeur doit le transférer en mémoire centrale pour le rendre éligible.

est endormi en zone de swap.

Noa s w2

passe du mode noyau au mode utilisateur mais est préempté et a effectué un changement
de contexte.

10/26

GESTION DES PROCESSUS — ETATS D’UN PROCESSUS

Nk N~

s’exécute en mode utilisateur

s’exécute en mode noyau

ne s’exécute pas mais est éligible (prét a s’exécuter)

est endormi en mémoire centrale

est prét mais le swappeur doit le transférer en mémoire centrale pour le rendre éligible.
est endormi en zone de swap.

passe du mode noyau au mode utilisateur mais est préempté et a effectué un changement
de contexte.

naissance d’un processus, ce processus n’est pas encore prét et n’est pas endormi, c’est I'état
initial de tout processus.

10/26

GESTION DES PROCESSUS — ETATS D’UN PROCESSUS

Nk N~

s’exécute en mode utilisateur

s’exécute en mode noyau

ne s’exécute pas mais est éligible (prét a s’exécuter)

est endormi en mémoire centrale

est prét mais le swappeur doit le transférer en mémoire centrale pour le rendre éligible.
est endormi en zone de swap.

passe du mode noyau au mode utilisateur mais est préempté et a effectué un changement
de contexte.

naissance d’un processus, ce processus n’est pas encore prét et n’est pas endormi, c’est I'état
initial de tout processus.

zombie : le processus vient de réaliser un exit, il apparait uniquement dans la table des
processus ou il est conservé le temps pour son processus pére de récupérer le code de
retour...

10/26

GESTION DES PROCESSUS — ETATS D’UN PROCESSUS

Exécution Examiner
en mode utilisateur et traiter
les signaux:
Appel system
interruption

Retour au
Exécution mode utilisateur
en mode noyau
gestion
interruption’

Préempté

zombie

Endormi
en mémoire

centrale

swap

insuffisante

Prét
en zone de swap

Endormi

wakeup
en zone de sw ;..;C

11/26

GESTION DES PROCESSUS — IMPLEMENTATION DES PROCESSUS

Descripteur de Processus (PCB)

2
>
4
>
>

>

tout ce qui doit étre sauvegardé lorsque I'exécution d’un processus est suspendue

Le PID du processus
I’état du processus

son compteur ordinal
son allocation mémoire
les fichiers ouverts

les valeurs contenues dans les registres du processeur

12/26

GESTION DES PROCESSUS — CHANGEMENT DE CONTEXTE

Programme A Mode kernel

mode utilisateur
w | Sauvegarder état en PCB A|

:
| Charger état de PCB B | ﬂ

| Sauvegarder état en PCB B |<:I
‘ interruption ‘

Programme B
mode utilisateur

.
.
.
.
.
.
.
.

.................
e

‘ exécution K:__‘Zl | Charger état de PCB A |

of

cesecse
cesecscccs

13/26

FONCTIONS POSIX POUR LA GESTION DE PROCESSUS

POSIX définit un nombre relativement petit d’appels systéme pour la gestion de processus :
> Création de processus (fils)
pid_t fork()
> Fonction permettant a un processus d’exécuter un autre programme
int execl(), execlp(), execvp(), execle(), execv()
> Attendre la terminaison d’un processus
pid_t wait()
» Finir 'exécution d’un processus

void exit()

» Récupérer le PID ou le PPID
pid_t getpid()
pid_t getppid()

14/26

GESTION DES PROCESSUS — CREATION DE PROCESSUS

#include<unistd.h>
#include<sys/types.h>
pid_t fork(void);

> L’image mémoire est la méme pour le pére et le fils

» Valeur de retour du fork ()

» 0 pour le processus fils
> Strictement positive pour le processus pére : PID du fils
> Négative si la création de processus a échoué

pid = 13
pére
v
fils i = fork()
i=0 i=27
pid = 27 pid = 13
v

15/26

CREATION DE PROCESSUS — EXEMPLE 1

#include <unistd.h>
#include <sys/types.h>
int main()
{
pid_t pidfils;
pidfils = fork();
if (pidfils == 0)
printf("Je suis le fils avec pidid\n",getpid());
else
if (pidfils > 0)
printf("Je suis le pére avec pid%d\n", getpid());
else
printf ("Erreur dans la création du fils\n");

16/26

CREATION DE PROCESSUS — EXEMPLE 2

Combien de processus sont créés par le programme suivant?

int main() {
fork() || (fork() && fork());
exit (EXIT_SUCCESS);

}

De méme avec la ligne : fork() && (fork() || fork());.

17/26

CREATION DE PROCESSUS — EXEMPLE 3

Combien de processus sont créés par le programme suivant?

int main()
{
int i, n = 5;
int childpid;
for(i=1; i<m; i++)
{
if ((childpid=fork()) <= 0)
break;
printf ("Processus %d avec pere %d , i=/d\n", getpid(), getppid(), i);
}
return O ;

}
Et sion remplace if(... <= 0) par if(... < 0)?

18/26

CREATION DE PROCESSUS — EXEMPLE 4 (MODIFICATION

int main(void)

{
pid_t p ;
int a = 20;
switch (p = fork()) {
case -1:
perror("Le fork a échoué !");
break;
case 0:
printf("Ici processus fils, de PID%d.\n", getpid());
a += 10;
break;
default:
printf("Ici processus pére, de PID%d.\n", getpid());
a += 100;
}
printf ("Fin du processus’d avec a = %d.\n", getpid(), a);
return O;

DE VARIABLE)

19/26

CREATION DE PROCESSUS — EXEMPLE 5 (PROCESSUS ORPHELIN)

#include <sys/types.h>
#include <unistd.h>
int main(void)
{
int i, j, k, n = 5;
pid_t pidfils;
for (i=1; i<n; i++) {
pidfils = fork();
if (pidfils > 0) /* c’est le pére */
break;
printf ("Processus %d avec pere %d\n", getpid(), getppid());
}
/* Pour faire perdre du temps au processus */
for (j=1; j<100000; j++)
for(k=1; k<1000; k++);

20/26

CREATION DE PROCESSUS — EXEMPLE 6 (PROCESSUS ZOMBIE)

#include <sys/types.h>
#include <unistd.h>
int main(void)
{
pid_t pid;
pid = fork(Q);
if (pid > 0) {
/* Pére : dormir 30 secondes */
sleep(30);
} else {
/* Fils : quitter immediatement */
exit (0);
}

return 0O

21/26

WAIT(), WAITPID() ET EXIT()

#include <sys/wait.h>

pid_t wait (int *status);

pid_t waitpid(int pid, int *status, int optiomns);

void exit(int return_code);

Ces appels systéme permettent au processus pére d’attendre la fin d’un de ses processus fils et
de récupérer son status de fin (WEXITSTATUS (status)). Ainsi, un processus peut synchroniser
son exécution avec la fin de son processus fils en exécutant ’appel systéme wait (). La syntaxe
de 'appel systeme est :

pid = wait(status);

ou pid est I'identifiant du processus fils et status est 'adresse dans I'espace utilisateur d’un
entier qui contiendra le status de exit () du processus fils.

22/26

FAMILLE DES APPELS EXEC()

#include <unistd.h>
execl(const char *path, const char *argv, ...);
execv(const char *path, const char xargv[]);

int
int
int
int
int

execle(const char
execlp(const char
execvp(const char

Un processus fils créé
appels systéme exec remplacent le processus courant par un nouveau processus construit a
partir d’un fichier ordinaire exécutable.

*path, const char *argv, const char *envp[]l);
xfile, const char *argv, ...);
+*file, const char *argv[]);

peut remplacer son code de programme par un autre programme. Tous les

23/26

FAMILLE DES APPELS EXEC()

execl() permet de passer un nombre fixé de paramétres au nouveau programme.
execv () permet de passer un nombre libre de paramétres au nouveau programme via char *argv[].

execle (), méme fonctionnement qu’execl () avec en plus, un argument char *envp[] qui représente I’environnement.

vvyywyy

exelp (), arguments et action identiques a celles d’exec1 (), mais la différence vient du fait que si le nom du fichier n’est pas un
chemin absolu, le systéme utilisera la variable PATH listant les répertoires dans lesquels se trouvent les exécutables accessibles
depuis n’importe quel répertoire.
> exevp(), arguments et action identiques a celles d’execv (), mais la différence vient du fait que si le nom de fichier n’est pas un
chemin absolu, la commande utilise les répertoires spécifiés dans le PATH.
La convention Unix veut que chaque chaine ait la forme nom=valeur. Ainsi, les arguments pour execv () peuvent étre passés, par
exemple :

char *arguments[4] ;
arguments[0] = "/bin/1ls";
arguments[1] = "-1";
arguments[2] = "/etc";
arguments[3] = "NULL";
execv("/bin/ls", arguments);

24/26

CREATION DE PROCESSUS — EXEMPLE (EXEC + WAIT)

int main(int argc, char *argv[])
{
pid_t pidfils ;
/* Liste d’arguments pour la comande "ls" */
char args[] = {"1s", "ls", argv[i], NULL};
/* Dupliquer le processus */
pidfils = fork();
if (pidfils != 0) {
/* Il s’agit du pére */
waitpid(pidfils, NULL, NULL);
printf ("Programme principal termine\n");
return 0;
} else {
/* Ezécuter programme avec les arguments a partir du PATH */
execvp("ls", args);
/% Retourner en cas d’erreur */
perror ("Erreur dans execvp");
exit(1);
}

return O;

25/26

CREATION DE PROCESSUS

#define N_DFT 2 sprintf(str_n, "%d", n);
#define P_DFT 3 sprintf(str_p, "%d", p - 1);
#define FMT_PROC "pid : Jd; ppid : Jd; n : Zd; p : Jd\n" execl("encore", "encore", str_n, str_p, NULL
printf("Sortie 2\n");
int main(int argc, char *argv[]) return 0;
{ }
int n = argc < 2 7 N_DFT : atoi(argv[1]);
int p = argc < 3 7 P_DFT : atoi(argv[2]); while (wait(NULL) !'= -1)
int i; H
printf("Sortie 3\n");
if (p == 0) { return 0;
printf ("Sortie 1\n"); }
return O;
} 1. Dans le cas ou le programme est lancé de la fagon suivante :
. . X $./encore dessiner I'arborescence des processus et
for (i . =05 i < m; ++i) donner le nombre de Sortie 1, Sortie 2 et Sortie 3 qui
switch (fork()) { seront affichés.
case -1:
perror ("fork") ; 2. Soit up, p le nombre de processus créés par ce programme
return 1; lorsque les arguments entiers naturels n et p lui sont
case 0: transmis. Donner la relation entre uy , et u, ,—1 lorsque
printf (FMT_PROC, getpid(), getppid(), n, p);p > 0. Puis calculer u, p. En déduire le nombre d’affichages
char str_n[11], str_p[11]; de Sortie 1,Sortie 2etSortie 3en fonction de net p.

26/26

