
Gestion des Processus

Aloÿs Dufour

ATER, LIPN équipe LoCal
Université Paris-Nord XIII

30 janvier 2026

1 / 26

Gestion des processus

Definition
Un processus est un programme en cours d’exécution. On en distingue deux types :

les processus système (dæmons) : assurent des services généraux accessibles à tous les
utilisateurs du système. Le propriétaire est root et il n’est rattaché à aucun
terminal,

les processus utilisateur : dédiés à l’exécution d’une tâche particulière. Le propriétaire est
l’utilisateur qui l’exécute et il est sous le contrôle du terminal à partir duquel il a
été lancé.

2 / 26

Gestion des processus

Création
▶ Toute exécution d’un programme déclenche la création d’un processus dont

la durée de vie est la durée d’exécution du programme.
▶ Le système alloue à chaque processus un numéro d’identification unique :

PID (Process IDentifier).
▶ Tout processus est créé par un autre processus : son père.

3 / 26

Gestion des processus

Exécution d’une commande : 5 modes d’exécution (sous Unix) :
▶ mode interactif : commande lancée à partir d’un terminal. Le contrôle du

terminal n’est rendu à l’utilisateur qu’à la fin de l’exécution de la commande.
<ctrl-c> : interrompre la commande <ctrl-z> : suspendre la commande

▶ mode en arrière plan : permet de rendre immédiatement le contrôle à
l’utilisateur (command &). Si le terminal est fermé, la commande en arrière
plan est interrompue automatiquement (pour éviter ce problème nohup
command &).

4 / 26

Gestion des processus

Exécution d’une commande :
▶ mode différé : at permet de déclencher l’exécution d’une commande à une

date fixée.
ex : at 16:50 10/06/08 < commande.
(at -l pour lister et at -r pour supprimer)

▶ mode périodique : tâche exécutée de manière périodique, grâce à la crontab
par ex.

▶ mode batch : permet de placer une commande dans une file d’attente.

5 / 26

Gestion des processus — La commande ps

▶ Visualiser les processus avec la commande : ps (options), les options les plus
intéressantes
▶ -e : affichage de tous les processus
▶ -f : affichage détaillé

▶ exemple : ps -ef
UID PID PPID C STIME TTY TIME COMMAND
root 1 0 0 Dec 6 ? 1:02 init
...
jean 319 300 0 10:30:30 ? 0:02 /usr/dt/bin/dtsession
olivier 321 319 0 10:30:34 ttyp1 0:02 csh
olivier 324 321 0 10:32:12 ttyp1 0:00 ps -ef

6 / 26

Gestion des processus — La commande ps

Signification des différentes colonnes

UID Utilisateur qui a lancé le processus
PID Identifiant du procesuss
PPID Identifiant du processus parent
C Utilisation du processeur (%cpu = cputime/realtime)
STIME Date de lancement
TTY Terminal contrôlant le processus
TIME Durée cumulative de traitement
COMMAND Nom de la commande avec ses arguments

Pour voir les process d’un seul utilisateur : ps -u olivier

Naviguer les processus de manière interactive (TUI) et voir leur évolution : htop

7 / 26

Gestion des processus — La commande ps

Signification des différentes colonnes

UID Utilisateur qui a lancé le processus
PID Identifiant du procesuss
PPID Identifiant du processus parent
C Utilisation du processeur (%cpu = cputime/realtime)
STIME Date de lancement
TTY Terminal contrôlant le processus
TIME Durée cumulative de traitement
COMMAND Nom de la commande avec ses arguments

Pour voir les process d’un seul utilisateur : ps -u olivier
Naviguer les processus de manière interactive (TUI) et voir leur évolution : htop

7 / 26

Gestion des processus — Les signaux

Il est possible d’agir sur le déroulement d’un p en lui envoyant un signal. POSIX standardise un
certain nombre de signaux dont :
▶ SIGINT (signal 2) : interrompre l’exécution de p, (même signal que <ctrl+c>),
▶ SIGKILL (signal 9) : arrêt violent de l’exécution de p (ne peut pas être ignoré),
▶ SIGTERM (signal 15) : arrêt de l’exécution de p,
▶ SIGTSTP (signal 19) : suspendre temporairement l’exécution de p,
▶ SIGCONT (signal 18) : reprendre l’exécution de p précédemment suspendu par l’envoi d’un

signal SIGTSTP.
man 7 signal

8 / 26

Gestion des processus

Un signal peut être envoyé par :
▶ le système (ex : signaux d’erreur),
▶ un autre processus,
▶ l’utiliateur :

▶ soit l’utilisateur tape des caractères provoquant l’envoi d’un signal au processus en cours
d’exécution sur le terminal (ex : <ctrl-z> pour SIGTSTP, <ctrl-c> pour SIGINT),

▶ soit l’utilisateur utilise la commande kill pour envoyer un signal à un ou plusieurs processus
lorsqu’il n’a pas accès au terminal de rattachement des processus ou lorsque ces derniers sont
exécutés en arrière plan :
$ kill -signal PID
signal : nom symbolique ou num.

9 / 26

Gestion des processus — États d’un processus

1. s’exécute en mode utilisateur

2. s’exécute en mode noyau

3. ne s’exécute pas mais est éligible (prêt à s’exécuter)

4. est endormi en mémoire centrale

5. est prêt mais le swappeur doit le transférer en mémoire centrale pour le rendre éligible.

6. est endormi en zone de swap.

7. passe du mode noyau au mode utilisateur mais est préempté et a effectué un changement
de contexte.

8. naissance d’un processus, ce processus n’est pas encore prêt et n’est pas endormi, c’est l’état
initial de tout processus.

9. zombie : le processus vient de réaliser un exit, il apparaît uniquement dans la table des
processus où il est conservé le temps pour son processus père de récupèrer le code de
retour…

10 / 26

Gestion des processus — États d’un processus

1. s’exécute en mode utilisateur

2. s’exécute en mode noyau

3. ne s’exécute pas mais est éligible (prêt à s’exécuter)

4. est endormi en mémoire centrale

5. est prêt mais le swappeur doit le transférer en mémoire centrale pour le rendre éligible.

6. est endormi en zone de swap.

7. passe du mode noyau au mode utilisateur mais est préempté et a effectué un changement
de contexte.

8. naissance d’un processus, ce processus n’est pas encore prêt et n’est pas endormi, c’est l’état
initial de tout processus.

9. zombie : le processus vient de réaliser un exit, il apparaît uniquement dans la table des
processus où il est conservé le temps pour son processus père de récupèrer le code de
retour…

10 / 26

Gestion des processus — États d’un processus

1. s’exécute en mode utilisateur

2. s’exécute en mode noyau

3. ne s’exécute pas mais est éligible (prêt à s’exécuter)

4. est endormi en mémoire centrale

5. est prêt mais le swappeur doit le transférer en mémoire centrale pour le rendre éligible.

6. est endormi en zone de swap.

7. passe du mode noyau au mode utilisateur mais est préempté et a effectué un changement
de contexte.

8. naissance d’un processus, ce processus n’est pas encore prêt et n’est pas endormi, c’est l’état
initial de tout processus.

9. zombie : le processus vient de réaliser un exit, il apparaît uniquement dans la table des
processus où il est conservé le temps pour son processus père de récupèrer le code de
retour…

10 / 26

Gestion des processus — États d’un processus

1. s’exécute en mode utilisateur

2. s’exécute en mode noyau

3. ne s’exécute pas mais est éligible (prêt à s’exécuter)

4. est endormi en mémoire centrale

5. est prêt mais le swappeur doit le transférer en mémoire centrale pour le rendre éligible.

6. est endormi en zone de swap.

7. passe du mode noyau au mode utilisateur mais est préempté et a effectué un changement
de contexte.

8. naissance d’un processus, ce processus n’est pas encore prêt et n’est pas endormi, c’est l’état
initial de tout processus.

9. zombie : le processus vient de réaliser un exit, il apparaît uniquement dans la table des
processus où il est conservé le temps pour son processus père de récupèrer le code de
retour…

10 / 26

Gestion des processus — États d’un processus

1. s’exécute en mode utilisateur

2. s’exécute en mode noyau

3. ne s’exécute pas mais est éligible (prêt à s’exécuter)

4. est endormi en mémoire centrale

5. est prêt mais le swappeur doit le transférer en mémoire centrale pour le rendre éligible.

6. est endormi en zone de swap.

7. passe du mode noyau au mode utilisateur mais est préempté et a effectué un changement
de contexte.

8. naissance d’un processus, ce processus n’est pas encore prêt et n’est pas endormi, c’est l’état
initial de tout processus.

9. zombie : le processus vient de réaliser un exit, il apparaît uniquement dans la table des
processus où il est conservé le temps pour son processus père de récupèrer le code de
retour…

10 / 26

Gestion des processus — États d’un processus

1. s’exécute en mode utilisateur

2. s’exécute en mode noyau

3. ne s’exécute pas mais est éligible (prêt à s’exécuter)

4. est endormi en mémoire centrale

5. est prêt mais le swappeur doit le transférer en mémoire centrale pour le rendre éligible.

6. est endormi en zone de swap.

7. passe du mode noyau au mode utilisateur mais est préempté et a effectué un changement
de contexte.

8. naissance d’un processus, ce processus n’est pas encore prêt et n’est pas endormi, c’est l’état
initial de tout processus.

9. zombie : le processus vient de réaliser un exit, il apparaît uniquement dans la table des
processus où il est conservé le temps pour son processus père de récupèrer le code de
retour…

10 / 26

Gestion des processus — États d’un processus

1. s’exécute en mode utilisateur

2. s’exécute en mode noyau

3. ne s’exécute pas mais est éligible (prêt à s’exécuter)

4. est endormi en mémoire centrale

5. est prêt mais le swappeur doit le transférer en mémoire centrale pour le rendre éligible.

6. est endormi en zone de swap.

7. passe du mode noyau au mode utilisateur mais est préempté et a effectué un changement
de contexte.

8. naissance d’un processus, ce processus n’est pas encore prêt et n’est pas endormi, c’est l’état
initial de tout processus.

9. zombie : le processus vient de réaliser un exit, il apparaît uniquement dans la table des
processus où il est conservé le temps pour son processus père de récupèrer le code de
retour…

10 / 26

Gestion des processus — États d’un processus

1. s’exécute en mode utilisateur

2. s’exécute en mode noyau

3. ne s’exécute pas mais est éligible (prêt à s’exécuter)

4. est endormi en mémoire centrale

5. est prêt mais le swappeur doit le transférer en mémoire centrale pour le rendre éligible.

6. est endormi en zone de swap.

7. passe du mode noyau au mode utilisateur mais est préempté et a effectué un changement
de contexte.

8. naissance d’un processus, ce processus n’est pas encore prêt et n’est pas endormi, c’est l’état
initial de tout processus.

9. zombie : le processus vient de réaliser un exit, il apparaît uniquement dans la table des
processus où il est conservé le temps pour son processus père de récupèrer le code de
retour…

10 / 26

Gestion des processus — États d’un processus

1. s’exécute en mode utilisateur

2. s’exécute en mode noyau

3. ne s’exécute pas mais est éligible (prêt à s’exécuter)

4. est endormi en mémoire centrale

5. est prêt mais le swappeur doit le transférer en mémoire centrale pour le rendre éligible.

6. est endormi en zone de swap.

7. passe du mode noyau au mode utilisateur mais est préempté et a effectué un changement
de contexte.

8. naissance d’un processus, ce processus n’est pas encore prêt et n’est pas endormi, c’est l’état
initial de tout processus.

9. zombie : le processus vient de réaliser un exit, il apparaît uniquement dans la table des
processus où il est conservé le temps pour son processus père de récupèrer le code de
retour…

10 / 26

Gestion des processus — États d’un processus
48 CHAPITRE 6. LES PROCESSUS

9

1

2

3

4

5 6

7

8

Exécution
en mode utilisateur

Retour au
mode utilisateur

Appel system
interruption

Préempté

Prêt et en mémoire

zombie

Endormi
en mémoire

Endormi
en zone de swap

Prêt
en zone de swap

Exécution
en mode noyau

Création
fork

exit

gestion
interruption

sleep

wakeup

wakeup

préemption

ordonancement
du processus

centrale
swap

swapout swapout
swapin

mémoire
suffisante

mémoire
insuffisante

Examiner
les signaux

Examiner
et traiter
les signaux

Fig. 6.8 – Diagramme d’état des processus

9. zombie le processus vient de réaliser un exit, il apparâıt uniquement dans la table des
processus où il est conservé le temps pour son processus père de récupèrer le code de retour
et d’autres informations de gestion (coût de l’exécution sous forme de temps, et d’utilisation
des ressources).

L’état zombie est l’état final des processus, les processus restent dans cet état jusqu’à ce que leur
père lise leur valeur de retour (exit status).

6.10 Lecture du diagramme d’état.

Le diagramme des transitions d’état permet de décrire l’ensemble des états possibles d’un
processus. Il est clair que tout processus ne passera pas nécessairement par tous ces différents
états.

La naissance d’un processus a lieu dans l’état 8 après l’appel système fork exécuté par un
autre processus. Il devient au bout d’un certain temps ”prêt à s’exécuter”. Il passe alors dans
l’état ”exécuté en mode noyau” où il termine sa partie de l’appel système fork. Puis le processus
termine l’appel système et passe dans l’état ”exécuté en mode utilisateur”. Passé une certaine
période de temps (variable d’un système à l’autre), l’horloge peut interrompre le processeur. Le
processus rentre alors en mode noyau, l’interruption est alors réalisée avec le processus en mode
noyau.

Au retour de l’interruption, le processus peut être préempté (étant resté tout son quantum de
temps sur le cpu), c’est à dire, il reste prêt à s’exécuter mais un autre processus est élu. Cet état
7 est logiquement équivalent à l’état 3, mais il existe pour matérialiser le fait qu’un processus ne
peut être préempté qu’au moment où il retourne du mode noyau au mode utilisateur. Quand un
processus préempté est réélu, il retourne directement en mode utilisateur.

Un appel système ne peut être préempté. On peut détecter en pratique cette règle, en effet

11 / 26

Gestion des processus — Implémentation des processus

Descripteur de Processus (PCB)
▶ Le PID du processus
▶ l’état du processus
▶ son compteur ordinal
▶ son allocation mémoire
▶ les fichiers ouverts
▶ les valeurs contenues dans les registres du processeur

tout ce qui doit être sauvegardé lorsque l’exécution d’un processus est suspendue

12 / 26

Gestion des processus — Changement de contexte

4 CHAPITRE 3. PROCESSUS

relancer le processus courant dans le même état. Par exemple, il faut ab-
solument se rappeler à quelle instruction il est rendu. La figure ?? illustre
le changement de contexte entre processus. Le processsus en cours est in-
terrompu et un ordonnanceur est éventuellement appelé. L’ordonnanceur
s’exécute enmode kernel pour pouvoir manipuler les PCB. Le changement
de contexte sera expliqué plus en détail dans le Chapitre ??, Ordonnance-
ment de processus.

Sauvegarder état en PCB A

Charger état de PCB B

Sauvegarder état en PCB B

Charger état de PCB A

Mode kernel Programme B
mode utilisateur

Programme A
mode utilisateur

exécution

interruption

exécution

interruption

exécution

FIG. 3.4 – Le changement de contexte.

Il est important de noter que le passage au mode kernel par un appel
système n’implique pas nécessairement un changement de contexte. On
reste en général dans le même processus, sauf qu’on a accès à des données
et des instructions qui sont interdites en mode utilisateur.

3.1.3 Les démons

Les démons sont des processus particuliers. Un démon s’exécute tou-
jours en arrière-plan (background). Ceci implique que son père n’attend
pas la fin de son exécution. Les démons ne sont associés à aucun termi-
nal ou processus login d’un utilisateur. Ils sont toujours à l’écoute et at-
tendent qu’un événement se produise. Ils réalisent des tâches de manière
périodique.
Les démons démarrent normalement au début du chargement du sys-

tème d’exploitation et ne meurent pas. Les démons ne travaillent pas : ils
lancent plutôt d’autres processus pour effectuer les tâches. Comme exemples
de démons on retrouve le voleur de pages de la mémoire virtuelle (voir

13 / 26

Fonctions Posix pour la gestion de processus

POSIX définit un nombre relativement petit d’appels système pour la gestion de processus :
▶ Création de processus (fils)

pid_t fork()

▶ Fonction permettant à un processus d’exécuter un autre programme
int execl(), execlp(), execvp(), execle(), execv()

▶ Attendre la terminaison d’un processus
pid_t wait()

▶ Finir l’exécution d’un processus
void exit()

▶ Récupérer le PID ou le PPID
pid_t getpid()
pid_t getppid()

14 / 26

Gestion des processus — Création de processus

#include<unistd.h>
#include<sys/types.h>
pid_t fork(void);

▶ L’image mémoire est la même pour le père et le fils
▶ Valeur de retour du fork()

▶ 0 pour le processus fils
▶ Strictement positive pour le processus père : PID du fils
▶ Négative si la création de processus a échoué8 CHAPITRE 3. PROCESSUS

i = fork()

pid = 13

père

fils

i=27
pid = 13

i=0
pid = 27

FIG. 3.6 – Services Posix : fork().

Exemple 1. Après l’exécution de fils.c le père et le fils montrent leur
pid :

Listing 3.2 – fils.c

include < unistd . h>
include < sys/types . h>

in t main ()
{
pid_t f i l s _ p i d ;
f i l s _ p i d=fork () ;

i f (f i l s _ p i d ==0)
10 p r i n t f (" J e su i s l e f i l s avec pid %d\n" , getpid ()) ;

else i f (f i l s _ p i d > 0)
p r i n t f (" J e su i s l e pere avec pid %d\n" , getpid ()) ;

else
pr i n t f (" Erreur dans l a c r ea t i on du f i l s \n") ;

}

L’exécution de fils.cmontre les pid du père et du fils :

leibnitz> gcc -o fils fils.c
leibnitz> fils
Je suis le pere avec pid 4130
leibnitz> Je suis le fils avec pid 4131

15 / 26

Création de processus — Exemple 1

#include <unistd.h>
#include <sys/types.h>
int main()
{

pid_t pidfils;
pidfils = fork();
if (pidfils == 0)

printf("Je suis le fils avec pid%d\n",getpid());
else

if (pidfils > 0)
printf("Je suis le père avec pid%d\n", getpid());

else
printf("Erreur dans la création du fils\n");

}

16 / 26

Création de processus — Exemple 2

Combien de processus sont créés par le programme suivant ?
int main() {

fork() || (fork() && fork());
exit(EXIT_SUCCESS);

}

De même avec la ligne : fork() && (fork() || fork());.

17 / 26

Création de processus — Exemple 3

Combien de processus sont créés par le programme suivant ?
int main()
{

int i, n = 5;
int childpid;
for(i=1; i<n; i++)
{

if ((childpid=fork()) <= 0)
break;

printf ("Processus %d avec pere %d , i=%d\n", getpid(), getppid(), i);
}
return 0 ;

}

Et si on remplace if(... <= 0) par if(... < 0) ?

18 / 26

Création de processus — Exemple 4 (modification de variable)

int main(void)
{

pid_t p ;
int a = 20;
switch (p = fork()) {

case -1:
perror("Le fork a échoué !");
break;

case 0:
printf("Ici processus fils, de PID%d.\n", getpid());
a += 10;
break;

default:
printf("Ici processus père, de PID%d.\n", getpid());
a += 100;

}
printf("Fin du processus%d avec a = %d.\n", getpid(), a);
return 0;

}

19 / 26

Création de processus — Exemple 5 (processus orphelin)

#include <sys/types.h>
#include <unistd.h>
int main(void)
{

int i, j, k, n = 5;
pid_t pidfils;
for (i=1; i<n; i++) {

pidfils = fork();
if (pidfils > 0) /* c’est le père */

break;
printf ("Processus %d avec pere %d\n", getpid(), getppid());

}
/* Pour faire perdre du temps au processus */
for (j=1; j<100000; j++)

for(k=1; k<1000; k++);

20 / 26

Création de processus — Exemple 6 (processus zombie)

#include <sys/types.h>
#include <unistd.h>
int main(void)
{

pid_t pid;
pid = fork();
if (pid > 0) {

/* Père : dormir 30 secondes */
sleep(30);

} else {
/* Fils : quitter immediatement */
exit(0);

}
return 0

}

21 / 26

wait(), waitpid() et exit()

#include <sys/wait.h>
pid_t wait (int *status);
pid_t waitpid(int pid, int *status, int options);
void exit(int return_code);

Ces appels système permettent au processus père d’attendre la fin d’un de ses processus fils et
de récupérer son status de fin (WEXITSTATUS(status)). Ainsi, un processus peut synchroniser
son exécution avec la fin de son processus fils en exécutant l’appel système wait(). La syntaxe
de l’appel système est :
pid = wait(status);

où pid est l’identifiant du processus fils et status est l’adresse dans l’espace utilisateur d’un
entier qui contiendra le status de exit() du processus fils.

22 / 26

Famille des appels exec()

#include <unistd.h>
int execl(const char *path, const char *argv, ...);
int execv(const char *path, const char *argv[]);
int execle(const char *path, const char *argv, const char *envp[]);
int execlp(const char *file, const char *argv, ...);
int execvp(const char *file, const char *argv[]);

Un processus fils créé peut remplacer son code de programme par un autre programme. Tous les
appels système exec remplacent le processus courant par un nouveau processus construit à
partir d’un fichier ordinaire exécutable.

23 / 26

Famille des appels exec()

▶ execl() permet de passer un nombre fixé de paramètres au nouveau programme.
▶ execv() permet de passer un nombre libre de paramètres au nouveau programme via char *argv[].
▶ execle(), même fonctionnement qu’execl() avec en plus, un argument char *envp[] qui représente l’environnement.
▶ exelp(), arguments et action identiques à celles d’execl(), mais la différence vient du fait que si le nom du fichier n’est pas un

chemin absolu, le système utilisera la variable PATH listant les répertoires dans lesquels se trouvent les exécutables accessibles
depuis n’importe quel répertoire.

▶ exevp(), arguments et action identiques à celles d’execv(), mais la différence vient du fait que si le nom de fichier n’est pas un
chemin absolu, la commande utilise les répertoires spécifiés dans le PATH.

La convention Unix veut que chaque chaîne ait la forme nom=valeur. Ainsi, les arguments pour execv() peuvent être passés, par
exemple :

char *arguments[4] ;
arguments[0] = "/bin/ls";
arguments[1] = "-l";
arguments[2] = "/etc";
arguments[3] = "NULL";
execv("/bin/ls", arguments);

24 / 26

Création de processus — Exemple (exec + wait)
int main(int argc, char *argv[])
{

pid_t pidfils ;
/* Liste d’arguments pour la comande "ls" */
char args[] = {"ls", "ls", argv[1], NULL};
/* Dupliquer le processus */
pidfils = fork();
if (pidfils != 0) {

/* Il s’agit du père */
waitpid(pidfils, NULL, NULL);
printf("Programme principal termine\n");
return 0;

} else {
/* Exécuter programme avec les arguments a partir du PATH */
execvp("ls", args);
/* Retourner en cas d’erreur */
perror("Erreur dans execvp");
exit(1);

}
return 0;

}

25 / 26

Création de processus

#define N_DFT 2
#define P_DFT 3
#define FMT_PROC "pid : %d; ppid : %d; n : %d; p : %d\n"

int main(int argc, char *argv[])
{

int n = argc < 2 ? N_DFT : atoi(argv[1]);
int p = argc < 3 ? P_DFT : atoi(argv[2]);
int i;

if (p == 0) {
printf("Sortie 1\n");
return 0;

}

for (i = 0; i < n; ++i)
switch (fork()) {

case -1:
perror("fork");
return 1;

case 0:
printf(FMT_PROC, getpid(), getppid(), n, p);
char str_n[11], str_p[11];

sprintf(str_n, "%d", n);
sprintf(str_p, "%d", p - 1);
execl("encore", "encore", str_n, str_p, NULL);
printf("Sortie 2\n");
return 0;

}

while (wait(NULL) != -1)
;

printf("Sortie 3\n");
return 0;

}

1. Dans le cas où le programme est lancé de la façon suivante :
$./encore dessiner l’arborescence des processus et
donner le nombre de Sortie 1, Sortie 2 et Sortie 3 qui
seront affichés.

2. Soit un,p le nombre de processus créés par ce programme
lorsque les arguments entiers naturels n et p lui sont
transmis. Donner la relation entre un,p et un,p−1 lorsque
p > 0. Puis calculer un,p . En déduire le nombre d’affichages
de Sortie 1, Sortie 2 et Sortie 3 en fonction de n et p.

26 / 26

