SYSTEME DE FICHIERS

Aloys DuFouR

ATER, LIPN équipe LoCal
Université Paris-Nord X111

20 janvier 2026

1/54

PARTIE 1 : GENERALITES

CONCEPT DE FICHIER

Un fichier est une unité de stockage logique de I'information
> Abstraction des propriétés physiques des dispositifs de stockage

> La correspondance est établie par I’OS

3/54

CONCEPT DE FICHIER

Un fichier est une unité de stockage logique de I'information
> Abstraction des propriétés physiques des dispositifs de stockage
> La correspondance est établie par I’OS

Attributs d’un fichier

> Nom, taille, type, protection, date, propriétaire, ...

3/54

CONCEPT DE FICHIER

Un fichier est une unité de stockage logique de I'information
> Abstraction des propriétés physiques des dispositifs de stockage
> La correspondance est établie par I’OS

Attributs d’un fichier
> Nom, taille, type, protection, date, propriétaire, ...

Opérations sur les fichiers

> Création, Ecriture/Lecture, Exécution, Suppression, Concatenation ...

3/54

TYPE ET STRUCTURE DES FICHIERS

Maniéres de stocker les fichiers
> suite d’enregistrements (CP/M, VSAM)
» suite d’octets (Unix, MS-DOS)

4/54

TYPE ET STRUCTURE DES FICHIERS

Maniéres de stocker les fichiers
> suite d’enregistrements (CP/M, VSAM)
» suite d’octets (Unix, MS-DOS)
“Nature” des fichiers

> régulier, dossier, tube, lien, bloc device, char device, socket

4/54

TYPE ET STRUCTURE DES FICHIERS

Maniéres de stocker les fichiers

> suite d’enregistrements (CP/M, VSAM)

» suite d’octets (Unix, MS-DOS)
“Nature” des fichiers

> régulier, dossier, tube, lien, bloc device, char device, socket
“Type” de fichiers

» Magic number & structure interne des fichiers

> Par les suffixes des noms de fichiers : .txt, pdf, png, jpg, mp4, c, h, cpp, aux, log, tex, mkv,
ogg, toc, out, ...

> OPENER : type — application, classification MIME

4/54

METHODES D’ACCES AUX FICHIERS

Dépendant du matériel
> Acces séquentiel
> Acces direct (ou aléatoire)

» Accés indexé

5/54

METHODES D’ACCES AUX FICHIERS

ACCES SEQUENTIEL

» Les éléments sont lus ou écrits dans l’ordre

ents lus ou écrit

Fichier . ‘
Polnteur de fichier

> Méthode adaptée aux supports de stockage séquentiels : Bandes magnétiques

6/54

METHODES D’ACCES AUX FICHIERS

ACCES DIRECT

> L’ordre d’acces aux éléments est quelconque

Elément I oooooo Fichier

IDIIII\DIIIIII\III

> Méthode adaptée aux supports de stockage direct : disques

METHODES D’ACCES AUX FICHIERS

ACCES INDEXE : GENERALISATION

> Acceés a partir d’une clé

8/54

METHODES D’ALLOCATION DES FICHIERS

ALLOCATION CONTIGUE
Chagque fichier occupe un nombre de blocs contigus sur le disque

disque n-1

0
(T T TS 7 1 T [[[T]

Fichier A Fichier B

Accés a un bloc : nv = num bloc logique + num premier bloc

9/54

METHODES D’ALLOCATION DES FICHIERS

ALLOCATION CONTIGUE
Chaque fichier occupe un nombre de blocs contigus sur le disque

disque n-1

0
(T T TS 7 1 T [[[T]

Fichier A Fichier B

Accés a un bloc : nv = num bloc logique + num premier bloc
Avantages

> Simple a implémenter

> Acceés direct aux blocs en temps constant

> Adapté aux supports "Write Once” (CDRom, CDRW)

9/54

METHODES D’ALLOCATION DES FICHIERS

ALLOCATION CONTIGUE
Chaque fichier occupe un nombre de blocs contigus sur le disque

disque n-1

0
(T T TS 7 1 T [[[T]

Fichier A Fichier B

Accés a un bloc : nv = num bloc logique + num premier bloc
Avantages
> Simple a implémenter
> Acceés direct aux blocs en temps constant
> Adapté aux supports "Write Once” (CDRom, CDRW)
Inconvénients
> Probléme : Extension d’un fichier
> Nécessite de connaitre a ’avance de la taille du fichier
> Déplacement possible du fichier lors de son extension
» Probléme : Fragmentation
> L’espace libre peut étre fragmenté en plusieurs trous et aucun n’est pas suffisant pour stocker un
fichier
> — Défragmantation

9/54

METHODES D’ALLOCATION DES FICHIERS

ALLOCATION CHAINEE
> Un fichier occupe une liste chainée de blocs sur le disque

» Chaque bloc contient une partie des données et un pointeur sur le bloc suivant

0 Fichier A disque n-1

LA

W7~

10/54

METHODES D’ALLOCATION DES FICHIERS

ALLOCATION CHAINEE
> Un fichier occupe une liste chainée de blocs sur le disque

» Chaque bloc contient une partie des données et un pointeur sur le bloc suivant

0 Fichier A disque n-1

LA

W7~

Avantages
» Possibilité d’étendre un fichier

> Allocation par bloc individuel : Tout bloc libre peut étre utilisé pour satisfaire une requéte
d’allocation

10/54

METHODES D’ALLOCATION DES FICHIERS

ALLOCATION CHAINEE
» Un fichier occupe une liste chainée de blocs sur le disque

» Chaque bloc contient une partie des données et un pointeur sur le bloc suivant

0 Fichier A disque n-1

LA

W7~

Avantages
» Possibilité d’étendre un fichier
> Allocation par bloc individuel : Tout bloc libre peut étre utilisé pour satisfaire une requéte
d’allocation
Inconvénients
» Solution non adaptée a I’acceés direct
> L’accés a un bloc quelconque nécessite 'accés a tous les blocs qui le précédent
» Les pointeurs sont stockés sur disque

10/54

METHODES D’ALLOCATION DES FICHIERS

ALLOCATION CHAINEE ET INDEXEE

Séparer les pointeurs et les données

11/54

METHODES D’ALLOCATION DES FICHIERS

ALLOCATION CHAINEE ET INDEXEE

Séparer les pointeurs et les données
Technique :

» Utilisation d’une table d’allocation de fichier (FAT : File Allocation Table)

> A chaque bloc est associée une entrée dans la FAT qui contient le numéro du bloc suivant
(Méthode utilisée dans MS-DOS et OS/2)

11/54

METHODES D’ALLOCATION DES FICHIERS

ALLOCATION CHAINEE ET INDEXEE

Séparer les pointeurs et les données
Technique :

» Utilisation d’une table d’allocation de fichier (FAT : File Allocation Table)

> A chaque bloc est associée une entrée dans la FAT qui contient le numéro du bloc suivant
(Méthode utilisée dans MS-DOS et OS/2)

Avantages
> Extension des fichiers
» Les blocs de données ne contiennent pas les pointeurs

» Acces direct facile

11/54

METHODES D’ALLOCATION DES FICHIERS

ALLOCATION CHAINEE ET INDEXEE

Séparer les pointeurs et les données
Technique :

» Utilisation d’une table d’allocation de fichier (FAT : File Allocation Table)

> A chaque bloc est associée une entrée dans la FAT qui contient le numéro du bloc suivant
(Méthode utilisée dans MS-DOS et OS/2)

Avantages
> Extension des fichiers
» Les blocs de données ne contiennent pas les pointeurs
» Acces direct facile
Inconvénients
» Occupation de la mémoire centrale par la FAT

> Probléme des disques de grande capacité

11/54

METHODES D’ALLOCATION DES FICHIERS

ALLOCATION PAR NCEUD D’ INFORMATION
> Eclater la FAT en plusieurs petites tables appelées nceuds d’informations (i-node)
> A chaque fichier est associé un nceud d’information

» Chaque table contient les attributs et les adresses sur le disque des blocs du fichier

12/54

METHODES D’ALLOCATION DES FICHIERS

ALLOCATION PAR NCEUD D’ INFORMATION
» Eclater la FAT en plusieurs petites tables appelées nceuds d’informations (i-node)
» A chaque fichier est associé un nceud d’information
» Chaque table contient les attributs et les adresses sur le disque des blocs du fichier
UNIX
> La table est hiérarchisé sur Unix
» FS System V
» 10 direct, 1 simple indirection, 1double indirection, 1 triple indirection

» BSD Fast FS/ UFS

» 12 direct, 1 simple indirection, 2 double indirection

12/54

METHODES D’ALLOCATION DES FICHIERS

ALLOCATION PAR NCEUD D’ INFORMATION
» Eclater la FAT en plusieurs petites tables appelées nceuds d’informations (i-node)
» A chaque fichier est associé un nceud d’information
» Chaque table contient les attributs et les adresses sur le disque des blocs du fichier
UNIX
> La table est hiérarchisé sur Unix

» FS System V
» 10 direct, 1 simple indirection, 1double indirection, 1 triple indirection

» BSD Fast FS/ UFS

» 12 direct, 1 simple indirection, 2 double indirection
Que des avantages
> Seuls les nceuds d’information des fichiers ouverts sont chargés en mémoire centrale
> Allocation par bloc individuel
> Acces direct facile (nécessite au maximum 4 accés disque)
> Adaptée aux disques de trés grande capacité

12/54

STRUCTURE D’UN NGEUD D’ INFORMATION

Bloc d ’indirection Bloc d ’indirection

+ double

E
S

premiers blocs

Adresses des

I-nod

Bloc d indirection
triple

13/54

LES SYSTEMES DE FICHIERS EXISTANT

>
>
>
>
>
>
>

>

Support intégrés dans les (bons) noyaux monolithiques, module pour les micronoyaux ou noyaux

ext2 : historique, GNU+Linux (extent)
ext4 :son successeur encore tres utilisé
btrfs :en fin de développement (arbres-b)
zfs : SunMicrosystems, puis BSD

nfs :en réseau

fat32 : historique, encore utilisé, clefs USB
ntfs : windows

apfs :apple

hybrides.

14/54

PROPRIETES ADDITIONNELLES

vVVvyVvyVYyVvyVYyVYYVYYy

journalisation

snapshots

support réseau

compression

RAID

sous-volumes
redimensionnement a chaud
copy-on-write (CoW)

chiffrement intégré...

15/54

EN PRATIQUE

> Les volumes de stockages sont représentés par des fichiers de type “block”, dans /dev

16/54

EN PRATIQUE

> Les volumes de stockages sont représentés par des fichiers de type “block”, dans /dev

> Au début d’un block device se trouve une table de partition (outils : gparted, fdisk, ...)
Exemples : /dev/sdal, /dev/sdb2, /dev/sdb3, /dev/mmcblkOpl, /dev/sr0

16/54

EN PRATIQUE

> Les volumes de stockages sont représentés par des fichiers de type “block”, dans /dev

> Au début d’un block device se trouve une table de partition (outils : gparted, fdisk, ...)
Exemples : /dev/sdal, /dev/sdb2, /dev/sdb3, /dev/mmcblkOpl, /dev/sr0

» Chaque partition est formatée avec un systéme de fichier :
mkfs.ext4 /dev/sdbl

16/54

EN PRATIQUE

> Les volumes de stockages sont représentés par des fichiers de type “block”, dans /dev

> Au début d’un block device se trouve une table de partition (outils : gparted, fdisk, ...)
Exemples : /dev/sdal, /dev/sdb2, /dev/sdb3, /dev/mmcblkOpl, /dev/sr0
» Chaque partition est formatée avec un systéme de fichier :
mkfs.ext4 /dev/sdbl
» Un systéme de fichiers est monté sur un répertoire :
mount /dev/sdbl /media/flims
1sblk, df -h, findmnt

16/54

EXERCICES

> Prenons une variante d’i-nceud d’une taille de 16 octets, représenté comme suit :

» Trois champs de 8 bits chacun pour I'information sur le fichier,
» Onze pointeurs de blocs primaires,

» Un pointeur pour une indirection simple sur un bloc dont le dernier pointeur fait une seconde
indirection simple.

Sachant que les blocs sur ce systéme sont de 1 Ko et que les adesses (pointeurs) sont codées
sur 16 bits,

17/54

EXERCICES

> Prenons une variante d’i-nceud d’une taille de 16 octets, représenté comme suit :

» Trois champs de 8 bits chacun pour I'information sur le fichier,
» Onze pointeurs de blocs primaires,
» Un pointeur pour une indirection simple sur un bloc dont le dernier pointeur fait une seconde
indirection simple.
Sachant que les blocs sur ce systéme sont de 1 Ko et que les adesses (pointeurs) sont codées
sur 16 bits,
1. Quelle sera la taille maximale d’un fichier (en octets) que ce systeme de fichier peut supporter?
2. Dans quel bloc du disque dur retrouve-t-on le 209921éme octet du fichier représenté par le
neeud ?

17/54

SOLUTION

> Un bloc peut contenir au maximum 512 adresses (pointeurs). La taille est de
(114511 4+ 512) = 1034 blocs. Ceci correspond & 1034 Ko, donc environ 1 Mo.

18/54

SOLUTION

> Un bloc peut contenir au maximum 512 adresses (pointeurs). La taille est de
(114511 4+ 512) = 1034 blocs. Ceci correspond & 1034 Ko, donc environ 1 Mo.

> |l s’agit du premier octet du bloc numéro 205. Le pointeur a retrouver est donc a la position
194 du premier bloc d’indirection simple.

18/54

EXERCICES

On considére un systéme de fichiers tel que I'information concernant les blocs de données de
chaque fichier est accessible a partir du i-nceud de celui-ci (comme dans UNIX). On supposera
que:

> Le systéme de fichiers utilise des blocs de données de taille fixe 1 Ko;

» L’i-nceud de chaque fichier (ou répertoire) contient 12 pointeurs directs sur des blocs de

données, 1 pointeur indirect simple, 1 pointeur indirect double et 1 pointeur indirect triple.

» Chaque pointeur (numéro de bloc) est représenté sur 4 octets.

19/54

EXERCICES

On considére un systéme de fichiers tel que I'information concernant les blocs de données de
chaque fichier est accessible a partir du i-nceud de celui-ci (comme dans UNIX). On supposera
que:

> Le systéme de fichiers utilise des blocs de données de taille fixe 1 Ko;

» L’i-nceud de chaque fichier (ou répertoire) contient 12 pointeurs directs sur des blocs de

données, 1 pointeur indirect simple, 1 pointeur indirect double et 1 pointeur indirect triple.

» Chaque pointeur (numéro de bloc) est représenté sur 4 octets.

1. Quelle est la plus grande taille de fichier que ce systéme de fichiers peut supporter?

2. On consideére un fichier contenant 10 octets. Combien de blocs de données sont-ils
nécessaires (au total) pour représenter ce fichier sur disque?

19/54

SOLUTION

1. Chaque bloc de données peut contenir 256 pointeurs.

Tailleen ko = 12 + 256 + 2562 4 256 = 16/843/020 ~ 16, 06Go.

20/54

SOLUTION

1. Chaque bloc de données peut contenir 256 pointeurs.

Tailleen ko = 12 + 256 + 2562 4 256 = 16/843/020 ~ 16, 06Go.

2. Soit un fichier de 10° octets,
10° = 97 x 1024 + 672. Il faudra donc 98 blocs pour conserver les données de ce fichier.

20/54

SOLUTION

1. Chaque bloc de données peut contenir 256 pointeurs.

Tailleen ko = 12 + 256 + 2562 4 256 = 16/843/020 ~ 16, 06Go.

2. Soit un fichier de 10° octets,
10° = 97 x 1024 + 672. Il faudra donc 98 blocs pour conserver les données de ce fichier.
L’i-nceud ne dispose que de 12 pointeurs directs, il va donc falloir utiliser des blocs
supplémentaires (98 — 12 = 86) pour conserver le reste des données. Comme 86 < 256, ces
blocs de données seront accessibles a partir du pointeur indirect simple du i-nceud.

20/54

SOLUTION

1. Chaque bloc de données peut contenir 256 pointeurs.

Tailleen ko = 12 + 256 + 2562 4 256 = 16/843/020 ~ 16, 06Go.

2. Soit un fichier de 10° octets,
10° = 97 x 1024 + 672. Il faudra donc 98 blocs pour conserver les données de ce fichier.
L’i-nceud ne dispose que de 12 pointeurs directs, il va donc falloir utiliser des blocs
supplémentaires (98 — 12 = 86) pour conserver le reste des données. Comme 86 < 256, ces
blocs de données seront accessibles a partir du pointeur indirect simple du i-nceud.
Une partie d’un bloc sera nécessaire pour conserver les 86 pointeurs sur des blocs de
données. Le nombre total de blocs utilisés est donc 98 + 1 = 99.

20/54

EXERCICES

On considére un systéme disposant d’un systéme de fichiers similaire a celui d’UNIX avec une
taille de blocs de données de 4Ko et des pointeurs (numéros de blocs) définies sur 4 octets. On
supposera que le i-nceud de chaque fichier compte 12 pointeurs directs, 1 pointeur indirect
simple, 1 pointeur indirect double et 1 pointeur indirect triple. On désire créer un fichier
contenant un total de 2 x 107 de caractéres ASCII.

21/54

EXERCICES

On considére un systéme disposant d’un systéme de fichiers similaire a celui d’UNIX avec une
taille de blocs de données de 4Ko et des pointeurs (numéros de blocs) définies sur 4 octets. On
supposera que le i-nceud de chaque fichier compte 12 pointeurs directs, 1 pointeur indirect
simple, 1 pointeur indirect double et 1 pointeur indirect triple. On désire créer un fichier
contenant un total de 2 x 107 de caractéres ASCII.

Quelle est la fragmentation interne totale sur le disque résultant de la création de ce fichier?

21/54

SOLUTION

Notre fichier compte 2 x 107 = 4882 x 4096 + 3328 o, donc 4883 blocs nécessaires. Il faudra aussi leur ajouter des blocs qui vont étre
utilisés pour stocker des pointeurs vers ces blocs de données. On effectue donc le calcul suivant (sur les blocs) :

>
>

Le fichier compte 4883 blocs de données.

Les pointeurs directs de I’i-nceud permettent d’accéder a 12 de ces blocs. Il reste donc 4871 blocs de données pour lesquels I'accés
se fera a travers I'un des liens indirects.

Le pointeur de lien indirect simple pointe sur un bloc qui contient 1024 numéros de blocs (pointeurs vers des blocs de données).
Nous avons donc ajouté 1 bloc de pointeurs, et il reste 4871 — 1024 = 3847 blocs a traiter.

Le pointeur de lien indirect double permet d’accéder a 1024 x 1024 blocs, ce qui est plus que suffisant. Il suffit d’utiliser 4 blocs de
données pour stocker les 3847 pointeurs de blocs permettant d’accéder aux données restantes.

22/54

SOLUTION

Notre fichier compte 2 x 107 = 4882 x 4096 + 3328 o, donc 4883 blocs nécessaires. Il faudra aussi leur ajouter des blocs qui vont étre
utilisés pour stocker des pointeurs vers ces blocs de données. On effectue donc le calcul suivant (sur les blocs) :

P Le fichier compte 4883 blocs de données.

P Les pointeurs directs de I'i-nceud permettent d’accéder a 12 de ces blocs. |l reste donc 4871 blocs de données pour lesquels I'accés
se fera a travers I'un des liens indirects.

P Le pointeur de lien indirect simple pointe sur un bloc qui contient 1024 numéros de blocs (pointeurs vers des blocs de données).
Nous avons donc ajouté 1 bloc de pointeurs, et il reste 4871 — 1024 = 3847 blocs a traiter.

P Le pointeur de lien indirect double permet d’accéder a 1024 x 1024 blocs, ce qui est plus que suffisant. Il suffit d’utiliser 4 blocs de
données pour stocker les 3847 pointeurs de blocs permettant d’accéder aux données restantes.

Fragmentation interne (espace alloué mais non utilisé) :
P 4 octets sur 'i-nceud (indirection triple non utilisé)
P> (1024 — 4) x 4 = 4080 octets dans le bloc sur lequel pointe le pointeur indirect double.
P (4096 — 3847) X 4 = 996 octets dans le dernier bloc de pointeurs alloué.
P Finalement, 768 octets dans le dernier bloc de données.

La fragmentation interne totale sur le disque est donc de 5848 octets.

22/54

PARTIE 2 : C

STRUCTURE PHYSIQUE D’UN I-NGEUD

Fichier /usr/include/sys/stat.h.

#include<sys/types.h>

#include<sys/stat.h>

struct stat{
dev_t st_dev;
ino_t st_ino;
mode_t st_mode;
nlink_t st_nlink;
uid_t st_uid;
gid_t st_gid;
off_t st_size;
time_t st_atime;
time_t st_mtime;
time_t st_ctime;

}

/*id du disque logique du fichierx/
/*numero i-nodex/

/*type et droits d’acces*/

/*nombre de liens physiques*/
/*proprietaire du fichier*/
/*groupe proprietaire*/

/*taille du fichier en octets*/
/*date dernier acces*/

/*date derniere modif.*/

/*date derniere modif. du neud*/

st_mode : type du fichier (4 bits) + droits d’accés (12 bits).

24/54

STRUCTURE PHYSIQUE D’UN I-NGEUD

> Les fonctions stat et fstat permettent d’obtenir dans un objet de structure stat les
informations relatives a un fichier donné : le fichier est identifié par une référence dans la
primitive stat et par un descripteur dans la primitive fstat. Les prototypes des deux
fonctions sont :

> #include<sys/types.h>
#include<sys/stat.h>
int stat(const char *ref, struct stat *ptr_stat);
int fstat(const int desc, struct stat *ptr_stat);

> Les deux fonctions retournent O si tout se passe bien et —1 en cas d’échec.

25/54

LE CHAMPS ST_MODE

Nom symbolique du bit Interprétation du bit
type du
fichier
S_ISUID set-uid bit
S_ISGID set-gid bit
sticky bit
S_IRUSR lecture par le propriétaire
écriture par le propriétaire
_ _ écriture par le propriétai
exécution par le propriétaire
5 écution par le propriétai
S_IRGRP lecture par les membres du groupe propriétaire
S_IRWXG| S_IWGRP| écriture par les membres du groupe propriétaire
_ exécution par les membres du groupe propriétaire
S_IXGRP éeuti ! bres d iétai
S_IROTH lecture par les autres utilisateurs
S_IRWXO S_IWOTH écriture par les autres utilisateurs
S_IXOTH exécution par les autres utilisateurs

26/54

LE CHAMPS ST_MODE : TYPES DE FICHIERS

st_mode & S_IFMT

type du fichier

S_IFREG

fichier régulier

S_IFBLK

fichier périphérique bloc

S_IFCHR

fichier périphérique caractere

S_IFDIR

répertoire

S_IFIFO

tube nommé

S_IFLNK

lien symbolique

S_IFSOCK

socket

27/54

TYPES DE FICHIER : EXEMPLE

struct stat stat_fic;

if (stat(argv[i], &stat_fic) != 0) {
fprintf (stderr, "Erreur a la lecture des informations \
relatives au fichier %s\n", argv([i]);

exit(1);

}

switch (stat_fic.st_mode & S_IFMT) {

case
case
case
case
case
case
case

S_IFREG :
S_IFIFO :
S_IFLNK :

S_IFSOCK:

S_IFBLK :
Ve
S_IFDIR :

S_IFCHR

default

/%
/%
/%
/%
/%

/%

argu[1]
argu[1]
argu([1]
argu([1]
argv[1]
argu([1]
argv[1]

est
est
est
est
est
est
est

un fichier régulier */

un tube nommé */

un lien symbolique */

une socket */

un fichier périphérique bloc */

un fichier périphérique caractére */
un répertoire */

: printf("Type de fichier inconnu\n");

28/54

UN SYSTEME DE FICHIERS, MAIS POUR QUOI FAIRE ?

|-- bin/ -> /usr/bin/ # Leg historique, voir /usr

|-- boot/ # utilisé lors du démarrage, contient les noyaux,
| # initramfs et un bout du systéme d’amorgage

|-- dev/ # contient les (interfaces vers les) périphériques,
| # disques, partitions, souris & clavier, terminaux.

|-- etc/ # "editable text configuration"
| # fichiers de configuration du systéme au format texte

| -- home/ # répertoires personnels (HOME) des users
|-- media/ # contient les répertoires servant de point de montage
| # pour systémes de fichiers des périphériques amovibles

| # (créés lors du branchement de ces derniers)

|-- mnt/ # idem mais pour les systémes de fichiers temporaires,
| # peuplé & la main

opt/

proc/

root/

run/

srv/

sys/

tmp/

usr/

var/

logiciels optionnels, qui sont installés manuellement
et utilisables par tous les users, vide par défaut

point de montage pour le systéme de fichiers procfs
infos sur les processsus, autres infos du noyau

HOME du superuser

"runtime", contient les fichiers temporaires des logiciels,
en cours d’exécution (ex: fichiers <démon>.pid,

la majorité des sockets et tubes nommés se trouvent ici

fichiers varibles utilisés par les services (sites web, ..)

point de montage pour sysfs, donnant info sur les périphériques,
les drivers, d’autres infos sur le noyau absentes de /proc

fichiers temporaires de tout le monde, vidé sur poweroff

"Unix system ressources" : exécutables, bibliothéques (1lib, .so)
includes (.h), icénes, fichiers .desktop, ..

fichiers variables utilisés par le systéme (logs,
mails, cache gestionnaire de paquets, bdd, etc..)

30/54

DROITS D’ACCES

> Le systéme Linux est un systéme multi utilisateurs ou I’accés aux fichiers est controlé par
des permissions d’acces.
» Tout fichier posséde des droits. La commande 1s -1 permet de les afficher.

> |l existe quatre types de droits :

» r = read droit en lecture

» w = write droit en écriture

» x = execute droit d’exécution
» - = aucun droit

31/54

DROITS D’ACCES

» Droits associés aux fichiers.

(R)EAD : permet la lecture d’un fichier, ce qui autorise par exemple la copie du fichier (cat,
less, cp, ...)
(W)RITE : permet de modifier le contenu d’un fichier (cat >>, vi, ...)
E(X)ECUTE : permet de considérer le fichier comme une commande (fichier binaire ou script)
(-) :aucune permission

32/54

DROITS D’ACCES

» Droits associés aux fichiers.

(R)EAD : permet la lecture d’un fichier, ce qui autorise par exemple la copie du fichier (cat,
less, cp, ...)
(W)RITE : permet de modifier le contenu d’un fichier (cat >>, vi, ...)
E(X)ECUTE : permet de considérer le fichier comme une commande (fichier binaire ou script)
(-) :aucune permission
> Droits associés aux répertoires
(R)EAD : permet de lire le contenu du répertoire (1s)

(W)RITE : permet de modifier le contenu du répertoire. Autorise donc la création et la suppression de

fichiers dans le répertoire a condition que la permission ’x’ soit activée (touch, cat >, vi);

E(X)ECUTE : permet d’entrer dans le répertoire (cd)
(-) :aucune permission

32/54

DROITS D’ACCES

» la commande chmod permet de changer les droits d’accés associés a un fichier/répertoire.

> seul le propriétaire du fichier ou 'administrateur peuvent effectuer cette opération.
> Syntaxe

»> chmod [OPTIONS]... MODE[,MODE] FICHIER...
> deux syntaxes sont possibles

> la méthode octale (numérique)
> la méthode symbolique (litérale)

33/54

DROITS D’ACCES

Principe de la méthode octale
» r est représenté par 4
> w est représenté par 2

> x est représenté par 1

34/54

DROITS D’ACCES

Principe de la méthode octale
» r est représenté par 4
> w est représenté par 2

> x est représenté par 1

$ chmod 741 fichier

N
NN S| e
[SN
S
| O

-

34/54

DROITS D’ACCES

Principe de la méthode symbolique

[ugoa]l [+-=1 [rwx]

35/54

DROITS D’ACCES

Principe de la méthode symbolique

[ugoa]l [+-=1 [rwx]

Exemples :
» chmod go+r fichier
» chmod a-x fichier

» chmod u=rwx,g=r,o=x fichier

35/54

DROITS D’ACCES

Principe de la méthode symbolique

[Lugoa] [+-=1 [rwx]

Exemples :
» chmod go+r fichier
chmod a-x fichier
chmod u=rwx,g=r,o=x fichier
find . -type d -exec chmod 750 {} \;

>
| 4
>
> find . -type f -exec chmod ugo-x {} \;

35/54

DROITS D’ACCES

1. A quels droits correspondent les entiers suivants?
751
521
214
150

2. Par quels entiers sont codés les droits ru-r--r-- et rwxr-xr-x ?

36/54

DROITS D’ACCES

1. A quels droits correspondent les entiers suivants?
751 rwx r-x ——X
521
214
150

2. Par quels entiers sont codés les droits ru-r--r-- et rwxr-xr-x ?

36/54

DROITS D’ACCES

1. A quels droits correspondent les entiers suivants?
751 rwx r-x ——X
521 r-x -w- --X
214
150

2. Par quels entiers sont codés les droits ru-r--r-- et rwxr-xr-x ?

36/54

DROITS D’ACCES

1. A quels droits correspondent les entiers suivants?
751 rwx r-x ——X
521 r-x -w- --X
214 -w- --x r—-
150

2. Par quels entiers sont codés les droits ru-r--r-- et rwxr-xr-x ?

36/54

DROITS D’ACCES

1. A quels droits correspondent les entiers suivants?
751 rwx r-x ——X
521 r-x -w- --X
214 -w- --x r—-
150 --x r-x ——-

2. Par quels entiers sont codés les droits ru-r--r-- et rwxr-xr-x ?

36/54

DROITS D’ACCES

1. A quels droits correspondent les entiers suivants?
751 rwx r-x ——X
521 r-x -w- --X
214 -w- --x r—-
150 --x r-x ——-

2. Par quels entiers sont codés les droits ru-r--r-- et rwxr-xr-x ?
644, 755.

36/54

DROITS D’ACCES

Aux droits fondamentaux (rwx) s’ajoutent 3 attributs spéciaux :

> le sticky-bit

> [e set-user-1D (suid)

> le set-group-ID (sgid)
L’administrateur doit impérativement en connaitre la signification car ils sont fondamentaux
pour la sécurité du systéme.

37/54

DROITS D’ACCES

> Le sticky-bit
» sur un fichier : lorsque le sticky-bit est positionné sur un fichier exécutable, le code du
programme reste résident en mémoire aprés qu’il ait été exécuté.

38/54

DROITS D’ACCES

> Le sticky-bit
» sur un fichier : lorsque le sticky-bit est positionné sur un fichier exécutable, le code du
programme reste résident en mémoire aprés qu’il ait été exécuté.
> sur un répertoire : un utilisateur qui a le droit d’écrire dans un répertoire, peut également
supprimer tous les fichiers qui s’y trouvent. Le sticky-bit positionné sur ce répertoire va y
remédier, ainsi un utilisateur ne pourra effacer que les fichiers qui lui appartiennent.

38/54

DROITS D’ACCES

> Le sticky-bit
» sur un fichier : lorsque le sticky-bit est positionné sur un fichier exécutable, le code du
programme reste résident en mémoire aprés qu’il ait été exécuté.
> sur un répertoire : un utilisateur qui a le droit d’écrire dans un répertoire, peut également
supprimer tous les fichiers qui s’y trouvent. Le sticky-bit positionné sur ce répertoire va y
remédier, ainsi un utilisateur ne pourra effacer que les fichiers qui lui appartiennent.
> tugo:chmod 1777 rep, chmod o+t rep.

38/54

DROITS D’ACCES

> Le set uid et set gid (les droits d’endossement)

» Une commande avec set uid/et gid s’exécute avec I'identité du propriétaire (set uid) ou du groupe
propriétaire (set gid),

39/54

DROITS D’ACCES

> Le set uid et set gid (les droits d’endossement)
» Une commande avec set uid/et gid s’exécute avec I'identité du propriétaire (set uid) ou du groupe
propriétaire (set gid),
» Au lieu de donner le droit d’accés a un fichier a une catégorie d’utilisateurs, on donne le droit
d’accés a une commande (fichier compilé)

39/54

DROITS D’ACCES

> Le set uid et set gid (les droits d’endossement)
» Une commande avec set uid/et gid s’exécute avec I'identité du propriétaire (set uid) ou du groupe
propriétaire (set gid),
» Au lieu de donner le droit d’accés a un fichier a une catégorie d’utilisateurs, on donne le droit
d’accés a une commande (fichier compilé)
» Quand un utilisateur se connecte sur un systéme GNU/Linux, il détient 2 UID (UserlDentity) et 2
GID (GrouplDentity) : le réel et I'effectif

39/54

DROITS D’ACCES

> Le set uid et set gid (les droits d’endossement)

>

>

Une commande avec set uid/et gid s’exécute avec I'identité du propriétaire (set uid) ou du groupe
propriétaire (set gid),

Au lieu de donner le droit d’accés a un fichier a une catégorie d’utilisateurs, on donne le droit
d’accés a une commande (fichier compilé)

Quand un utilisateur se connecte sur un systéme GNU/Linux, il détient 2 UID (UserlDentity) et 2
GID (GrouplDentity) : le réel et I'effectif

Quand les droits d’endossement ne sont pas positionnés, alors les UID et GID effectifs (ceux de la
commande) sont identiques aux UID et GID réels

39/54

DROITS D’ACCES

> Le set uid et set gid (les droits d’endossement)

>

>

Une commande avec set uid/et gid s’exécute avec I'identité du propriétaire (set uid) ou du groupe
propriétaire (set gid),

Au lieu de donner le droit d’accés a un fichier a une catégorie d’utilisateurs, on donne le droit
d’accés a une commande (fichier compilé)

Quand un utilisateur se connecte sur un systéme GNU/Linux, il détient 2 UID (UserlDentity) et 2
GID (GrouplDentity) : le réel et I'effectif

Quand les droits d’endossement ne sont pas positionnés, alors les UID et GID effectifs (ceux de la
commande) sont identiques aux UID et GID réels

Significatifs pour la sécurité du systéme

39/54

DROITS D’ACCES

> Le set uid et set gid

suid sgid sticky u g o
s s t rwx I-X T--—
4 0 0 421 401 400
4 0 0 7 5 4

[root]# chmod 4754 cde
(2754 pour le guid)
(u+s / g+s)

40/54

DROITS D’ACCES

Droits par défaut

> un nouveau fichier posséde des "droits par défaut” (ex. "rwx r-x r-x” pour un répertoire
et rw- r-- r--"pour un fichier)

> Pour cela, le systéme retire les droits x et 'administrateur retire ceux qu’il définit via un
masque,

> La commande umask permet de connaitre la valeur de ce masque. Cette valeur est définie

dans /etc/bashrc (0022). Le masque est mis en place a la connexion et il reste actif jusqu’a
la déconnexion.

41/54

MANIPULATIONS DE FICHIERS

Les appels systemes utiles :
0PEN pour ouvrir un fichier (création d’une entrée dans la table des fichiers ouverts du processus),
WRITE pour écrire (des octets) dans le fichier,
READ pour lire (des octets) dans le fichier,

CLOSE pour le fermer.

42/54

MANIPULATIONS DE FICHIERS

Les appels systemes utiles :
0PEN pour ouvrir un fichier (création d’une entrée dans la table des fichiers ouverts du processus),
WRITE pour écrire (des octets) dans le fichier,
READ pour lire (des octets) dans le fichier,
CLOSE pour le fermer.
De plus :
> Le systéme maintient pour chaque processus une table des fichiers ouverts.

» A chaque fichier ouvert par le processus est associé un petit entier (son indice dans cette
table) appelé descripteur de fichier.

> Ce descripteur de fichier est ensuite donné en argument a tous les appels systémes qui
permettent au processus d’interagir avec lui.

> Le systéme maintient également la position de la téte de lecture ou écriture dans le fichier.

42/54

TABLE DES FICHIERS

o
i1
a2

fd 20

File

Jd0
Jd 1
Jd2

Process A Open file table
File descriptor table (system-wide)
fd | file file | status | inode
flags | ptr offset | flags ptr
1 -0
e
Process B
descriptor table
fd [file 73
flags | ptr
/ 86

Jis

1976

5139

I-node table
(system-wide)

file
type

file
locks

43/54

OPEN

#include <fcntl.h>
int open(const char *pathname, int flags);
int open(const char *pathname, int flags, mode_t mode);

PATHNAME chemin (relatif ou absolu) dans I’arborescence des fichiers;

FLAGS

> 0_RDONLY pour lecture seule
» O_WRONLY pour écriture seule
> O_RDWR pour lecture et écriture (plus rare)

Ces flags peuvent étre « ou-bit-a-bit-és » avec des attributs de création ou d’états (voir
plus loin).

MODE dans le cas ou il faut créer le fichier, donne les permissions (avant application du masque
utilisateur umask) associées au fichier a créer.

44/54

EXEMPLE : OUVERTURE D’UN FICHIER EN LECTURE

#include <fcntl.h>
#include <stdio.h>
int main(int argc, char *argv[])
{
int fd;
fd = open(argv[1], O_RDONLY);
if (£d < 0) {
perror("open") ;
return 1;
} else {
printf("fichier s ouvert avec succés, descripteur %d\n",
argv[1], £d);
¥

return O;

45/54

EXEMPLE : OUVERTURE D’UN FICHIER EN LECTURE

Toujours tester la valeur de retour d’open.

46/54

EXEMPLE : OUVERTURE D’UN FICHIER EN LECTURE

Toujours tester la valeur de retour d’open.

$./a.out open_exemplel.c

fichier open_exemplel.c ouvert avec succés, descripteur 3
$./a.out open_exemplel.c

open: No such file or directory

$ chmod u-r open_exemplel.c

$./a.out open_exemplel.c

open: Permission denied

$./a.out

open: Bad address

46/54

EXEMPLE : OUVERTURE D’UN FICHIER EN ECRITURE

#include <fcntl.h>
#include <stdio.h>

int main(int argc, char *argv[])
{
int fd;
/% O_CREAT : créer le fichier s’il n’existe pas
* O_TRUNC : st le fichier existe, le vider
* 0666 : rw-rw-rw- mais enlever les bits de permissions de l’umask */
fd = open(argv[1], O_WRONLY | O_CREAT | O_TRUNC, 0666);
if (£d < 0) {
perror("open");
return 1;
} else {
printf("fichier %s ouvert avec succés, descripteur %d\n",
argv[1], £d);
}

return O;

47/54

QUELQUES ETATS POUR UNE OUVERTURE O_WRONLY ou O_RDWR

» 0_TRUNC : si le fichier existe, le vider
» 0_APPEND : toutes les écritures se font a la fin du fichier

> O_CREAT :si le fichier n’existe pas, le créer (et utiliser le 3¢me argument pour les
permissions)

» 0_EXCL : avec O_CREAT, si le fichier existe, échouer

48/54

READ

#include <unistd.h>
ssize_t read(int fd, void *buf, size_t count);

SSIZE_T signed size type, un type entier assez grand, signé pour retourner des valeurs négatives
(erreurs)
FD le descripteur de fichier du fichier dans lequel on lit des octets
BUF adresse dans la mémoire du processus ou I'on veut copier ces octets
couNT nombre maximal d’octets que I'on veut lire

» Valeur de retour : nombre d’octets effectivement lus (< count)

49/54

READ : EXEMPLE

#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>

int main(int argc, char *argv[])

{

int fd = open(argv[1], O_RDONLY)

if (£d < 0) {

perror("open") ;

return 1;
¥
ssize_t n;
char buf[4];

n = read(fd, buf, 4);
printf("n = jld\n", n);
n = read(fd, buf, 4);
printf("n = %ld\n", n);
n = read(fd, buf, 4);
printf("n = ld\n", n);

return O;

50/54

WRITE

#include <untistd.h>
ssize_t write(int fd, const void *buf, size_t count);

FD descripteur de fichier du fichier dans lequel on écrit des octets
BUF adresse dans la mémoire du processus du premier octet a écrire dans le fichier

couNT nombre maximal d’octets a écrire dans le fichier

» Valeur de retour : nombre d’octets effectivement écrits dans le fichier (< count)

51/54

WRITE, EXEMPLE PI:ZDAGOGIQUE

#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>

int main(int argc, char *argv[])
{
int fd = open(argv[1], O_WRONLY | O_CREAT | O_TRUNC, 0666);
if (£d < 0) {
perror("open") ;
return 1;
¥
ssize_t n;
char buf[] = "Lol !!'\n";
/* On ne veut pas écrire l’octet nul final dans le fichier. */
n = write(fd, buf, strlen(buf));
printf("n = %ld\n", n);
close(fd);

return O;

52/54

READ BLOQUANT

> Dans certaines circonstances, read est bloquant : il n’y a pas encore d’octets a lire dans le
fichier

> le processus est endormi

> réveillé par le systéme lorsque des octets sont arrivés.

> C’est le cas pour la lecture sur le terminal ou dans un socket.

53/54

UN EDITEUR DE TEXTE

/* super_text_editor.c */
#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>
#define BUFSZ 256
int main(int argc, char *argv[])
{
int fd = open(argv[1], O_WRONLY | O_CREAT | O_TRUNC, 0666);
if (£d < 0) {
perror("open") ;
return 1;
¥
ssize_t n;
char buf [BUFSZ];
while ((n = read(0, buf, 256)) > 0) {
printf("/%1ld octets écrits dans %s\n", n, argv[i]);
write(fd, buf, n);
}
close(fd);
return O;

54/54

