
Introduction shell scripting

Aloÿs Dufour

ATER, LIPN équipe LoCal
Université Paris-Nord XIII

6 janvier 2026

1 / 18

Introduction au script shell

Imaginez un mini-langage de programmation intégré à Linux. Ce n’est pas un langage aussi
complet que peuvent l’être le C, le C++ ou le Java par exemple, mais cela permet d’automatiser la
plupart de vos tâches. Voici un aperçu de ce qu’on peut faire avec :
▶ Sauvegarde de vos données
▶ Surveillance de la charge de votre machine
▶ Système de gestion personnalisé de vos téléchargements
▶ ...etc

2 / 18

Introduction au script shell

Pourquoi pas le C? Le gros avantage des scripts shell, c’est qu’ils sont totalement intégrés à
Linux : il n’y a rien à installer et rien à compiler. Et surtout : vous avez trés peu de nouvelles
choses à apprendre. En effet, toutes les commandes que l’on utilise dans les scripts shells sont
des commandes du système que vous connaissez déjà : ls, cut, grep, sort, ... etc.

3 / 18

Introduction au script shell

▶ Créer un nouveau fichier pour le script : gedit essai.sh =⇒ fichier vide
▶ La première chose à faire dans un script shell est d’indiquer ... quel shell est utilisé :
▶ Rajouter dans essai.sh la ligne # !/bin/bash
▶ le #! est appelé le sha-bang
▶ Après le sha-bang, nous pouvons commencer à coder.
▶ Le principe : Ecrire les commandes que vous souhaitez exécuter. Ce sont les mêmes que

celles que vous tapiez dans l’invite de commandes ! Exemple :
#!/bin/bash
ls

4 / 18

Introduction au script shell

▶ Donner les droits d’exec au script
chmod +x essai.sh

▶ Exécuter le script
▶ en tapant ./ devant le nom du script : ./essai.sh
▶ en l’appelant à l’aide du shell : sh essai.sh

5 / 18

Les variables

▶ Un nom
▶ Une valeur

▶ Exemple message='Bonjour tout le monde' Rq :Pas d’espace autour de ”=”
▶ echo : afficher une variable

▶ echo "Salut tout le monde"
▶ echo -e "Message\n Autre ligne"

6 / 18

Les quotes

▶ Les apostrophes ' '
message='Bonjour tout le monde'
echo 'Le message est : $message'
la variable n’est pas analysé et le $ est affiché tel quel.

▶ Les guillemets " "
message='Bonjour tout le monde'
echo "Le message est : $message"
la variable est analysée et son contenu affiché.

▶ Les accents graves
message=`pwd`
echo "Le message est: $message"
les back quotes demandent à bash d’exécuter ce qui se trouve à l’intérieur

7 / 18

read

▶ Demander au user de saisir du texte avec la commande read.
▶ La façon la plus simple de l’utiliser est d’indiquer le nom de la variable dans laquelle le

message saisi sera stocké :
read nom prenom numero
echo "Bonjour $nom $prenom $numero!"

▶ La commande read propose plusieurs options intéressantes.
▶ -p : afficher un message de prompt
▶ -n : limiter le nombre de caractères
▶ -s : ne pas afficher le texte saisi

8 / 18

Les arguments d’un script

▶ Les scripts bash acceptent des paramètres ./varparam.sh param1 param2 param3
▶ $# : contient le nombre de param.
▶ $0 : contient le nom du script exécuté
▶ $n : contient nième param.

▶ Exp :
#!/bin/bash
echo "Vous avez lance $0, il y a $# parametres"
echo "Le parametre 1 est $1"

9 / 18

Test

▶ if [test]
then

echo "true"
else

echo "false"
fi

10 / 18

Test

▶ if [test]
then

echo "premier test a ete verif"
elif [autre_test]

echo "second test a ete verif"
elif [encore_autre_test]

echo "troisieme test a ete verif"
else

echo "Aucun des tests prec. n'a ete verifie"
fi

11 / 18

Test

▶ 3 types de tests différents en bash :
1. Tests sur des chaînes de caractères
2. Tests sur des nombres
3. Tests sur des fichiers

▶ Effectuer plusieurs tests à la fois (et : &&, ou : ||) : encadrer chaque condition par des
crochets

12 / 18

Tests sur les chaînes

▶ $chaine1 = $chaine2 teste si 2 chaînes sont identiques (sensible à la casse...)
▶ $chaine1!= $chaine2 teste si 2 chaînes sont ̸=
▶ $chaine teste si 1 chaîne est vide
▶ -n$chaine teste si 1 chaînes est non vide

if [$1 != $2]
then
echo "Les 2 parametres sont differents !"
else
echo "Les 2 parametres sont identiques !"
fi

13 / 18

Tests sur les nombres

▶ $num1 -eq $num2 teste si les nombres sont égaux.
▶ $num1 -ne $num2 teste si les nombres sont diff.
▶ $num1 -lt $num2 teste si num1 < num2.
▶ $num1 -le $num2 teste si num1 <= num2
▶ $num1 -gt $num2 teste si num1 > num2
▶ $num1 -ge $num2 teste si num1 >= num2

#!/bin/bash
if [$1 -ge 20]
then

echo "Vous avez envoye 20 ou plus"
else

echo "Vous avez envoye moins de 20"
fi

14 / 18

Tests sur les fichiers

▶ -e $nomfich Teste si le fich. existe
▶ -d $nomfich teste si le fich. est un rep.
▶ -f $nomfich teste si le fich. est un... fich. Un vrai fich. pas un dossier.
▶ -L $nomfich teste si fich est un lien symbolique
▶ -r $nomfich teste si fich est lisible (r)
▶ $fich1 -nt $fich2 teste si fich1 est plus récent que fich2 (newer than)
▶ $fich1 -ot $fich2 (older than)

15 / 18

Les boucles

▶ while [test]do echo 'Action en boucle'done
▶ Exemple :

#!/bin/bash
while [-z $reponse] || [$reponse != 'salade']
do

read -p 'Dites salade : ' reponse
done

16 / 18

Les boucles

▶ #!/bin/bash
for etudiant in 'Vincent' 'Thomas' 'Maxime' 'Melody' 'Philippe'
do

echo "Moi $etudiant adore le cours SE"
done

▶ La liste des valeurs n’a pas besoin d’être définie directement dans le code :
#!/bin/bash
liste_fichiers=`ls`
for fichier in $liste_fichiers
do
echo "Fichier trouve : $fichier"
done

17 / 18

Les boucles

▶ Un cas plus classique du for
for i in `seq 1 10`; do echo $i; done

▶ Pour faire des sauts de 2 faire for i in `seq 1 2 10`

18 / 18

