INTRODUCTION shell scripting

Aloys DuFour

ATER, LIPN équipe LoCal
Université Paris-Nord X111

6 janvier 2026

1/18

INTRODUCTION AU SCRIPT SHELL

Imaginez un mini-langage de programmation intégré a Linux. Ce n’est pas un langage aussi
complet que peuvent I’étre le C, le C++ ou le Java par exemple, mais cela permet d’automatiser la
plupart de vos taches. Voici un apercu de ce qu’on peut faire avec :

> Sauvegarde de vos données

» Surveillance de la charge de votre machine

> Systeme de gestion personnalisé de vos téléchargements
> ..etc

2/18

INTRODUCTION AU SCRIPT SHELL

Pourquoi pas le C? Le gros avantage des scripts shell, c’est qu’ils sont totalement intégrés a
Linux : il n’y a rien a installer et rien a compiler. Et surtout : vous avez trés peu de nouvelles
choses a apprendre. En effet, toutes les commandes que I'on utilise dans les scripts shells sont
des commandes du systéme que vous connaissez déja : 1s, cut, grep, sort, ... etc.

3/18

INTRODUCTION AU SCRIPT SHELL

vVvyVvyVvyyvyy

Créer un nouveau fichier pour le script : gedit essai.sh = fichier vide

La premiére chose a faire dans un script shell est d’indiquer ... quel shell est utilisé :
Rajouter dans essai.shlaligne # !/bin/bash

le #! est appelé le sha-bang

Aprés le sha-bang, nous pouvons commencer a coder.

Le principe : Ecrire les commandes que vous souhaitez exécuter. Ce sont les mémes que
celles que vous tapiez dans I'invite de commandes! Exemple :

#!/bin/bash

1s

4/18

INTRODUCTION AU SCRIPT SHELL

» Donner les droits d’exec au script
chmod +x essai.sh

> Exécuter le script

> en tapant ./ devant le nom du script : . /essai.sh
» en lappelant a aide du shell : sh essai.sh

5/18

LES VARIABLES

» Un nom

» Une valeur

S

> Exemple message='Bonjour tout le monde' Rq :Pas d’espace autour de "=
» echo : afficher une variable

» echo "Salut tout le monde"
» echo -e "Message\n Autre ligne"

6/18

LES QUOTES

> Les apostrophes

message='Bonjour tout le monde'
echo 'Le message est : $message’

la variable n’est pas analysé et le $ est affiché tel quel.
> Les guillemets " "

message='Bonjour tout le monde'
echo "Le message est : $message"

la variable est analysée et son contenu affiché.
> Les accents graves
message="pwd"
echo "Le message est: $message"
les back quotes demandent a bash d’exécuter ce qui se trouve a I'intérieur

7/18

READ

» Demander au user de saisir du texte avec la commande read.

» La facon la plus simple de I'utiliser est d’indiquer le nom de la variable dans laquelle le
message saisi sera stocké :
read nom prenom numero
echo "Bonjour $nom $prenom $numero!"

> La commande read propose plusieurs options intéressantes.

» -p: afficher un message de prompt
» -n: limiter le nombre de caractéres
> -s:ne pas afficher le texte saisi

8/18

LES ARGUMENTS D’UN SCRIPT

P Les scripts bash acceptent des parameétres . /varparam.sh paraml param2 param3
> $# : contient le nombre de param.
> $0 : contient le nom du script exécuté
> $n :contient niéme param.
> Exp:
#1/bin/bash
echo "Vous avez lance $0, il y a $# parametres"
echo "Le parametre 1 est $1"

9/18

TEST

> if [test]
then
echo "true"
else
echo "false"
fi

10/18

TEST

> if [test]
then
echo "premier test a ete verif"
elif [autre_test]
echo "second test a ete verif"
elif [encore_autre_test |
echo "troisieme test a ete verif"
else
echo "Aucun des tests prec. n'a ete verifie"
fi

11/18

TEST

> 3 types de tests différents en bash :

1. Tests sur des chaines de caractéres
2. Tests sur des nombres
3. Tests sur des fichiers

> Effectuer plusieurs tests a la fois (et : &&, ou : | |) : encadrer chaque condition par des
crochets

12/18

TESTS SUR LES CHAINES

> $chainel = $chaine? teste si 2 chaines sont identiques (sensible a la casse...)
> $chainel!= $chaine? teste si 2 chaines sont #
> $chaine teste si 1 chaine est vide

» -n$chaine teste si 1 chaines est non vide

if [$1 1= $2]

then

echo "Les 2 parametres sont differents !"
else

echo "Les 2 parametres sont identiques !"
fi

13/18

TESTS SUR LES NOMBRES

$numl -eq $num? teste si les nombres sont égaux.
$numl -ne $num?2 teste si les nombres sont diff.
$numl -1t $num?2 teste si numl < num?2.

$numl -le $num?2 teste si numl <= num2

vvyYVvyvyy

$numl -gt $num?2 teste sinuml > num?2
> $numil -ge $num?2 teste sinuml >= num?2

#1/bin/bash
if [$1 -ge 20]
then

echo "Vous avez envoye 20 ou plus"
else

echo "Vous avez envoye moins de 20"
fi

14/18

TESTS SUR LES FICHIERS

vVvyVvyvVvyVvyYyvyy

-e $nomfich Teste si le fich. existe

-d $nomfich teste si le fich. est un rep.

-f $nomfich teste sile fich. est un... fich. Un vrai fich. pas un dossier.
-L $nomfich teste sifich est un lien symbolique

-r $nomfich teste sifich est lisible (r)

$fichl -nt $fich? teste sifich1 est plus récent que fich2 (newer than)
$fichl -ot $fich2 (older than)

15/18

LES BOUCLES

» while [test]do echo 'Action en boucle'done

> Exemple:
#1/bin/bash
while [-z $reponse] || [$reponse != 'salade']
do
read -p 'Dites salade : ' reponse

done

16/18

LES BOUCLES

» #!/bin/bash
for etudiant in 'Vincent' 'Thomas' 'Maxime' 'Melody' 'Philippe
do

echo "Moi $etudiant adore le cours SE"
done
> La liste des valeurs n’a pas besoin d’étre définie directement dans le code :
#!/bin/bash
liste_fichiers="1s"
for fichier in $liste_fichiers
do
echo "Fichier trouve : $fichier"
done

17/18

LES BOUCLES

» Un cas plus classique du for
for i in “seq 1 107; do echo $i; done

> Pour faire des sauts de 2 faire for i in “seq 1 2 10~

18/18

