PrROGRAMMATION C : META & RAPPELS

Aloys DuFour

ATER, LIPN équipe LoCal
Université Paris-Nord X111

9 janvier 2026

1/35

AU PROGRAMME

1. Bogues & bonnes pratiques

Testes & Types

Analyse statique

Analyse dynamique : débogage, profilage
Librairies et gestionnaires

Git et mails ?

N ook W

Rappels

2/35

TYPES DE BOGUES CLASSIQUES

> use-after-free
int *pl = malloc(sizeof (int));
int *p2 = pi;
free(p2);
*pl = 8;

3/35

TYPES DE BOGUES CLASSIQUES

> use-after-free
int *pl = malloc(sizeof (int));
int *p2 = pi;
free(p2);
*pl = 8;

» memory leak
int *a = malloc(sizeof (int));
a = 0;

3/35

TYPES DE BOGUES CLASSIQUES

> use-after-free
int *pl = malloc(sizeof (int));
int *p2 = pl;
free(p2);
*pl = 8;

» memory leak
int *a = malloc(sizeof(int));
a = 0;

» buffer overflow

char buf[64];
gets(buf);

3/35

TYPES DE BOGUES CLASSIQUES

> use-after-free
int *pl = malloc(sizeof (int));
int *p2 = pl;
free(p2);
*pl = 8;

» memory leak
int *a = malloc(sizeof(int));
a = 0;

» buffer overflow

char buf[64];
gets(buf);

3/35

TYPES DE BOGUES CLASSIQUES

> use-after-free
int *pl = malloc(sizeof (int));
int *p2 = pi;
free(p2);
*pl = 8;

» memory leak
int *a = malloc(sizeof(int));
a = 0;

» buffer overflow
char buf[64];
gets(buf);

Tout bug est un probléme de sécurité en programmation systeme : Smashing the stack for fun and

profit.

3/35

MAUVAISES PRATIQUES

(Voir dangereuses)
> Ne pas initialiser les variables
> Ne pas tester les codes de retours des fonctions (systémes)

> Utilisation de fonctions réputées dangereuses (pas de testes de place : overflow, core
dumped)
sprintf, strcpy, strcat, vsprintf, gets

» Oublier de désallouer/fermer ce qui ne sert plus.

4/35

MAUVAISES PRATIQUES

_»X,¥,0 ,N;char b[1920] ;p(n,c)
{for(;n i xH) c==107y +=80,x=
o-1l:x>= 0780>x7 c ='~'7b
[y+x]=c :0: 0:0;3}c(
char*l,*r;{while (g>=0)q
"?yYrIxC{e }KhE>[|LXbj}" "d0VsJ"
"o "1d0V{Yab [bW} [bW}\\qFywyv{D" "ma\\A"
"o Ztq?Lyw>e{|Zg>Y\\gq\\qI [tYBe{u" "yvDZE\
VBA[T_" "Lo>}KcqdYrWgKxzKtW] | DXRws£cUaT\\\
KXw{Y" "RsFusFusFu{zaqyaz|FmMpyaoyI\\]cuUu{J"
[_/€] -62>> ++/6&17r[q] 1[q])-99;return q;}E(a
Yfor (<1006;)a=" /\\\n"
ey "cd\\alg", """ "_e"
"Jfh")+8], p(#8%" " O+, - 1" (il
,"_ac[I\\YZi" "jkm", " bd~efghXW1V")+13
1-34,a);}main (k,Z)char**Z;{float z[1920] ,A=0
,B=0 ,i,j; puts("" "\x1b" "[2J");for(;
) { float e=sin(A n= sin(B),g=cos(
A),m =cos(B);for(k ;k< 1840;k++)y=-k
/80- 10,0=41+(k%80- 40)*1.3/y+n,N=
A-100.0/y, blkl= ".#" [o+Ne1l,z[k] =0;E(

80- (int) (9%B)%250) ; for (j=0;6.28>j;
1=0;6.28>1;1+=0.02) { float c=sin
),£=sin(j) ,h=d+2,D=15/(c*h*e+£

(i), t=c *hxg-f*e;x=40+2+D* (L¥h*m-t*n)
+D* (1%h #n+t*m) ,0=x+80%y ,N=8* ((f*e-c
g)*m-c* d*e-f*g-1xd*n) ;if (D>z[o]
=D,blo] =L, —ee=agen [
150}
"\x1b[" "H");for(k
Skik++) putchar (k%807b
;A += 0.053;B +=0.037

§+=0.07)for(
(i),d =cos(j
g+5),l=cos

sy 12

*dx
)z[o]
N>07N:0

printf (

=1;1841

[k]:10)

>}

5/35

BONNES PRATIQUES

Localement, le contraire de 'lOCCC

6/35

BONNES PRATIQUES

Localement, le contraire de 'lOCCC

>

vvyyVvyy

style (indentation, format) de code propre

commenter ['utilité des fonctions et les parties compliquées
utiliser des noms de variables/fonctions courtes et explicites
garder le code simple et minimal (principe KISS)

préférer des algo simples avant de passer a des compliqués

éviter la redondance

6/35

BONNES PRATIQUES

Localement, le contraire de 'lOCCC

>
>
>
>
>

>

style (indentation, format) de code propre

commenter ['utilité des fonctions et les parties compliquées
utiliser des noms de variables/fonctions courtes et explicites
garder le code simple et minimal (principe KISS)

préférer des algo simples avant de passer a des compliqués

éviter la redondance

Globalement,

>

>
>
>
| 4

code “modulaire”
documentation

utilitaire de versionnage (git)
Makefiles, ./configure

analyse statique

6/35

TESTES

Pour la détection d’erreurs de syntaxe, d’erreurs sémantiques : compiler.

7/35

TESTES

Pour la détection d’erreurs de syntaxe, d’erreurs sémantiques : compiler.

Pour vérifier que le code fait ce que I’on veut : avoir quelques cas/exemples scriptés, mieux :
“tests unitaires” (vérification du bon fonctionnement pour chaque partie/unité/module du code).

7/35

TESTES

Pour la détection d’erreurs de syntaxe, d’erreurs sémantiques : compiler.

Pour vérifier que le code fait ce que I’on veut : avoir quelques cas/exemples scriptés, mieux :
“tests unitaires” (vérification du bon fonctionnement pour chaque partie/unité/module du code).

Les bons tests explorent une large partie des possibilités et cas dégénérés.

7/35

TESTES

Pour la détection d’erreurs de syntaxe, d’erreurs sémantiques : compiler.

Pour vérifier que le code fait ce que I’on veut : avoir quelques cas/exemples scriptés, mieux :
“tests unitaires” (vérification du bon fonctionnement pour chaque partie/unité/module du code).

Les bons tests explorent une large partie des possibilités et cas dégénérés.

Séparer les étapes de développement : ajout de fonctionnalités d’un coté, et “refactoring” de
l’autre (réorganisation, clarification, simplification, optimisation).

7/35

AU-DELA DES TESTES

Programmation “par contrats” : avec des assertions qui évaluent la véracité d’expression avec
pré-condition, post-conditions et invariants (paralléle avec la logique de HOARE).
En C: assert(expr), dans assert.h, se désactive avec 'option de compilation ~-DNDEBUG.

8/35

AU-DELA DES TESTES

Programmation “par contrats” : avec des assertions qui évaluent la véracité d’expression avec
pré-condition, post-conditions et invariants (paralléle avec la logique de HOARE).
En C: assert(expr), dans assert.h, se désactive avec 'option de compilation ~-DNDEBUG.

Probléme profond sous-jacent : la correction du programme. Notion sémantique, un systéme de
type suffisamment avancé peut remplacer beaucoup de testes a la compilation (langages

statiques).
Programmation dans un langage “fortement typé” (langages fonctionnels tels que Haskell,
OCamlL, ou bien rust).

8/35

ANALYSE STATIQUE (linter)

Analyse du code sans 'exécuter.

9/35

ANALYSE STATIQUE (linter)

Analyse du code sans 'exécuter.
De nos jour, une bonne partie de 'analyse statique est passée dans les compilo,

> analyse lexicale (lexer)

9/35

ANALYSE STATIQUE (linter)

Analyse du code sans 'exécuter.
De nos jour, une bonne partie de 'analyse statique est passée dans les compilo,

> analyse lexicale (lexer)

> pré-traitement (préprocesseur)

9/35

ANALYSE STATIQUE (linter)

Analyse du code sans 'exécuter.
De nos jour, une bonne partie de 'analyse statique est passée dans les compilo,

> analyse lexicale (lexer)
> pré-traitement (préprocesseur)

> analyse syntaxique (parsing)

9/35

ANALYSE STATIQUE (linter)

Analyse du code sans 'exécuter.
De nos jour, une bonne partie de 'analyse statique est passée dans les compilo,

> analyse lexicale (lexer)
> pré-traitement (préprocesseur)
> analyse syntaxique (parsing)

> analyse sémantique (résolution de noms, vérification de type, affectations),

9/35

ANALYSE STATIQUE (linter)

Analyse du code sans 'exécuter.

De nos jour, une bonne partie de 'analyse statique est passée dans les compilo,
> analyse lexicale (lexer)
> pré-traitement (préprocesseur)
> analyse syntaxique (parsing)
> analyse sémantique (résolution de noms, vérification de type, affectations),
>

optimisations

9/35

ANALYSE STATIQUE (linter)

Analyse du code sans 'exécuter.
De nos jour, une bonne partie de 'analyse statique est passée dans les compilo,

> analyse lexicale (lexer)

pré-traitement (préprocesseur)

analyse syntaxique (parsing)

analyse sémantique (résolution de noms, vérification de type, affectations),

optimisations

vvyYVvyvVvyy

édition de liens (linker)

9/35

ANALYSE STATIQUE (linter)

Analyse du code sans 'exécuter.
De nos jour, une bonne partie de 'analyse statique est passée dans les compilo,

> analyse lexicale (lexer)

pré-traitement (préprocesseur)

analyse syntaxique (parsing)

analyse sémantique (résolution de noms, vérification de type, affectations),

optimisations

vvyYVvyvVvyy

édition de liens (linker)

9/35

ANALYSE STATIQUE (linter)

Analyse du code sans 'exécuter.
De nos jour, une bonne partie de 'analyse statique est passée dans les compilo,

> analyse lexicale (lexer)

> pré-traitement (préprocesseur)

> analyse syntaxique (parsing)

> analyse sémantique (résolution de noms, vérification de type, affectations),
> optimisations

» édition de liens (linker)

Le tout dans le respect du format ELF de fichiers exécutables.

9/35

ANALYSE STATIQUE (linter)

Analyse du code sans 'exécuter.
De nos jour, une bonne partie de 'analyse statique est passée dans les compilo,

> analyse lexicale (lexer)

> pré-traitement (préprocesseur)

> analyse syntaxique (parsing)

> analyse sémantique (résolution de noms, vérification de type, affectations),
> optimisations

» édition de liens (linker)

Le tout dans le respect du format ELF de fichiers exécutables.
Spécifications formelles, model checking, interprétation abstraite.

9/35

LIMITE THEORIQUE

Détection d’inter-blocage, de boucles infinies... ?
Programme correct qui s’arréte sur toute entrée ?

10/35

LIMITE THEORIQUE

Détection d’inter-blocage, de boucles infinies... ?
Programme correct qui s’arréte sur toute entrée ?

Probléme de l'arrét : indécidable.

THEOREM (DE RICE)

Toute propriété sémantique non-triviale d’un programme est indécidable.

10/35

ANALYSE DYNAMIQUE
Analyse du programme en cours d’exécution : vérification de types a la volée (python et
beaucoup de langages interprétés), outils de visualisation de I’état du programmes, débogueurs.
Pour déboguer un programme C, le compiler avec 'option -g.
VALGRIND détection des variables non-initialisées, de quelques types de fuites mémoires,
dépassement de tableaux.
Divers outils disponibles via valgrind -tool=<toolname> :

11/35

ANALYSE DYNAMIQUE
Analyse du programme en cours d’exécution : vérification de types a la volée (python et
beaucoup de langages interprétés), outils de visualisation de I’état du programmes, débogueurs.
Pour déboguer un programme C, le compiler avec 'option -g.
VALGRIND détection des variables non-initialisées, de quelques types de fuites mémoires,
dépassement de tableaux.
Divers outils disponibles via valgrind -tool=<toolname> :
> par défaut, memcheck (non-allocation, non-initialisation, inaccessibilité),
double-free...,

11/35

ANALYSE DYNAMIQUE

Analyse du programme en cours d’exécution : vérification de types a la volée (python et
beaucoup de langages interprétés), outils de visualisation de I’état du programmes, débogueurs.
Pour déboguer un programme C, le compiler avec 'option -g.
VALGRIND détection des variables non-initialisées, de quelques types de fuites mémoires,
dépassement de tableaux.
Divers outils disponibles via valgrind -tool=<toolname> :
> par défaut, memcheck (non-allocation, non-initialisation, inaccessibilité),
double-free...,
> massif : profilage de tas,

11/35

ANALYSE DYNAMIQUE
Analyse du programme en cours d’exécution : vérification de types a la volée (python et
beaucoup de langages interprétés), outils de visualisation de I’état du programmes, débogueurs.
Pour déboguer un programme C, le compiler avec 'option -g.
VALGRIND détection des variables non-initialisées, de quelques types de fuites mémoires,

dépassement de tableaux.
Divers outils disponibles via valgrind -tool=<toolname> :

> par défaut, memcheck (non-allocation, non-initialisation, inaccessibilité),

double-free...,
> massif : profilage de tas,
» cachegrind, callgrind: profilage de cache,

11/35

ANALYSE DYNAMIQUE
Analyse du programme en cours d’exécution : vérification de types a la volée (python et
beaucoup de langages interprétés), outils de visualisation de I’état du programmes, débogueurs.

Pour déboguer un programme C, le compiler avec 'option -g.
VALGRIND détection des variables non-initialisées, de quelques types de fuites mémoires,

dépassement de tableaux.

Divers outils disponibles via valgrind -tool=<toolname> :
> par défaut, memcheck (non-allocation, non-initialisation, inaccessibilité),

double-free...,

> massif : profilage de tas,
» cachegrind, callgrind: profilage de cache,
> helgrind, DRD: pour les programmes multithreadés.

11/35

ANALYSE DYNAMIQUE
Analyse du programme en cours d’exécution : vérification de types a la volée (python et
beaucoup de langages interprétés), outils de visualisation de I’état du programmes, débogueurs.
Pour déboguer un programme C, le compiler avec 'option -g.
VALGRIND détection des variables non-initialisées, de quelques types de fuites mémoires,
dépassement de tableaux.
Divers outils disponibles via valgrind -tool=<toolname> :
> par défaut, memcheck (non-allocation, non-initialisation, inaccessibilité),
double-free...,
> massif : profilage de tas,
» cachegrind, callgrind: profilage de cache,
> helgrind, DRD: pour les programmes multithreadés.

GDB Débogueur par défaut de la suite GNU :

11/35

ANALYSE DYNAMIQUE
Analyse du programme en cours d’exécution : vérification de types a la volée (python et
beaucoup de langages interprétés), outils de visualisation de I’état du programmes, débogueurs.
Pour déboguer un programme C, le compiler avec 'option -g.
VALGRIND détection des variables non-initialisées, de quelques types de fuites mémoires,
dépassement de tableaux.
Divers outils disponibles via valgrind -tool=<toolname> :
> par défaut, memcheck (non-allocation, non-initialisation, inaccessibilité),
double-free...,
> massif : profilage de tas,
» cachegrind, callgrind: profilage de cache,
> helgrind, DRD: pour les programmes multithreadés.
GDB Débogueur par défaut de la suite GNU :
> exécution jusqu’a des points d’arréts,

11/35

ANALYSE DYNAMIQUE
Analyse du programme en cours d’exécution : vérification de types a la volée (python et
beaucoup de langages interprétés), outils de visualisation de I’état du programmes, débogueurs.
Pour déboguer un programme C, le compiler avec 'option -g.
VALGRIND détection des variables non-initialisées, de quelques types de fuites mémoires,
dépassement de tableaux.
Divers outils disponibles via valgrind -tool=<toolname> :
> par défaut, memcheck (non-allocation, non-initialisation, inaccessibilité),
double-free...,
> massif : profilage de tas,
» cachegrind, callgrind: profilage de cache,
> helgrind, DRD: pour les programmes multithreadés.

GDB Débogueur par défaut de la suite GNU :
> exécution jusqu’a des points d’arréts,
> exécution pas a pas,

11/35

ANALYSE DYNAMIQUE
Analyse du programme en cours d’exécution : vérification de types a la volée (python et
beaucoup de langages interprétés), outils de visualisation de I’état du programmes, débogueurs.
Pour déboguer un programme C, le compiler avec 'option -g.
VALGRIND détection des variables non-initialisées, de quelques types de fuites mémoires,
dépassement de tableaux.
Divers outils disponibles via valgrind -tool=<toolname> :
> par défaut, memcheck (non-allocation, non-initialisation, inaccessibilité),
double-free...,
> massif : profilage de tas,
» cachegrind, callgrind: profilage de cache,
> helgrind, DRD: pour les programmes multithreadés.

GDB Débogueur par défaut de la suite GNU :
> exécution jusqu’a des points d’arréts,
> exécution pas a pas,
> visualisation de I’état des variables, de la pile, des registres...

11/35

ANALYSE DYNAMIQUE
Analyse du programme en cours d’exécution : vérification de types a la volée (python et
beaucoup de langages interprétés), outils de visualisation de I’état du programmes, débogueurs.
Pour déboguer un programme C, le compiler avec 'option -g.
VALGRIND détection des variables non-initialisées, de quelques types de fuites mémoires,
dépassement de tableaux.
Divers outils disponibles via valgrind -tool=<toolname> :
> par défaut, memcheck (non-allocation, non-initialisation, inaccessibilité),
double-free...,
> massif : profilage de tas,
» cachegrind, callgrind: profilage de cache,
> helgrind, DRD: pour les programmes multithreadés.

GDB Débogueur par défaut de la suite GNU :
> exécution jusqu’a des points d’arréts,
> exécution pas a pas,
> visualisation de I’état des variables, de la pile, des registres...

11/35

ANALYSE DYNAMIQUE
Analyse du programme en cours d’exécution : vérification de types a la volée (python et
beaucoup de langages interprétés), outils de visualisation de I’état du programmes, débogueurs.
Pour déboguer un programme C, le compiler avec 'option -g.

VALGRIND détection des variables non-initialisées, de quelques types de fuites mémoires,
dépassement de tableaux.
Divers outils disponibles via valgrind -tool=<toolname> :
> par défaut, memcheck (non-allocation, non-initialisation, inaccessibilité),
double-free...,
> massif : profilage de tas,
» cachegrind, callgrind: profilage de cache,
> helgrind, DRD: pour les programmes multithreadés.

GDB Débogueur par défaut de la suite GNU :
> exécution jusqu’a des points d’arréts,
> exécution pas a pas,
> visualisation de I’état des variables, de la pile, des registres...

gdb a accés a I'espace mémoire du processus débogué, les “symboles de
débogages” sont des instruction d’interruption (INT 3) qui lui rendent la main.

11/35

RAB DE GDB

Interface semi-graphique : ~tui

Commandes utiles pour lister le code :

>

vvyyy

vvyyvyyvyy

run : lance Iexécution

ctrl+c : stoppe I'exécution

cont : continue I’exécution

list: lister le code (a la position courante)

list <fct>: liste le code depuis le début de la fonction
fct,

list <file>:<fct>:” dans le fichier fct

list +, list -:avancer réculer dans le fichier
step : avancer d’un pas

next : avance d’un pas (sans entrer dans les fonctions)

finish:avance jusqu’a la fin de la fonction courante

12/35

RAB DE GDB

Interface semi-graphique : —tui P> info breakpoints : lister les points d’arréts
X i P clear <fct>:retirer un point d’arrét
Commandes utiles pour lister le code :
s P> delete <nb>:retirer un point d’arrét
» run:lance I'exécution
P ctrl+c:stoppe I'exécution
P cont : continue I'exécution
P 1list:lister le code (a la position courante)

P> list <fct>:liste le code depuis le début de la fonction
fct,

P> list <file>:<fct>:” dans le fichier fct

> 1list +, list -:avancer réculer dans le fichier

P step:avancer d’un pas

P next :avance d’un pas (sans entrer dans les fonctions)

P finish:avance jusqu’a la fin de la fonction courante
Points d’arréts (breakpoint) :

P break <fct>:rajoute un point d’arrét au début de la
fonction fct

P> break <n>:rajoute un point d’arréte a la ligne n
P> break <file>:<line> : possibilités de points d’arréts

conditionnels

12/35

RAB DE GDB

Interface semi-graphique : ~tui

Commandes utiles pour lister le code :
» run:lance I'exécution
P ctrl+c:stoppe I'exécution
P cont : continue I'exécution
P 1list:lister le code (a la position courante)

P> list <fct>:liste le code depuis le début de la fonction
fct,

P> list <file>:<fct>:” dans le fichier fct

> 1list +, list -:avancer réculer dans le fichier

P step:avancer d’un pas

P next :avance d’un pas (sans entrer dans les fonctions)

P finish:avance jusqu’a la fin de la fonction courante
Points d’arréts (breakpoint) :

P break <fct>:rajoute un point d’arrét au début de la
fonction fct

P> break <n>:rajoute un point d’arréte a la ligne n

P> break <file>:<line> : possibilités de points d’arréts
conditionnels

>
>
>

info breakpoints: lister les points d’arréts
clear <fct>:retirer un point d’arrét

delete <nb> :retirer un point d’arrét

Variables et “watchpoints”

>

>
>
>

print <var>: affiche la valeur d’une variable ou expression
display <var>:affiche a chaque pas
set <var> = <x>:modifier une variable

watch <var> :arréte le programme quand une variable est
modifiée.

12/35

RAB DE GDB

Interface semi-graphique : ~tui

Commandes utiles pour lister le code :
» run:lance I'exécution
P ctrl+c:stoppe I'exécution
P cont : continue I'exécution
P 1list:lister le code (a la position courante)

P> list <fct>:liste le code depuis le début de la fonction
fct,

P> list <file>:<fct>:” dans le fichier fct

> 1list +, list -:avancer réculer dans le fichier

P step:avancer d’un pas

P next :avance d’un pas (sans entrer dans les fonctions)

P finish:avance jusqu’a la fin de la fonction courante
Points d’arréts (breakpoint) :

P break <fct>:rajoute un point d’arrét au début de la
fonction fct

P> break <n>:rajoute un point d’arréte a la ligne n

P> break <file>:<line> : possibilités de points d’arréts
conditionnels

>
>
>

info breakpoints: lister les points d’arréts
clear <fct>:retirer un point d’arrét

delete <nb> :retirer un point d’arrét

Variables et “watchpoints”

>

>
>
>

print <var>: affiche la valeur d’une variable ou expression
display <var>:affiche a chaque pas
set <var> = <x>:modifier une variable

watch <var> :arréte le programme quand une variable est
modifiée.

Pile et threads

>

vYvyy

backtrace : affiche la pile d’appels

up, down : monter ou descendre dans les frames
frame <num> :changer de frame

info threads : liste les threads

thread <num> :change le thread courant

12/35

RAB DE GDB

Interface semi-graphique : ~tui

Commandes utiles pour lister le code :
» run:lance I'exécution
P ctrl+c:stoppe I'exécution
P cont : continue I'exécution
P 1list:lister le code (a la position courante)

P> list <fct>:liste le code depuis le début de la fonction
fct,

P> list <file>:<fct>:” dans le fichier fct

> 1list +, list -:avancer réculer dans le fichier

P step:avancer d’un pas

P next :avance d’un pas (sans entrer dans les fonctions)

P finish:avance jusqu’a la fin de la fonction courante
Points d’arréts (breakpoint) :

P break <fct>:rajoute un point d’arrét au début de la
fonction fct

P> break <n>:rajoute un point d’arréte a la ligne n

P> break <file>:<line> : possibilités de points d’arréts
conditionnels

>
>
>

info breakpoints: lister les points d’arréts
clear <fct>:retirer un point d’arrét

delete <nb> :retirer un point d’arrét

Variables et “watchpoints”

>

>
>
>

print <var>: affiche la valeur d’une variable ou expression
display <var>:affiche a chaque pas
set <var> = <x>:modifier une variable

watch <var> :arréte le programme quand une variable est
modifiée.

Pile et threads

>
>
>
>
>

backtrace : affiche la pile d’appels

up, down : monter ou descendre dans les frames
frame <num> :changer de frame

info threads : liste les threads

thread <num> :change le thread courant

Registres et assembleur

>
>
>

info registers: affiche les registres
layout asm: affiche le code assembleur

layout src: affiche le code source

12/35

RAB DE GDB

Raccourcis

» r:run

>

vVvyvyvyVvyYVvyYyvyy

1:

C

S

n:
bt : backtrace
i:
b:

i b:info breakpoints

list

: continue

: step

next

info

breakpoints

13/35

INTERLUDE RECREATIF SUR LES POINTEURS EN C

/* Pointer Stew
* Alan Feuer "The C Puzzle Book", 1998 (Addison-Wesley)
*/

#include <stdio.h>

char *c[] = { "ENTER", "NEW", "POINT", "FIRST" };
char **cp[] = { c+ 3, c+2, c+ 1, c};
char ***cpp = cp;

int main(void)

{
printf (")s", **++cpp);
printf("/%s ", *-——x++cpp + 3);
printf ("%s", *cpp[-2] + 3);
printf("%s\n", cpp[-11[-1]1 + 1);
return 0;

14/35

DEBOGAGE AVANCE : FONCTIONS ET PREPROCESSEURS

{

#pragma GCC diagnostic ignored "-Wsign—-compare”

#pragma GCC diagnostic warning "-Wsign—compare"
void Hbt[DEBUGMEM_MAXBT];
int sizebt = backtrace(bt, DEBUGMEM_MAXBT) ;
char strings = backtrace_symbols(bt, sizebt);
for (int i = 0; i < sizebt; i++)

fprintf(stderr, " Ys\n", strings[il);

exit(1);

}

signal (SIGSEGV, (sighandler_t) sigsegv);
signal (SIGBUS, (sighandler_t) sigsegv);

15/35

OPTIMISATIONS : OPTIONS DE COMPILATION

Avec gcc :
> -00 : pas d’optimisation

> -01: optimisations modérées

» -02: pleines optimisations

> -03: optimisations agressives

» -0Os : optimisation en mémoire (taille de 'exécutable)

» -march=native : compile pour le processeur de la machine

> -ffastmath : active certaines optimisations sur les flottants (perte du respect de la norme

IEEE 754)

Possibilités a explorer : passer des variables en registres, rendre des fonctions inline, dérécursiver,
déboucler, ...

Lesmalloc/free/realloc et les appels systémes sont lent, a utiliser avec modération (ie
intelligemment).

16/35

OPTIMISATIONS : OUTILS DE PROFILAGE

Analyse dynamique, encore.

GPROF calcule le temps passé dans chaque fonction, et le graphe d’appel (inconvénient :
le code ne doit pas étre optimisé, reste une bonne approximation).
Compilation avec l'option —-pg, exécution normale (plus lente, forcément),
regarder le fichier gmon.out généré, puis gprof <exec>.

ceov Teste de la “couverture” : pour chaque ligne, nombre de fois qu’elle a été exécutée,
compilation avec -fprofile-arcs -ftest-coverage, exécuter le code,
exécuter gcov <source>.

17/35

BONUS : ANALYSE ET PROFILAGE SANS CODE SOURCE
Analyse 1/0O :
> dstat : affiche toutes les secondes le traffic 1/O (systéme & réseau)
> opensnoop : affiche en temps réels les fichiers ouverts par quel processus
> strace : (linux only) affiche tous les appels systémes effectué par un programme (causant
un gros ralentissement de 'exécution du programme), possibilité de filtrage par type
d’appel systéme, d’inspecter les processus fils, d’analyser un programme en cours

d’exécution, enregistrer pour analyse ultérieure, afficher les noms de fichiers plutét que les
descripteurs ouverts...

18/35

BONUS : ANALYSE ET PROFILAGE SANS CODE SOURCE
Analyse 1/0O :
> dstat : affiche toutes les secondes le traffic 1/O (systéme & réseau)
> opensnoop : affiche en temps réels les fichiers ouverts par quel processus

> strace : (linux only) affiche tous les appels systémes effectué par un programme (causant
un gros ralentissement de 'exécution du programme), possibilité de filtrage par type
d’appel systéme, d’inspecter les processus fils, d’analyser un programme en cours
d’exécution, enregistrer pour analyse ultérieure, afficher les noms de fichiers plutét que les
descripteurs ouverts...

Analyse rézo :
» netstat : (linux only) affiche les connections, tables de routage, interfaces, ...
» tcpdump : analyse du traffic TCP, inspection des paquets
> wireshark : analyse du traffic tout protocoles, couteau suisse de I’épillage du réseau.

18/35

BONUS : ANALYSE ET PROFILAGE SANS CODE SOURCE
Analyse 1/0O :
> dstat : affiche toutes les secondes le traffic 1/O (systéme & réseau)
> opensnoop : affiche en temps réels les fichiers ouverts par quel processus
> strace : (linux only) affiche tous les appels systémes effectué par un programme (causant
un gros ralentissement de 'exécution du programme), possibilité de filtrage par type
d’appel systéme, d’inspecter les processus fils, d’analyser un programme en cours

d’exécution, enregistrer pour analyse ultérieure, afficher les noms de fichiers plutét que les
descripteurs ouverts...

Analyse rézo :
» netstat : (linux only) affiche les connections, tables de routage, interfaces, ...
» tcpdump : analyse du traffic TCP, inspection des paquets
> wireshark : analyse du traffic tout protocoles, couteau suisse de I’épillage du réseau.
Profilage :
> perft : analyse de performances pour linux, permet de connaitre I'utilisation CPU de chaque
fonction d’un programme, de visualiser sous forme de flamegraph, enregistrer 'exécution

d’un programme pour I’analyser plus tard, récupérer la trace d’appels des fonctions (pile),
compter le nombre de paquets envoyés sur le réseau...

18/35

LIBRAIRIES HABITUELLES EN C

Dans les librairies standards : la stdlib (GNU, musl), math, string, time, io, network...

Librairies répandues :

CRYPTO
GRAPHIQUE
SCIENTIFIQUE
HPC

: OpenSSL, LibreSSL, libsodium, NaCl
: Gtk, nuklear, ncurses (TUI)

: GSL, GMP

: MPI, OpenMP

19/35

GESTIONNAIRE DE LIBRAIRIES & DEPENDANCES

Inexistant, makefile, auto*hell, c1ib

20/35

INTERLUDE Rl::CRATIF, LE BOUTISME

Qu’affiche le bout de code suivant ?

uintl6_t n = 42;
uint8_t *o = (uint8_t *) &n;
size_t 1i;

for (i = 0; i < sizeof(n); ++i)
printf ("%02x ", *(o++));

21/35

MANIPULATIOS DE FICHIERS

Les appels systemes utiles :
0PEN pour ouvrir un fichier (création d’une entrée dans la table des fichiers ouverts du processus),
WRITE pour écrire (des octets) dans le fichier,
READ pour lire (des octets) dans le fichier,

CLOSE pour le fermer.

22/35

MANIPULATIOS DE FICHIERS

Les appels systemes utiles :
0PEN pour ouvrir un fichier (création d’une entrée dans la table des fichiers ouverts du processus),
WRITE pour écrire (des octets) dans le fichier,
READ pour lire (des octets) dans le fichier,
CLOSE pour le fermer.
De plus :
> Le systéme maintient pour chaque processus une table des fichiers ouverts.

» A chaque fichier ouvert par le processus est associé un petit entier (son indice dans cette
table) appelé descripteur de fichier.

> Ce descripteur de fichier est ensuite donné en argument a tous les appels systémes qui
permettent au processus d’interagir avec lui.

> Le systéme maintient également la position de la téte de lecture ou écriture dans le fichier.

22/35

TABLE DES FICHIERS

o
i1
a2

fd 20

File

Jd0
Jd 1
Jd2

Process A Open file table
File descriptor table (system-wide)
fd | file file | status | inode
flags | ptr offset | flags ptr
1 -0
e
Process B
descriptor table
fd [file 73
flags | ptr
/ 86

Jis

1976

5139

I-node table
(system-wide)

file
type

file
locks

23/35

OPEN

#include <fcntl.h>
int open(const char *pathname, int flags);
int open(const char *pathname, int flags, mode_t mode);

PATHNAME chemin (relatif ou absolu) dans I’arborescence des fichiers;

FLAGS

> 0_RDONLY pour lecture seule
» O_WRONLY pour écriture seule
> O_RDWR pour lecture et écriture (plus rare)

Ces flags peuvent étre « ou-bit-a-bit-és » avec des attributs de création ou d’états (voir
plus loin).

MODE dans le cas ou il faut créer le fichier, donne les permissions (avant application du masque
utilisateur umask) associées au fichier a créer.

24/35

EXEMPLE : OUVERTURE D’UN FICHIER EN LECTURE

#include <fcntl.h>
#include <stdio.h>
int main(int argc, char *argv[])
{
int fd;
fd = open(argv[1], O_RDONLY);
if (£d < 0) {
perror("open") ;
return 1;
} else {
printf("fichier s ouvert avec succés, descripteur %d\n",
argv[1], £d);
¥

return O;

25/35

EXEMPLE : OUVERTURE D’UN FICHIER EN LECTURE

Toujours tester la valeur de retour d’open.

26/35

EXEMPLE : OUVERTURE D’UN FICHIER EN LECTURE

Toujours tester la valeur de retour d’open.

$./a.out open_exemplel.c

fichier open_exemplel.c ouvert avec succés, descripteur 3
$./a.out open_exemplel.c

open: No such file or directory

$ chmod u-r open_exemplel.c

$./a.out open_exemplel.c

open: Permission denied

$./a.out

open: Bad address

26/35

EXEMPLE : OUVERTURE D’UN FICHIER EN ECRITURE

#include <fcntl.h>
#include <stdio.h>

int main(int argc, char *argv[])
{
int fd;
/% O_CREAT : créer le fichier s’il n’existe pas
* O_TRUNC : st le fichier existe, le vider
* 0666 : rw-rw-rw- mais enlever les bits de permissions de l’umask */
fd = open(argv[1], O_WRONLY | O_CREAT | O_TRUNC, 0666);
if (£d < 0) {
perror("open");
return 1;
} else {
printf("fichier %s ouvert avec succés, descripteur %d\n",
argv[1], £d);
}

return O;

27/35

QUELQUES ETATS POUR UNE OUVERTURE O_WRONLY ou O_RDWR

» 0_TRUNC : si le fichier existe, le vider
» 0_APPEND : toutes les écritures se font a la fin du fichier

> O_CREAT :si le fichier n’existe pas, le créer (et utiliser le 3¢me argument pour les
permissions)

» 0_EXCL : avec O_CREAT, si le fichier existe, échouer

28/35

READ

#include <unistd.h>
ssize_t read(int fd, void *buf, size_t count);

SSIZE_T signed size type, un type entier assez grand, signé pour retourner des valeurs négatives
(erreurs)
FD le descripteur de fichier du fichier dans lequel on lit des octets
BUF adresse dans la mémoire du processus ou I'on veut copier ces octets
couNT nombre maximal d’octets que I'on veut lire

» Valeur de retour : nombre d’octets effectivement lus (< count)

29/35

READ : EXEMPLE

#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>

int main(int argc, char *argv[])

{

int fd = open(argv[1], O_RDONLY)

if (£d < 0) {

perror("open") ;

return 1;
¥
ssize_t n;
char buf[4];

n = read(fd, buf, 4);
printf("n = jld\n", n);
n = read(fd, buf, 4);
printf("n = %ld\n", n);
n = read(fd, buf, 4);
printf("n = ld\n", n);

return O;

30/35

WRITE

#include <untistd.h>
ssize_t write(int fd, const void *buf, size_t count);

FD descripteur de fichier du fichier dans lequel on écrit des octets
BUF adresse dans la mémoire du processus du premier octet a écrire dans le fichier

couNT nombre maximal d’octets a écrire dans le fichier

» Valeur de retour : nombre d’octets effectivement écrits dans le fichier (< count)

31/35

WRITE, EXEMPLE PI:ZDAGOGIQUE

#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>

int main(int argc, char *argv[])
{
int fd = open(argv[1], O_WRONLY | O_CREAT | O_TRUNC, 0666);
if (£d < 0) {
perror("open") ;
return 1;
¥
ssize_t n;
char buf[] = "Lol !!'\n";
/* On ne veut pas écrire l’octet nul final dans le fichier. */
n = write(fd, buf, strlen(buf));
printf("n = %ld\n", n);
close(fd);

return O;

32/35

READ BLOQUANT

> Dans certaines circonstances, read est bloquant : il n’y a pas encore d’octets a lire dans le
fichier

> le processus est endormi

> réveillé par le systéme lorsque des octets sont arrivés.

> C’est le cas pour la lecture sur le terminal ou dans un socket.

33/35

UN EDITEUR DE TEXTE

/* super_text_editor.c */
#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>
#define BUFSZ 256
int main(int argc, char *argv[])
{
int fd = open(argv[1], O_WRONLY | O_CREAT | O_TRUNC, 0666);
if (£d < 0) {
perror("open") ;
return 1;
¥
ssize_t n;
char buf [BUFSZ];
while ((n = read(0, buf, 256)) > 0) {
printf("/%1ld octets écrits dans %s\n", n, argv[i]);
write(fd, buf, n);
}
close(fd);
return O;

34/35

