Generalized Bargmann functions, their growth and von Neumann lattices

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
(http://iopscience.iop.org/1751-8121/45/24/244031)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 134.157.83.223
The article was downloaded on 11/06/2012 at 16:35

Please note that terms and conditions apply.
Generalized Bargmann functions, their growth and von Neumann lattices

A Vourdas1,2, K A Penson3, G H E Duchamp2 and A I Solomon3,4

1 Department of Computing, University of Bradford, Bradford BD7 1DP, UK
2 LIPN, Institut Galilée, Université Paris 13, CNRS UMR 7030, 99 Av. JB Clement, F 93430 Villetaneuse, France
3 Laboratoire de Physique Théorique de la Matière Condensée, Université Pierre and Marie Curie, CNRS UMR 7600, Tour 13 5-ième et., BC 121, 4 place Jussieu, F 75252 Paris Cedex 05, France
4 Department of Physics and Astronomy, Open University, Milton Keynes MK7 6AA, UK

E-mail: a.vourdas@bradford.ac.uk

Received 27 October 2011, in final form 25 January 2012
Published 30 May 2012
Online at stacks.iop.org/JPhysA/45/244031

Abstract

Generalized Bargmann representations that are based on generalized coherent states are considered. The growth of the corresponding analytic functions in the complex plane is studied. Results about the overcompleteness or undercompleteness of discrete sets of these generalized coherent states are given. Several examples are discussed in detail.

This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’.

PACS numbers: 02.30.Px, 02.30.Sa
Mathematics Subject Classification: 81R30, 30D15

1. Introduction

The Bargmann representation \cite{1} represents quantum states by analytic functions in the complex plane. This allows the powerful theory of analytic functions to be used in a quantum mechanical context. An example of a result that can be proved only by the use of the theory of analytic functions is related to the overcompleteness or undercompleteness of discrete sets of coherent states, e.g., the von Neumann lattice of coherent states \cite{2–15}. This is based on deep theorems relating the growth of analytic functions and the density of their zeros \cite{16–18}. The study of the Bargmann representation determines the nature of admissible functions belonging to the Hilbert space. Furthermore, the study of the paths of the zeros of the Bargmann functions under time evolution has led to important physical insight for many systems \cite{19–27}.

Many generalizations of coherent states \cite{28–30} have been considered in the literature. In this paper, we consider the generalizations studied in \cite{31–37} which have led to many
interesting sets of generalized coherent states. We use them to define generalized Bargmann representations, which represent the various quantum states by analytic functions in the complex plane. The requirement of convergence for the scalar product in these representations determines the maximum growth of the generalized Bargmann functions and defines the corresponding Bargmann spaces. Theorems that relate the growth of analytic functions in the complex plane to the density of their zeros lead to results about the overcompleteness or undercompleteness of discrete sets of these generalized coherent states. The general theory is applied to four examples: the standard coherent states and three examples of generalized coherent states. Therefore, we study explicitly three novel types of generalized Bargmann representations.

In section 2, we briefly review the known results on the growth of analytic functions in the complex plane and the relation to the density of their zeros. In section 3, we define generalized coherent states. In section 4, we introduce generalized Bargmann functions and study their growth. We also show that a discrete set of these generalized coherent states is overcomplete (resp. undercomplete) if its density is greater (resp. smaller) than a critical density. In section 5, we discuss explicitly four examples. We conclude in section 6 with a discussion of our results.

2. Growth of analytic functions in the complex plane and the density of their zeros

Analytic functions are characterized by their growth and the density of their zeros and we briefly summarize these concepts [16–18]. Let $M(R)$ be the maximum modulus of an analytic function $f(z)$ for $|z| = R$. Its growth is described by the order r and the type s, which are defined as follows:

$$r = \limsup_{R \to \infty} \frac{\ln \ln M(R)}{\ln R}, \quad s = \limsup_{R \to \infty} \frac{\ln M(R)}{R^r}. \quad (1)$$

These definitions imply that $M(R) \sim \exp(sR^r)$ as R tends to infinity (here the sign ‘∼’ indicates that $M(R)$ is log-asymptotic to $\exp(sR^r)$).

Definition 2.1.

1. $\mathfrak{B}(r, s)$ is the set of analytic functions in the complex plane with order smaller than r, and also functions with order r and type smaller or equal to s.

2. $\mathfrak{B}_1(r, s)$ is the set of analytic functions in the complex plane with order smaller than r, and also functions with order r and type smaller than s.

$\mathfrak{B}(r, s) - \mathfrak{B}_1(r, s)$ is the set of analytic functions with order r and type s.

We next consider the sequence $\zeta_1, \ldots, \zeta_N, \ldots$, where $0 < |\zeta_1| \leq |\zeta_2| \leq \cdots$ and the limit is infinite (as N tends to infinity). We denote by $n(R)$ the number of terms of this sequence within the circle $|z| < R$. The density of this sequence is described by the numbers

$$t = \limsup_{R \to \infty} \frac{\ln n(R)}{\ln R}, \quad \bar{\delta} = \limsup_{R \to \infty} \frac{n(R)}{R^t}, \quad \underline{\delta} = \liminf_{R \to \infty} \frac{n(R)}{R^t}. \quad (2)$$

In the cases considered in this paper, the $\lim_{R \to \infty} \frac{n(R)}{R^t}$ exists, and therefore, $\bar{\delta} = \underline{\delta}$. Below we will use the simpler notation $\delta = \bar{\delta} = \underline{\delta}$. These definitions imply that asymptotically $n(R) \sim \delta R^t$ as R tends to infinity.

Definition 2.2. We say that the density (t, δ) of a sequence is smaller than (t_1, δ_1) if $t < t_1$ and also if $t = t_1$ and $\delta < \delta_1$ (lexicographic order).
Remark 2.3. The density depends only on the absolute values of ζ, i.e. the sequences $\zeta_1, \ldots, \zeta_N, \ldots$ and $\zeta_1 \exp(i\theta_1), \ldots, \zeta_N \exp(i\theta_N), \ldots$, where θ_N are arbitrary real numbers, have the same density. Also, if we add or subtract a finite number of complex numbers in a sequence, its density remains the same.

An example of a sequence that has the density (t, δ) is

$$\zeta_N = \exp \left[\frac{1}{t} \ln \left(\frac{N}{\delta} \right) + i\theta_N \right],$$

(3)

where θ_N are arbitrary real numbers.

The relationship between the growth of an analytic function in the complex plane and the density of its zeros is described through the following inequalities [16–18]:

$$t \leq r, \quad sr \geq \delta.$$

(4)

3. Generalized coherent states

Let \mathcal{H} be the Hilbert space corresponding to a Hamiltonian operator h and $|n\rangle$ its number eigenstates. Following [31–37], we consider the generalized coherent states

$$|z; \rho\rangle = |\mathcal{N}_\rho(|z|^2)|^{1/2} \sum_{n=0}^{\infty} \frac{x^n}{\rho(n)^{1/2}} |n\rangle, \quad \mathcal{N}_\rho(|z|^2) = \sum_{n=0}^{\infty} \frac{|z|^{2n}}{\rho(n)}.$$

(5)

Here, $\rho(n)$ is a positive function of n with $\rho(0) = 1$. The series in the normalization constant $\mathcal{N}_\rho(|z|^2)$ converges within some disc $|z| < R \leq \infty$. In this paper, we only consider cases where $\rho(n)$ is increasing fast enough as a function of n, so that this series converges in the whole complex plane.

The overlap of two generalized coherent states is

$$\langle z'; \rho|z; \rho \rangle = |\mathcal{N}_\rho(|z'|^2)|^{-1/2} |\mathcal{N}_\rho(|z|^2)|^{-1/2} \mathcal{K}_\rho(z^*, z), \quad \mathcal{K}_\rho(z, z) = \sum_{n=0}^{\infty} \frac{(z\rho)^n}{\rho(n)}.$$

(6)

Here, $\mathcal{K}_\rho(z, z)$ is the reproducing kernel. Clearly, $\mathcal{K}_\rho(z^*, z) = \mathcal{N}_\rho(|z|^2)$.

The choice $\rho(n) = n!$ is an example and leads to the standard coherent states. For $\rho(n) = n!$ the overlap $\langle z'; \rho|z; \rho \rangle$ is everywhere different from zero. For other $\rho(n)$, the overlap might have zeros.

The resolution of the identity in terms of the generalized coherent states is a weak operator equality given by

$$\int_\mathbb{C} d^2z \tilde{W}_\rho(|z|^2)|z; \rho\rangle \langle z; \rho| = 1,$$

(7)

where $\tilde{W}_\rho(x) > 0$ is a function such that

$$\int_0^{\infty} dx x^n W_\rho(x) = \rho(n), \quad W_\rho(x) = \pi \tilde{W}_\rho(x) \mathcal{N}_\rho(x).$$

(8)

We stress that for arbitrary $\rho(n)$, the $\tilde{W}_\rho(x)$ does not always exist.

The property of temporal stability states that if we act with the evolution operator corresponding to a certain Hamiltonian \hat{h} on the generalized coherent states, we obtain other coherent states. Our generalized coherent states have this property:

$$\exp(i\tau \hat{h})|z; \rho\rangle = |z \exp(i\tau \omega); \rho\rangle.$$

(9)

For a study of states having the above property, see [38].
4. Generalized Bargmann functions

Let $|f\rangle$ be an arbitrary state in the Hilbert space H:

$$|f\rangle = \sum_{n=0}^{\infty} f_n |n\rangle; \quad \sum_{n=0}^{\infty} |f_n|^2 = 1. \quad (10)$$

We represent this state by the following analytic function in the complex plane:

$$F(z; \rho) = [\mathcal{N}_\rho(|z|^2)]^{1/2} \langle z^*; \rho | f \rangle = \sum_{n=0}^{\infty} \frac{f_n}{\sqrt{\rho(n)!}} z^n. \quad (11)$$

For $\rho(n) = n!$ this is the standard Bargmann function. But other choices of $\rho(n)$ lead to generalizations of the Bargmann function.

If the resolution of the identity in equation (7) exists, then it leads to the following expression for the scalar product of the two states $|f\rangle$ and $|g\rangle$ represented by the functions $F(z; \rho)$ and $G(z; \rho)$, correspondingly:

$$\langle g|f \rangle = (G, F) = \int_C \frac{d^2z}{\pi} \mathcal{W}_\rho(|z|^2) [G(z; \rho)]^* F(z; \rho) = \sum_{n=0}^{\infty} \frac{g_n^* f_n}{\pi}. \quad (12)$$

It is known that a pointwise bound for $F(z; \rho)$ is $|F(z; \rho)|^2 \leq K(\rho, z)(F, F)$ [39].

As an example, we consider the generalized coherent state $|\zeta; \rho\rangle$ that is represented by the generalized Bargmann function

$$F_{\text{coh}}(z; \rho) = [\mathcal{N}_\rho(|\zeta|^2)]^{-1/2} \mathcal{K}_\rho(\zeta, z). \quad (13)$$

Definition 4.1. The Bargmann space $\mathcal{B}(\mathcal{W}_\rho)$ consists of analytic functions in the complex plane $F(z; \rho)$, such that (F, F) is finite, with the scalar product given by equation (12).

Let \mathfrak{S} be a set of quantum states in the space H, \mathfrak{S} is called a total set in H, if there exists no state $|s\rangle$ in H that is orthogonal to all states in \mathfrak{S}.

\mathfrak{S} is called undercomplete in H, if there exists a state $|s\rangle$ in H that is orthogonal to all states in \mathfrak{S}.

A total set \mathfrak{S} in H is called overcomplete in H, if there exist at least one state $|u\rangle$ in \mathfrak{S}, such that $\mathfrak{S} - \{|u\rangle\}$ is also a total set.

A total set \mathfrak{S} in H is called complete if every proper subset is not a total set. Below we will mainly use the terms overcomplete, complete and undercomplete.

Proposition 4.2.

1. If

$$\mathcal{W}_\rho(|z|^2) \sim \exp \left[-2b(\rho)|z|^a(\rho) \right] \quad (14)$$

as $|z| \to \infty$, then the set of functions in the generalized Bargmann space $\mathcal{B}(\mathcal{W}_\rho)$ satisfies

$$\mathcal{B}_\mathfrak{A}(\mathfrak{A}(\rho), b(\rho)) \subset \mathcal{B}(\mathcal{W}_\rho) \subset \mathcal{B}(\mathfrak{A}(\rho), b(\rho)). \quad (15)$$

Functions with order of growth $a(\rho)$ and type $b(\rho)$ might or might not belong to $\mathcal{B}(\mathcal{W}_\rho)$.

2. Let $\{z_N\}$ be a sequence of complex numbers with density (t, δ). The set of generalized coherent states $|z_N; \rho\rangle$ is overcomplete (resp. undercomplete) when $(t, \delta) > (a(\rho), b(\rho)a(\rho))$ (resp. $t < a(\rho)$).
(1) The integral in equation (12) diverges for functions with order of growth greater than \(a(\rho) \), or for functions with order equal to \(a(\rho) \) and type greater than \(b(\rho) \). Therefore, the functions in the generalized Bargmann space \(\mathcal{B}(W_p) \), belong to the set \(\mathfrak{B}[a(\rho), b(\rho)] \).

Also, if the functions have order less than \(a(\rho) \) or order equal to \(a(\rho) \) and type less than \(b(\rho) \), the integral in equation (12) converges. Therefore, functions in the set \(\mathfrak{B}[a(\rho), b(\rho)] \) belong to the generalized Bargmann space \(\mathcal{B}(W_p) \).

We next show with examples that functions in \(\mathfrak{B}[a(\rho), b(\rho)] - \mathfrak{B}[a(\rho), b(\rho)] \) might or might not belong to \(\mathcal{B}(W_p) \). We consider the special case \(W_p(z^2) = \exp(-2\lambda z^2), \) i.e. \(a(\rho) = 2 \) and \(b(\rho) = \lambda > 0 \). We also consider the functions

\[
F_1(z; \rho) = \frac{\exp(\lambda z^2) - 1}{z}, \quad F_2(z; \rho) = z^\rho \exp(\lambda z^2).
\]

They both have growth with order 2 and type \(\lambda \) and belong to the space \(\mathfrak{B}(2, \lambda) - \mathfrak{B}(2, \lambda) \). The integral of equation (12) converges with the first function and diverges with the second function. Therefore, the first function belongs to \(\mathcal{B}(W_p) \) and the second function does not belong to it.

(2) It follows from equation (11) that if \(F(\zeta; \rho) = 0 \), then the corresponding state \(|f\rangle \) is orthogonal to the generalized coherent state \(|\zeta^*; \rho\rangle \).

We consider a set of generalized coherent states \(|z_N; \rho\rangle \) with density \(t, (\delta) \rightarrow [a(\rho), b(\rho) \alpha(\rho)] \). If this is not a total set, then there exists a function \(F(z; \rho) \) in the set \(\mathfrak{B}[a(\rho), b(\rho)] \), which is equal to zero for all \(z_N \). But this is not possible because it violates the relations in equation (4). Therefore, the set of states \(|z_N; \rho\rangle \) is a total set in the space \(H \). The same result is also true if we subtract a finite number of terms from the sequence \(\{z_N\} \). Therefore, the set of generalized coherent states \(|z_N; \rho\rangle \) is overcomplete.

We next consider a set of generalized coherent states \(|z_N; \rho\rangle \) with density of the corresponding sequence \(t < a(\rho) \). In this case, we can construct a state that is orthogonal to all \(|z_N; \rho\rangle \) [13, 15]. We use the Hadamard theorem [16–18] and consider the analytic function

\[
F(z; \rho) = P(z) \exp[Q_q(z)],
\]

where

\[
P(z) = \sum_{n=1}^{\infty} E(z_N, \rho),
\]

\[
E(A_N, 0) = 1 - \frac{z}{z_N},
\]

\[
E(A_N, \rho) = \left(1 - \frac{z}{z_N} \right) \exp \left[\frac{z}{z_N} + \frac{z^2}{2z_N} + \cdots + \frac{z^p}{p!z_N^p} \right].
\]

Here, \(E(A_N, \rho) \) are the Weierstrass factors, \(Q_q(z) \) is a polynomial of degree \(q \) and \(p \) is an integer. The maximum of \((p, q) \) is called the genus of \(F(z, \rho) \) and does not exceed its order. \(m \) is a non-negative integer and it is the multiplicity of the zero at the origin. \(z_N \) are clearly zeros of \(F(z, \rho) \) in equation (17).

It remains to show that for some \(Q_q(z) \) this function belongs to the generalized Bargmann space \(\mathcal{B}(W_p) \). We take \(Q_q(z) = 0 \) and then the order of the growth of \(F(z, \rho) = P(z) \) is equal to \(t \) (theorem 7 in p 16 in [17]). Therefore, if \(t < a(\rho) \), this function is indeed in the generalized Bargmann space \(\mathcal{B}(W_p) \), and the corresponding state is orthogonal to all generalized coherent states \(|z_N; \rho\rangle \). Consequently, the set of these coherent states is undercomplete. \(\square \)
Remark 4.3. In the ‘boundary case’ where the density of the sequence \(\{z_n\} \) has \(t = a(\rho) \) and \(\delta \leq b(\rho)a(\rho) \), we cannot state general results. We mention some known results for special cases.

For example, when \(t = a(\rho) \) is non-integral, we consider the function \(F(z; \rho) = P(z) \), as we did above. This function has growth with order \(t \) and its type \(s \) satisfies \(s \leq C\delta \), where \(C \) is a constant that depends on the order \(t = a(\rho) \) (p. 32 in [18]). In this case for sequences \(\{z_n\} \) with \(\delta < bC^{-1} \), the function \(F(z; \rho) = P(z) \) has growth less than \((a(\rho), b(\rho)) \) and it belongs to the Bargmann space. Therefore, a set of generalized coherent states \(|z; \rho\rangle \) with density of the corresponding sequence \((t, \delta) \), where \(t \) is non-integral, is undercomplete if \(\delta \) is smaller than a critical value. This result is not valid for integral \(t \) (p. 32 in [18]).

Another example is the set of standard coherent states, which on a von Neumann lattice with \(A = \pi \) is known to be overcomplete by one state [29]. If we subtract a finite number of coherent states, we obtain an undercomplete set of standard coherent states, which is described by the same density. This example shows two sequences with the same density (in the ‘boundary case’), with corresponding coherent states forming an overcomplete and an undercomplete set.

5. Examples

5.1. \(\rho_0(n) = n! \) : standard coherent states

For the standard coherent states \(\rho_0(n) = n! \), we have

\[
|\mathcal{N}_{\rho_0}(|z|^2) = \exp(|z|^2), \quad |W_{\rho_0}(|z|^2) = \exp(-|z|^2).
\]

Therefore, \(a(\rho_0) = 2 \) and \(b(\rho_0) = 1/2 \). In this case, \(\mathcal{B}_1(2, 1/2) \subset \mathcal{B}(W_\rho) \subset \mathcal{B}(2, 1/2) \). The set of coherent states \(|z_n; \rho_0\rangle \) is overcomplete or undercomplete in the cases that the density \((t, \delta) \) of the sequence \(\{z_n\} \) is \((t, \delta) > (2, 1) \) or \(t < 2 \), correspondingly.

An example is the rectangular von Neumann lattice \(z_{NM} = A(N + iM) \), where \(N \) and \(M \) are integers and \(A \) is the area of each cell. In this case, \(n(R) = \pi R^2/A \) and the density is described by \(t = 2 \) and \(\delta = \pi/A \). Our results show that the set of coherent states \(\{|z_{NM}; \rho_0\rangle\} \) is overcomplete for \(A < \pi \). For this particular example, it is also known [29] that it is undercomplete for \(A > \pi \).

We have explained in remark 2.3 that instead of the lattice \(z_{NM} = A(N + iM) \), we can also use the complex numbers \(z_{NM} = A(N + iM) \exp(i\theta_{NM}) \) with arbitrary phases \(\theta_{NM} \). The angular distribution of the zeros is totally irrelevant.

Another example is the sequence

\[
\zeta_N = \exp \left[\frac{1}{t} \ln(2N) + i\theta_N \right],
\]

where \(\theta_N \) are arbitrary real numbers. We have seen in equation (3) that its density is \((t, 1/2) \). Therefore, the set of the corresponding coherent states is overcomplete for \(t > 2 \) and undercomplete for \(t < 2 \). Also, the sequence

\[
\zeta_N = \exp \left[\frac{1}{2} \ln \left(\frac{N}{\delta} \right) + i\theta_N \right],
\]

where \(\theta_N \) are arbitrary real numbers, has density \((2, \delta) \). Therefore, the set of the corresponding coherent states is overcomplete for \(\delta > 1 \).

5.2. \(\rho_1(n) = (n!)^2 \)

We consider the case that \(\rho_1(n) = (n!)^2 \). It was proved in [37] that

\[
|\mathcal{N}_{\rho_1}(|z|^2) = I_0(2|z|), \quad |W_{\rho_1}(|z|^2) = 2K_0(2|z|),
\]
where \(I_0 \) and \(K_0 \) are modified Bessel functions of first and second kind, respectively. But as \(|z| \to \infty \)
\[
2K_0(2|z|) \sim \left(\frac{\pi}{|z|} \right)^{1/2} \exp(-2|z|),
\]
and therefore, \(a(\rho_1) = 1 \) and \(b(\rho_1) = 1 \). In this case, \(\mathfrak{B}_1(1, 1) \subset \mathcal{B}(W_\rho) \subset \mathfrak{B}(1, 1) \).

The set of coherent states \(\{|\zeta_N; \rho_1\rangle\} \) is overcomplete (resp. undercomplete) when the density \((t, \delta) \) of the sequence \(\{|\zeta_N\rangle\} \) is \((t, \delta) > (1, 1) \) (resp. \(t < 1 \)).

An example is the one-dimensional lattice \(\zeta_N = tN \exp(i\theta_N) \), where \(N \) is an integer and \(\theta_N \) are arbitrary phases. In this case, \(n(R) = 2R/\ell \) and the density is described by \(t = 1 \) and \(\delta = 2/\ell \). Therefore, the set of coherent states \(\{|\zeta_N; \rho_1\rangle\} \) is overcomplete for \(\ell < 2 \).

5.3. \(\rho_2(n) = \frac{(\alpha^n)^{1/2}}{\Gamma(n+3/2)} \)

We consider the case \(\rho_2(n) = \frac{(\alpha^n)^{1/2}}{\Gamma(n+3/2)} \), where \(\Gamma \) denotes the Gamma function, and for which \([37]\)
\[
\mathcal{N}_{\rho_2}(|z|^2) = |I_0(|z|)|^2 + 2|z|I_0(|z|)I_1(|z|), \quad W_{\rho_2}(|z|^2) = |K_0(|z|)|^2.
\]

But as \(|z| \to \infty \)
\[
|K_0(|z|)|^2 \sim \left(\frac{\pi}{2|z|} \right) \exp(-2|z|).
\]
Therefore, \(a(\rho_2) = 1 \) and \(b(\rho_2) = 1 \). In this case, \(\mathfrak{B}_1(1, 1) \subset \mathcal{B}(W_\rho) \subset \mathfrak{B}(1, 1) \).

Therefore, our conclusions about the overcompleteness or undercompleteness of the coherent states \(\{|\zeta_N; \rho_2\rangle\} \) are also valid for the coherent states here. In connection with this, it is interesting to compare the growth of \(\rho(n) \) in these two cases, as \(n \to \infty \). We use the formula \([40]\)
\[
\lim_{|z| \to \infty} \frac{\Gamma(z+a)}{\Gamma(z)} \exp(-a \ln z) = 1
\]
and from this we conclude that as \(n \to \infty \)
\[
\frac{\rho_2(n)}{\rho_1(n)} = \frac{\pi^{1/2} n!}{2 \Gamma(n+3/2)} = \frac{\pi^{1/2}}{2 \Gamma(\beta)} \exp \left(-\frac{1}{2} \ln n \right).
\]
Therefore, \(\rho_2(n) \) considered in this subsection grows more slowly with \(n \) than \(\rho_1(n) \) considered in the previous subsection.

5.4. \(\rho_3(n) = \frac{\Gamma(\alpha n+\beta)}{\Gamma(\beta)} \)

We consider the case
\[
\rho_3(n) = \frac{\Gamma(\alpha n+\beta)}{\Gamma(\beta)}, \quad \alpha, \beta > 0.
\]

It was proved in \([34]\) that
\[
\mathcal{N}_{\rho_3}(|z|^2) = \Gamma(\beta)E_{\alpha,\beta}(|z|^2), \quad W_{\rho_3}(|z|^2) = \frac{|z|^{2(\beta-\alpha)}}{\alpha \Gamma(\beta)} \exp(-|z|^2),
\]
where \(E_{\alpha,\beta}(y) \) are generalized Mittag–Leffler functions \([34, 41]\). Therefore, \(a(\rho_3) = \alpha^{-1} \) and \(b(\rho_3) = 1 \). In this case, \(\mathfrak{B}_3(\alpha^{-1}, 1) \subset \mathcal{B}(W_\rho) \subset \mathfrak{B}(\alpha, 1) \).

The set of coherent states \(\{|\zeta_N; \rho_3\rangle\} \) is overcomplete or undercomplete in the cases that the density \((t, \delta) \) of the sequence \(\{|\zeta_N\rangle\} \) is \((t, \delta) > (\alpha^{-1}, \alpha^{-1}) \) or \(t < \alpha^{-1} \), correspondingly. For example, the sequence
\[
\zeta_N = \exp[s \ln(N) + i\theta_N],
\]
where θ_N are arbitrary real numbers has the density $(s^{-1}, 1)$ and the set of corresponding coherent states is overcomplete (resp. undercomplete) when $s < \alpha$ or $s = \alpha > 1$ (resp. $s > \alpha$).

Also, the sequence

$$\zeta_N = \exp \left[\alpha \ln \left(\frac{N}{\delta} \right) + i \theta_N \right], \quad (33)$$

where θ_N are arbitrary real numbers having the density (α^{-1}, δ). Therefore, the set of corresponding coherent states is overcomplete when $\delta > \alpha^{-1}$.

6. Discussion

We have used the generalized coherent states studied in [31–37] to define generalized Bargmann analytic representations in the complex plane. For these states, the scalar product in equation (12) converges and this determines the growth of the generalized Bargmann functions. From the growth we infer the maximum density of the zeros of these functions and this in turn determines the overcompleteness or undercompleteness of discrete sets of these generalized coherent states. In addition to the standard coherent states, we studied three examples in detail in subsections 5.2, 5.3 and 5.4. Other examples in the same spirit can also be found.

The work provides a deeper insight into the use of the theory of analytic functions in a quantum mechanical context.

Acknowledgments

We thank the Agence Nationale de la Recherche (ANR) for support under the programme PHYSCOMB number ANR-08-BLAN-0243-2.

References

[27] Tubani M, Vourdas A and Zhang S 2010 Phys. Scr. 82 038107
[29] Perelomov A M 1986 Generalized Coherent States and Their Applications (Berlin: Springer)