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We give a purely combinatorial proof of the Glaisher-Crofton identity which is derived from the analysis of discrete structures
generated by the iterated action of the second derivative. The argument illustrates the utility of symbolic and generating function
methodology of modern enumerative combinatorics. The paper is meant for nonspecialists as a gentle introduction to the field of
graphical calculus and its applications in computational problems.

1. Introduction

Many computational problems involve action of complex
expressions in derivatives on functions. A typical example
is the exponential of a Hamiltonian acting on some ini-
tial condition which is a formal solution to the evolution
equation. Applications of the latter range from classical heat
and diffusion theory, financial mathematics, and economy to
quantum field theory, hence practical interest in operational
formulas enabling explicit evaluation of such expressions.
Methods used to this effect usually involve operator and spe-
cial function techniques, integral transforms, umbral calculus
methods, etc. See comprehensive review of the subject [1, 2].
In this paper we develop another approach based on modern
combinatorial methods of the analysis and enumeration of
structures via generating functions [3–5].

The most known operational identities that involve the
exponential of the first derivative are formulas for the shift
and dilation operators

exp(𝜆 𝑑𝑑𝑥)𝐹 (𝑥) = 𝐹 (𝑥 + 𝜆)
exp(𝜆𝑥 𝑑𝑑𝑥)𝐹 (𝑥) = 𝐹 (𝑒𝜆𝑥)

(1)

where 𝐹(𝑥) is an arbitrary function. (Here, we leave subtle
problems of convergence aside and consider 𝐹(𝑥) as a formal
power series in one variable 𝑥.) They are a special case of the
general closed-form operational expression

exp [𝜆(𝑞 (𝑥) 𝑑𝑑𝑥 + V (𝑥))]𝐹 (𝑥)
= 𝑔 (𝜆, 𝑥) ⋅ 𝐹 (𝑇 (𝜆, 𝑥)) ,

(2)

where functions 𝑇(𝜆, 𝑥) and 𝑔(𝜆, 𝑥) are specified by the
following equations

𝜕𝑇 (𝜆, 𝑥)
𝜕𝜆 = 𝑞 (𝑇 (𝜆, 𝑥)) , 𝑇 (0, 𝑥) = 𝑥, (3)

𝜕𝑔 (𝜆, 𝑥)
𝜕𝜆 = V (𝑇 (𝜆, 𝑥)) ⋅ 𝑔 (𝜆, 𝑥) , 𝑔 (0, 𝑥) = 1. (4)

See [1, 2, 6] for the proof based on operator techniques and
[7, Sect. 6] for a recently developed combinatorial approach.

Note that formulas (1) and (2) are valid for any function𝐹(𝑥). However, this is a very unique situation which holds
only for the exponential of an expression linear in the
first derivative. For the second derivative the closed-form
formulas are not known and the best that can be done is
evaluation on specific functions.There are only a few explicit
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examples which include the formula for the exponential
generating function of Hermite polynomials [8] and the
Glaisher-Crofton identity [9–11]

exp(−12
𝑑2
𝑑𝑥2) exp (𝑥𝑡) = ∑𝑛⩾0𝐻𝑒𝑛 (𝑥)

𝑡𝑛
𝑛!

= exp(𝑥𝑡 − 12𝑡2) ,
(5)

and the Glaisher-Crofton identity [9–11]

exp(𝛼 𝑑2𝑑𝑥2) exp (−𝑥2) =
1

√1 + 4𝛼exp(−
𝑥2
1 + 4𝛼) . (6)

Formulas of this type are usually derived using integral
representations in the complex domain. (For example, to
derive (6) onemay use the integral representation exp(−𝑥2) =
∫+∞
−∞

exp(−𝜉2+2𝑖𝜉𝑥)𝑑𝜉; see [10, 11].) However, in this paper we
demonstrate that it is also possible to prove these identities on
the basic algebraic level by analysing combinatorial structures
generated by the iterated action of the second derivative. In
this approach functions are treated as generating functions
enumerating simple combinatorial objects (like sets of sub-
sets, cycles, sequences, etc.) and consequently expressions
in the derivatives transform objects in the initial class into
richer structures whose generating functions can be quickly
identified with the methods of symbolic combinatorics [3, 4].
We remark that methodology exposed in this note treads in
the steps of combinatorial approach to algebraic identities
developed by D. Foata in [12, 13].

Our goal in this paper is to develop and promote general
combinatorial methodology for solving computational prob-
lems which, in many cases, provides better insight into alge-
braic and analytic manipulations. We illustrate this approach
by explaining combinatorial meaning of the exponential of
the second derivative and use this interpretation to derive
equations (5) and (6).

2. Combinatorics of Derivatives

Action of derivatives on a function can be seen as a trans-
formation of combinatorial structures. This viewpoint comes
from interpreting the function as a generating function
enumerating objects in some combinatorial class. In the fol-
lowing we formalise this intuition by describing the relevant
constructions and develop a broader picture which includes
higher derivatives and their exponentials. This framework
will be illustrated by a simple combinatorial proof and
interpretation of Taylor’s formula in Section 2.1 and equations
(5) and (6) in Sections 2.2 and 3.

2.1. Generating Functions, First Derivative, and Taylor’s For-
mula. Let us consider a combinatorial class F which is
defined as a denumerable collection of objects built of atoms
represented byX according to somewell specified procedure.
A typical combinatorial problem consists in enumeration of
objects in F according to the size | ⋅ | : F 󳨀→ N which is
usually the number of atoms. In other words, one seeks the
sequence 𝑓𝑛 = #{𝜙 ∈ F : |𝜙| = 𝑛} which counts the number

of objects comprised of exactly 𝑛 atoms.This sequence can be
encoded in a generating function

𝐹 (𝑥) = ∑
𝜙∈F

𝑥|𝜙| = ∑
𝑛⩾0

𝑓𝑛𝑥𝑛, (7)

which is a convenient tool for enumeration of complex
structures via the so-called transfer rules. The latter translate
combinatorial constructions into algebraic manipulations
of the corresponding generating functions (see [3–5] for a
comprehensive treatment of the subject and the appendix for
a quick extract of a few transfer rules used in this paper). In
the following we will briefly review combinatorics of the first
derivative and recall a simple combinatorial interpretation of
Taylor’s formula.

Here we will be concerned with the derivative operation𝑦𝐷𝑥 acting on some well-defined classF which consists in
“selecting in all possible ways a single atom of type X
in each element of F and replacing it with an atom of
a new typeY.”

In other words, one may think of the new class 𝑦𝐷𝑥F as
formed of all structures taken from F in which one of the
atoms X gets “repainted” into a new colour Y. Since each
structure inF built of 𝑛 atoms of typeX gives rise to 𝑛 new
ones with (𝑛−1) atomsX and a singleY, then the generating
function enumerating objects in the new class 𝑦𝐷𝑥F is given
by

𝐺 (𝑥, 𝑦) = ∑
𝑛,𝑙⩾0

𝑔𝑛,𝑙𝑥𝑛𝑦𝑙 = ∑
𝑛⩾1

𝑛 ⋅ 𝑓𝑛𝑥𝑛−1𝑦, (8)

where 𝑔𝑛,𝑙 counts objects according to the number ofX’s and
Y’s, respectively.This is substantiated in the standard transfer
rule:

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑛𝑔 𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛:
G = 𝑦𝐷𝑥F 󳨐⇒

𝐺(𝑥, 𝑦) = 𝑦 𝑑𝑑𝑥𝐹 (𝑥) .
(9)

Now, let us consider the 𝑘-th derivative (1/𝑘!)(𝑦𝐷𝑥)𝑘
acting onF. Combinatorially it means

“select in all possible ways an unordered collection of 𝑘
atoms of type X and replace (repaint) them by atoms
of typeY.”

Clearly, for each structure of size 𝑛 inFwe have ( 𝑛𝑘 ) possible
choices, and hence the generating function of the new class
(1/𝑘!)(𝑦𝐷𝑥)𝑘F evaluates to

𝐺 (𝑥, 𝑦) = ∑
𝑛,𝑙⩾0

𝑔𝑛,𝑙𝑥𝑛𝑦𝑙 = ∑
𝑛⩾𝑘

(𝑛𝑘)𝑓𝑛𝑥
𝑛−𝑘𝑦𝑘. (10)

In consequence we get the following transfer rule:
𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑛𝑔 𝑘 − 𝑠𝑢𝑏𝑠𝑒𝑡:
G = 1𝑘! (𝑦𝐷𝑥)

𝑘
F 󳨐⇒

𝐺(𝑥, 𝑦) = 1𝑘!𝑦𝑘
𝑑𝑘
𝑑𝑥𝑘𝐹 (𝑥) ,

(11)
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which gives the combinatorial interpretation of the 𝑘-th
derivative on the level of combinatorial structures.

This brings an interesting perspective on the derivative
of a function which we will develop throughout the paper.
Namely, one may think of a function 𝐹(𝑥) as a generating
function of some combinatorial classF. Then differentiation
yields a new generating functionwhich enumerates objects in
the new class comprised of structures taken fromF in which
some of the atomsX were replaced withY’s (how many are
replaced depends on the order of the derivative). Hence, the
derivative of a function 𝐹(𝑥) can be understood as a well-
defined combinatorial transformation of the associated com-
binatorial class F in a sense that on the level of generating
functions it corresponds to simple differentiation (cf. (9) and
(11)).

For illustration of this viewpoint let us recall the usual
Taylor’s formula

∑
𝑘⩾0

𝑦𝑘
𝑘! 𝐹(𝑘) (𝑥) = 𝐹 (𝑥 + 𝑦) . (12)

Surprisingly, it admits a transparent combinatorial interpre-
tation (see [3, Note III.31] or [7, Note 3]). To see this we
observe that the l.h.s. is the sum of derivatives exp(𝑦𝐷𝑥) ≡∑𝑘⩾0(1/𝑘!)(𝑦𝐷𝑥)𝑘 applied to some function 𝐹(𝑥) which can
be considered as the generating function of some class of
objects built of atomsX. Then from our previous discussion
the exponential exp(𝑦𝐷𝑥) corresponds to

“selecting in all possible ways an arbitrary number of
X’s and replacing them byY’s.”

(since the sum contains derivatives of arbitrary order we may
choose subsets of arbitrary cardinality). On the other hand,
this is the same as substituting each atomX either with atom
X (whichmakes no real effect) or with atomY (whichmeans
the replacement). Hence we have the following combinatorial
equivalence

exp (𝑦𝐷𝑥)F = F ∘ (X +Y) , (13)

which on the level of generating functions, by virtue of (11)
and the transfer rule for substitutions (see the appendix,
(A.4)), directly translates into (12). Hence from the combina-
torial point of view Taylor’s formula is a simple manifestation
of the following transfer rule (cf. (13)):

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑛𝑔 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑠𝑢𝑏𝑠𝑒𝑡:
G = exp (𝑦𝐷𝑥)F 󳨐⇒
𝐺(𝑥, 𝑦) = 𝐹 (𝑥 + 𝑦) ,

(14)

which applies to any combinatorial classF and its generating
function 𝐹(𝑥). This is a typical example of combinatorial
methodology which draws on the fact that in many cases the
same combinatorial structure allows different specifications.

2.2. SecondDerivative andHermite Polynomials. Combinato-
rial interpretation of the second derivative can be developed
along similar lines. From the above we know that the 2-nd
derivative (1/2)(𝑦𝐷𝑥)2 acting onF consists in

“selecting in all possible ways an unordered pair of X
atoms and replacing the chosen X’s by atoms of type
Y.”

We will call such (unordered) pair a doubleton. Clearly,
for an object composed of 𝑛 atoms this can be done in𝑛(𝑛 − 1)/2 ways, which agrees with the algebraic identity(1/2)(𝑦𝐷𝑥)2𝑥𝑛 = (𝑛(𝑛 − 1)/2)𝑥𝑛−2𝑦2.

More generally, by iterating 𝑘 times one picks out a
sequence of doubletons in the original structure. Hence, we
define the following construction:

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑛𝑔 𝑘 − 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝑑𝑜𝑢𝑏𝑙𝑒𝑡𝑜𝑛𝑠:
G = 1𝑘! (

1
2 (𝑦𝐷𝑥)

2)𝑘F 󳨐⇒
1
2𝑘𝑘!𝑦2𝑘

𝑑2𝑘
𝑑𝑥2𝑘𝐹 (𝑥) ,

(15)

which consists in

“selecting in all possible ways a set of 𝑘 unordered pairs
(doubletons) of X atoms and replacing them by Y
atoms.”

Note that, as in (11), we deem the order in the sequence
irrelevant by introducing factor 1/𝑘! in front of the iterated
derivative (hence the “set” and not the “sequence” in the
description). For a quick check of this specification we
observe that the coefficient on the r.h.s. of the identity

1
𝑘! (
1
2 (𝑦𝐷𝑥)

2)𝑘 𝑥𝑛

= 1𝑘!
𝑛 (𝑛 − 1)
2 ⋅ (𝑛 − 2) (𝑛 − 3)2 ⋅ ⋅ ⋅ ⋅

⋅ (𝑛 − 2𝑘 + 2) (𝑛 − 2𝑘 + 1)2 𝑥𝑛−2𝑘𝑦2𝑘
(16)

coincides with the number of possible ways of choosing a
set of 𝑘 unordered pairs from the set of 𝑛 objects, and hence
by linearity we establish correctness of the description and
transfer rule (15).

Now, we are in position to give interpretation of the
exponential of second derivative:

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑛𝑔 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝑑𝑜𝑢𝑏𝑙𝑒𝑡𝑜𝑛𝑠:
G = exp (12 (𝑦𝐷𝑥)

2)F ≡ ∑
𝑘⩾0

1
𝑘! (
1
2𝑦𝐷𝑥)

2𝑘

F, (17)

whose combinatorial meaning comes down to

“selecting in all possible ways an arbitrary subset of
(unordered) pairs of X atoms and replacing each
chosenX by atom of typeY.”

This is the sum of the derivative operations of the type (15)
which on the level of generating functions is the sum of
the derivatives. Unfortunately it does not come close to any
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Figure 1:On the left, there is an instance of a structure in classF = Set(XT), i.e., a set of labelled atomsTwhich are additionallyweighted by
an atom of typeX. In themiddle, example of a structure arising from the action of exp((1/2)(𝑦𝐷𝑥)2) onFwhich is obtained by selecting a set
of dubletons ofX atoms and replacing themby atoms of typeY. Selected pairs are depicted bywavy lines. On the right, decomposition of such
a structure into a product of two sets comprising, respectively, singletons XT (untouched by the derivatives) and doubletons (1/2)(YT)2
(selected by the derivatives).

neat expression like (12) or (14). Indeed, Taylor’s formula
does not generalise in a straightforward manner. Innocuous
as it may seem, selecting pairs instead of singletons intro-
duces considerable complexity into the picture and requires
careful analysis which quickly gets intractable. However,
in particular cases of simple combinatorial structures (and
their generating functions) it is possible to carry all the
calculus through. An example that we will consider in detail
is the Glaisher-Crofton formula (6) which evaluates action
of the exponential of the second derivative on the gaussian.
Before we proceed to this result, discussed in Section 3, we
will illustrate our combinatorial methodology on a simpler
case of the action on monomials and provide a link with
combinatorial model of Hermite polynomials (cf. [4, 12, 13]).

Let us start with the explicit expression which is obtained
from expanding the exponential and differentiating the
monomial, i.e.,

exp (12 (𝑦𝐷𝑥)
2)𝑥𝑛 = ⌊𝑛/2⌋∑

𝑘=0

𝑛!
2𝑘𝑘! (𝑛 − 2𝑘)!𝑥𝑛−2𝑘𝑦2𝑘. (18)

For 𝑦 = 𝑖 it specialises to the Hermite polynomial 𝐻𝑒𝑛(𝑥).
More generally, we may also write

exp(12 (𝑦𝐷𝑥)
2) exp (𝑥𝑡) = exp (12 (𝑦𝑡)

2) ⋅ exp (𝑥𝑡)
= exp(𝑥𝑡 + 12 (𝑦𝑡)

2) ,
(19)

which stems from the fact that exp(𝑥𝑡) is an eigenvector
of the derivative operator 𝐷𝑥 to eigenvalue 𝑡. Again, for𝑦 = 𝑖 it is the exponential generating function of Hermite
polynomials (cf. (5)). For the purpose at hand we will leave
variable 𝑦 unspecified so as to deal with positive integers
only (cf. coefficients in (18)). (It is a typical combinatorial
trick to introduce additional labels (or weights) which often
allows getting rid of negative or noninteger factors entering
multiplicatively in the expressions. Then enumeration of
structures proceeds also with respect to this additional label
(or weight) which, if needed, can be specified to the required
value at the end.) Our aim is to understand these formulas in
terms of enumeration of structures.

In order to use combinatorial description of (17) we
interpret exp(𝑥𝑡) as the exponential generating function

of the labelled class of sets Set(XT) (see [3, Sect. II]
for a precise definition and discussion of labelled classes
and their relation with exponential generating functions).
It is comprised of sets whose atoms T carry integer labels1, 2, 3, . . ., and additionally to each T an atom (or weight)
of type X is attached; see Figure 1 on the left. We have the
following translation rule (see (A.5)):

F = Set (XT) 󳨐⇒
𝐹 (𝑥, 𝑡) = ∑

𝑛⩾0

𝑥𝑛 𝑡𝑛𝑛! = exp (𝑥𝑡) . (20)

(Clearly, for given 𝑛 one can built one such set and its
weight is 𝑥𝑛.) Now, following the combinatorial description
(17) action of exp((1/2)(𝑦𝐷𝑥)2) on an individual set in
Set(XT) consists in selecting in all possible ways a subset
of doubletons. This amounts to splitting of each original set
into products of two subsets: one comprising singletons and
the other doubletons. Additionally, these subsets differ in that
the atoms in the singletons (untouched by the derivatives)
carry the weight X, while each atom forming the doubleton
(arising from nontrivial action of the second derivative)
carries the label Y. Yet another way of seeing the resulting
class of objects is to understand them simply as a set of
singletonsXT and doubletons (1/2)(YT)2. See Figure 1 for
illustration. Formally, one writes the following sequence of
combinatorial equivalences:

exp(12 (𝑦𝐷𝑥)
2) Set (XT)

= Set (XT) × Set(12 (YT)2)
= Set(XT + 12 (YT)2) ,

(21)

which on the level of generating functions readily transform
(cf. the appendix) into a sequence of algebraic equalities
providing a combinatorial proof of (19).

As a consequence of this discussion we get a simple
combinatorial model of Hermite polynomials. Namely, coef-
ficients of𝐻𝑒𝑛(𝑥) = ∑𝑛𝑘=0 ℎ𝑛,𝑘𝑥𝑘 count the number of possible
ways of
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Figure 2: On the left, there is an instance of a structure in C = Set(X2T), i.e., a set of labelled atoms T which have additional finer
structure comprised of two atoms of typeX (say the left and the right one). In the middle, example of a structure arising from the action of
exp((1/2)(𝑦𝐷𝑥)2) on C which is obtained by selecting a set of dubletons ofX atoms and replacing them by atoms of typeY. Selected pairs
are depicted by wavy lines. On the right, decomposition of such a structure into a product of two sets comprising, respectively, closed (A)
and open (B) chains.

“selecting a subset of 𝑘 doubletons (each weighted by−1) out of a set of 𝑛 distinguishable objects.”
It is exactly the coefficient of 𝑥𝑛−2𝑘 in (18) for 𝑦 = 𝑖. Another
way to see it directly from our combinatorial description
of the exponential of the second derivative is to interpret𝑥𝑛 as the generating function of a single 𝑛 element set;
i.e., we have F = Set𝑛(X) 󳨐⇒ 𝐹(𝑥) = 𝑥𝑛. Then
combinatorial model in terms of the choice of doubletons is a
simple consequence of the specification of (17). We note that
this model is a rephrasing of the interpretation of Hermite
polynomials in terms of weighted involutions [4, Sect. 2.3.].
Moreover, it can be straightforwardly extended to provide a
combinatorial interpretation of a larger class of multivariate
Hermite-Kampé de Fériet polynomials [1, 2].

3. Proof of the Glaisher-Crofton Identity

Here we prove the identity (6) by a purely combinatorial
argument by analysing structures generated by the second
derivative discussed above. We will proceed in a step by step
manner explaining the details of combinatorial constructions
and structures that appear along the way. Although most of
them are standard in combinatorial community we take a
rather explicit and methodological route that may be of help
for an unaccustomed reader. In the following we adopt the
standard notation from the book [3] (see also the appendix).

Our goal is to calculate the explicit form of the expression
(cf. the left hand side of (6) with 𝛼 = 𝑦2/2 and 𝑡 = −1)

exp(12 (𝑦𝐷𝑥)
2) exp (𝑥2𝑡)

= ∑
𝑘⩾0

1
𝑘! (𝑦𝐷𝑥)

2𝑘 ⋅ ∑
𝑛⩾0

(𝑥2𝑡)𝑛
𝑛! = 𝑅 (𝑥, 𝑦, 𝑡) .

(22)

Following our combinatorial strategy we will treat exp(𝑥2𝑡)
as an exponential generating function enumerating some
combinatorial objects. Let us define them as a labelled class
of sets Set(X2T). This class is comprised of sets of labelled
atoms T (i.e., each atom carries the integer label) which are
weighted with two atoms of type X. We will depict them
as sets of doubletons of unlabelled atoms X such that each
doubleton carries the labelled markerT. See Figure 2 on the
left for illustration. Clearly, we have the following transfer rule
(cf. (A.5)):

C = Set (X2T) 󳨐⇒
𝐶 (𝑥, 𝑡) = ∑

𝑛⩾0

𝑥2𝑛 𝑡𝑛𝑛! = exp (𝑥2𝑡) . (23)

We know from the discussion of (17) that on the combinato-
rial level exponential exp((1/2)(𝑦𝐷𝑥)2) consists in selecting
in all possible ways unordered pairs of X’s (not necessarily
attached to the sameT) and replacing eachX in the chosen
pairs by Y. Figure 2 in the middle illustrates a generic
structure arising in this procedure. If we denote the resulting
class of structures byR, then we may write

R = exp (12 (𝑦𝐷𝑥)
2)C 󳨐⇒

exp (12 (𝑦𝐷𝑥)
2) exp (𝑥2𝑡) = 𝑅 (𝑥, 𝑦, 𝑡) ,

(24)

where 𝑅(𝑥, 𝑦, 𝑡) = ∑𝑘,𝑙,𝑛⩾0 𝑅𝑘,𝑙,𝑛𝑥𝑘𝑦𝑙(𝑡𝑛/𝑛!) is the exponential
generating function enumerating structures in R. Note that
this gives a precise combinatorial meaning to (22).

Since we have reduced our goal to finding the exponential
generating function 𝑅(𝑥, 𝑦, 𝑧) one needs to come up with a
systematic specification of structures in R. For this purpose
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Figure 3: A generic closed chain in classA embedded in the plane can be seen as a cycle built out of two kinds of blocks, each of typeY2T,
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Figure 4: If embedded in the line, each open chain in B forms a sequence whose inner part (in the grey box) is built out of blocks of type
Y2T with two blocks of typeXYT attached at the ends. Here again, each block can have two configurations due to different choices made
by the derivatives (possible crossings of the wavy lines).

let us observe that doubletons, initially detached from one
another in C, are now tied together to form either open or
closed chains. Then, we may group them together splitting
each structure inR into a product of two sets: one containing
only closed and the second open chains. This entails the
following combinatorial decomposition and its translation to
the exponential generating functions (cf. (A.3) and (A.5)):

R = Set (A) × Set (B) 󳨐⇒
𝑅 (𝑥, 𝑦, 𝑡) = exp (𝐴 (𝑥, 𝑦, 𝑡)) ⋅ exp (𝐵 (𝑥, 𝑦, 𝑡)) , (25)

where A is the class of open chains and B is the class
of closed chains; see Figure 2 on the right. Hence the
problem comes down to finding both exponential generating
functions 𝐴(𝑥, 𝑦, 𝑡) and 𝐵(𝑥, 𝑦, 𝑡) enumerating, respectively,
objects of typesA andB.

Let us start with the class of closed chainsA. Its elements
embedded in the plane can be seen as cycles whose building
blocks have a finer structure of type Y2T which occurs in
two possible configurations arising from two possible choices
ofX by the derivative in the same doubleton; see Figure 3 for
pictorial explanation.Therefore the whole class is specified as
follows:

A = Cyc (2Y2T) , (26)

and by the standard transfer rule for labelled classes, (A.6),
we get

𝐴 (𝑥, 𝑦, 𝑡) = log 1
1 − 2𝑦2𝑡 . (27)

The class of open chainsB can be described in a similar
manner. First we observe that each such chain can be embed-
ded in the line in two possible ways.Then it forms a sequence
which can be decomposed into the inner part which is a
sequence of blocks of typeYTY with two additional blocks
of typesXYT andYTX attached at the ends (left and right,
respectively). Here as well, each block occurs in two possible
configurations arising from two possible choices ofX by the
derivative in the same doubleton. See Figure 4 for illustration.
This gives the following combinatorial specification:

B = XTX + 12 (2XYT) × Seq (2YTY)
× (2YTX) .

(28)

Note that the coefficient 1/2 stems from the double counting
due to embedding in a line and the termXTXmakes up for
a single structure left out by the above description. Having
specified B we obtain exponential generating function by
means of the standard transfer rules, (A.7), which yield
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𝐵 (𝑥, 𝑦, 𝑡) = 𝑥2𝑡 + 122𝑥𝑦𝑡 ⋅
1

1 − 2𝑦2𝑡 ⋅ 2𝑥𝑦𝑡

= 𝑥2𝑡
1 − 2𝑦2𝑡 .

(29)

Now, by substituting (27) and (29) to (25), we get

𝑅 (𝑥, 𝑦, 𝑡) = 1
1 − 2𝑦2𝑡exp(

𝑥2𝑡
1 − 2𝑦2𝑡) . (30)

This completes the proof of the Glaisher-Crofton identity,
(6), which is readily obtained from (22). In conclusion,
let us remark that we benefit from the proof by a deeper
combinatorial insight into the nature of both factors on the
r.h.s. of (6). The latter can be interpreted as exponential
generating functions enumerating sets of closed and open
chains, respectively, formed by derivatives acting on the
gaussian.

4. Discussion and Outlook

Many computational problems require keeping track and
skilful rearrangement of terms involved in algebraic expres-
sions. It often comes down to the analysis of their structural
properties and counting terms grouped with respect to
some relevant characteristics. This is a natural domain of
application for modern combinatorics which has developed a
large array of tools for systematic treatment of such problems.
In this paper, we have considered a few examples where it
can be effectively used for evaluation of the action of the
exponential in the derivatives on a function. Fundamental
in this approach is treatment of the function as a generating
function enumerating some simple combinatorial objects.
This shift in perspective allows interpreting the derivatives
(and their exponentials) as combinatorial constructors which
produce a new class of objects which often can be enumerated
with combinatorial flair. We have illustrated this approach by
showing simple combinatorial proofs and interpretation of
Taylor’s formula, connecting exponential in second derivative
with a model of Hermite polynomials, and deriving the
Glaisher-Crofton identity. It is worth emphasising that the
proofs are purely combinatorial and thus do not require any
arguments involving integral representations or analyticity.
We note that our exposition builds up on the seminal papers
of D. Foata [12–14] who gave combinatorial insight into the
related Mehler formula. In this paper, the focus is shifted
towards graphical calculus based on symbolic methods in
enumeration of combinatorial structures in [3, 4].

Crucial to our development was combinatorial under-
standing of the exponential of the second derivative which
consists in selecting a collection of unordered pairs in a
structure it acts on. It can be also seen as superposition of the
doubleton structure on the other onewhich is connectedwith
the Hadamard product of generating functions considered
in various combinatorial contexts (see, e.g., [3, 4, 15]). We
should also mention a natural link with a rich framework
of umbral calculus [16], where polynomial sequences can be
considered as generated by the action of differential operators
(see also monomiality principle [17]). Such description is

attainable for a large family of Sheffer-type polynomials [18]
(including binomial-type and Appell sequences [19]) and
therefore admits combinatorial interpretation along the lines
considered in the present paper.This themewill be the subject
of subsequent publication.

We observe that our discussion is not limited only to
the first and second derivatives. It can be straightforwardly
extended to derivatives of higher order which correspond
to selecting subsets of higher cardinality. Moreover, one can
generalise this framework to partial derivatives in several
variables and multivariate polynomials (e.g., Hermite or
Kampé de Fériet polynomials [1, 2]) by interpreting them
as enumerating combinatorial structures built of atoms of
several kinds.

Finally, let us remark that combinatorial approach to
derivatives also provides an interesting insights into operator
identities. One example is a systematic treatment of the
normal ordering problem [7, 20, 21]. Clearly, majority of
operator identities admit combinatorial interpretation as
they typically arise from algebraic manipulation of discrete
structures [4, 22, 23]. As such it opens the whole field of
application for combinatorial approach. In this paper we
have illustrated this point only on a few examples which can
be seen as instances of a broad class of operator identities
amenable to combinatorial methodology (cf. Sack identity,
Baker-Campbell-Hausdorff formula, Rodrigues-type formu-
las, Crofton identities, etc. [1, 2]).

Appendix

A. Combinatorial Constructions

Our primary reference for combinatorial analysis is the
standard book Analytic Combinatorics by Ph. Flajolet and R.
Sedgewick [3]. Here, we briefly recall basic terminology and a
few standard translation rules for labelled constructions used
in this paper.

Suppose we are given a combinatorial classC which
consists of a denumerable collection of objects built of the
labelled atoms T (see [3, Ch. II] for precise definition of
the labelled class). Usually size of an object is the number
of atoms it is built of, and a typical problem is to count the
number of structures of a given size. In other words, one seeks
the sequence 𝑐𝑛 = #C𝑛, where C𝑛 = {𝜙 ∈ C : |𝜙| = 𝑛}
which is conveniently encoded in the exponential generating
function (e.g.f.)

𝐶 (𝑡) = ∑
𝑛⩾0

𝑐𝑛 𝑡
𝑛

𝑛! = ∑
𝜙∈C

𝑡|𝜙|󵄨󵄨󵄨󵄨𝜙󵄨󵄨󵄨󵄨! . (A.1)

Let us remark that the reason for the use of exponential gen-
erating functions, rather than ordinary generating functions
(o.g.f.), is simplicity of transfer rules in the domain of labelled
classes. (Ordinary generating functions are typically used for
enumeration of unlabelled structures, cf. [3, Ch. I.].)

The point of combinatorial analysis of structures is
construction of complex classes from simpler ones.The initial
building blocks include the atomic classT, which comprises
a single element of size 1 and has e.g.f. 𝐶(𝑡) = 𝑡, and
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the neutral classE, which consists of a single element of
size 0 and has e.g.f. 𝐶(𝑡) = 1. Then complex structures
are built by well defined set of theoretical constructions
which provide a precise specification of the class. Remarkably,
these constructions can be translated into algebraic equations
for the corresponding generating functions which solve the
enumeration problem. Below, we give a short list of such
constructions and translation rules that we exploit in this
paper.

The most basic one is the disjoint union, henceforth
denoted by “+”, which corresponds to

C = A +B 󳨐⇒
𝐶 (𝑡) = 𝐴 (𝑡) + 𝐵 (𝑡) . (A.2)

Another one is the labelled product, denoted by “×”, which
forms a cartesian product of objects and relabels the atoms in
order-consistent manner. We have the following translation
rule:

C = A ×B 󳨐⇒
𝐶 (𝑡) = 𝐴 (𝑡) ⋅ 𝐵 (𝑡) . (A.3)

If objects of one structure B are substituted into atoms of
another structure A and relabelled in the order-consistent
way, then the e.g.f. of such constructed class is given by
(assumingB0 = ⌀, i.e., 𝐵(0) = 0)

C = A ∘B 󳨐⇒
𝐶 (𝑡) = 𝐴 (𝐵 (𝑡)) . (A.4)

It is then possible to form the class of all (labelled) sequences,
sets, and cycles (respectively denoted by Set, Seq, and Cyc)
built from objects in A. The corresponding generating
functions are given by the following dictionary (assuming
A0 = ⌀, i.e., 𝐴(0) = 0):

C = Set (A) 󳨐⇒
𝐶 (𝑡) = exp (𝐴 (𝑡)) , (A.5)

C = Cyc (A) 󳨐⇒
𝐶 (𝑡) = log 1

1 − 𝐴 (𝑡) ,
(A.6)

C = Seq (A) 󳨐⇒
𝐶 (𝑡) = 1

1 − 𝐴 (𝑡) .
(A.7)

This is a nonexhaustive selection of possible constructions
which is used in the present paper. For a comprehensive
survey of the methods of combinatorial enumeration via
generating functions, we refer to the classic books on this
subject [3–5].
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