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Abstract. We extend the Hopf algebra description of a simple quantum syvstem given
previously, to a more elaborate Hopf algebra, which is rich enough to encompass that related
to a description of perturbative quantum field theory (pQFT). This provides a mathematical
route from an algebraic description of non-relativistic, non-field theoretic quantum statistical
mechanics to one of relativistic quantum field theory.

such a description necessarily involves treating the algebra of polyzeta funetions, extensions
of the Riemann Zeta function, since these oceur naturally in pQFT. This provides a link between
physics, algebra and number theory. As a by-product of this approach, we are led to indicate
infer alia a basis for concluding that the Euler gamma constant v may be rational.

1. Introduction

[n an introductory paper delivered at this Conference!, “Fram Quantum Mechanics to Quantum
Field Theory: The Hopf route”, Allan 1. Solomon [1, 2] et al. start their exposition with the
Bell numbers B(n) which count the number of set partitions within a given set of n elements.
[t is shown there that these verv elementary combinatorial ideas are in a sense generic within



where (& satisfies the following Fuchs differential equation with three regular singularities
at 0,1 and oc :

dG(z) = [rpwolz) + zywi(2)]Gl2). (29)
with
dz dz
wo(z) = — and wi(z):= T (30)
_hi2 _ taa
T = i and 1= Sin (31)

In the sequel, we set X = {zg,x;}; X* denotes the set of words defined over X. The empty
word is denoted by &.

Proposition 2 ([11]) If G(z) and H(z) are exponential solutions of (29) then there erisis a
Lie series C' € Liec (X)) such that G(z) = H(z)exp(C).



dG(z) = [rowo(z) + 21w (2)]G(2) (29)

with
dz dz
wolz) = — and wy(z) = 5 (30)
t1.2 _ la2a
To = . and 11 := 2in (31)

In the sequel, we set X = {zg,21}; X* denotes the set of words defined over X. The empty
word is denoted by -,

Proposition 2 ([11]) If G(z) and H{z) are exponential solutions of (29) then there exisis a
Lie series C' € Liec (X)) such that G(z) = H(z)exp(C').



4. Iterated integral and Chen generating series
The iterated integral associated with w = 2y --- 25, € X¥, over wy and wy and along the path
zg ~= z, is defined by the following multiple integral

/ f T () - i (1), (32)

where 1 ---t,—1 15 a subdivision of the path zg ~+ z. In an abbreviated notation, we denote this
integral by o7 (w) and o () = 1.

Example 1
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The last sum is nothing other than the Taylor expansion of the dilogarithm Lia(z).



Series with variable coefficients.

Let V be a set (where will run the variable z), # € CY, an algebra
of fonctions and M a monoid (thought as a monooid of
monomials). Every function S : M — H can be written

S = Z: (S|mym .

me M
This series can be specialized, for all zg € V as

S5(z9) = Zﬁ ((S\m)) zzzﬂm

m E ...-"M




Series with variable coefficients (2).

These specializations are morphismes of C-AAU

€z © H{{M)) = C{(M)) (6)
Moreover, if d is a derivation of H, its extension “coefficient by
coefficient”
d(S):= Y  d((S|m))m (7)
me M

is still a derivation of H((M)) (exercise).



Non commutative differential equations.

Now V is a connected and simply connected complex analytic
variety (for example C — (] — oo, 0[U]1, +o0|) or the universal
covering of C — {0,1}) ; H is the space of analytic functions on V.
Let M be a locally finite monoid (we will not fix it too early in

order to “double” Drinfel'd’s equation). Let H{{M)) be the
algebra of fonctions on M with coefficients in H. One will use the

notations of Dirac-Schiitzenberger. Let M, be a multiplier in

H>1((M)).



Non commutative differential equations (2).

We will consider three types of differential equations.
a) Equation on the left

d

ES = MS (8)
b) Equation on the right
%S = SM (9)
c) Two-sided equation
iS = M5 + SM> (10)
dz

with M, M; € H>1((M)). We will give first the resolution of
equations of type (10) because their properties specialize, with
My = 0 (resp. My = 0) to the type (8) (resp. (9)).



Non commutative differential equations (3).

T heorem

In the preceding conditions.
/) Equation (10) has solutions all of the forme

S=H*S (11)

where H is the operator G f; (Ml(s)G(s) + G(S)MQ(S))dS

and So = S(zo0) is a une constante series.

ii) Two solutions agree iff they agree at a point zp € V.

iif) One supposes given a comultiplication A with constant i.e. a
morphisme A : M — C(M) @ C({M) and that My, M2 are
primitive I.e.

&(M;)ZM;@I—I—I@M;; f=1.2 .

Then, if S is group-like at a point zg € V then S is group-like
everywhere.



Theorem (2)

iv) Constant term of S does not depend on z and is that of Sg, in
particular, if a solution is invertible at a point, it is so everywhere.
v) Let S;; i = 1,2 be invertible solutions of equations of type (8)
(resp. (9)) with primitive multipliers. Let F be a un filter on V
(ex. neibourhoods of 0, of 1, of infinity etc.). We moreover
suppose that 51. 5> are asymtotically equivalent w.r.t. F. Then if
5> is de group-like, so is 5.



About the LDIAG Hopft algebra

In a relatively recent paper Bender, Brody and
Meister (*) introduce a special Field Theory described
by a product formula (a kind of Hadamard product for
two exponential generating functions - EGF) in the
purpose of proving that any sequence of numbers could
be described by a suitable set of rules applied to some
type of Feynman graphs (see third Part of this talk).
These graphs label monomials and are obtained in the
case of special interest when the two EGF have a
constant term equal to unity.

Bender, C.M, Brody, D.C. and Meister,
Quantum field theory of partitions, J. Math. Phys. Vol 40 (1999)

13
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Some 5-line diagrams

HEJ»:

Y

If we write these functions as exponentials,

we are led to witness a surprising interplay between
the following aspects: algebra (of normal forms or of
the exponential formula, Hopf structure), geometry
(of one-parameter groups of transformations and their
conjugates) and analysis (parametric Stieltjes
moment problem and convolution of kernels).
Today, we will first focus on the algebra.

If time permits, we will touch on the other aspects.

14



Construction of the Hopf algebra LDIAG

15



How these diagrams arise and which
data structures are around them

Let F, G be two EGFs.

. Yyt Y e oy
F — Z {Iﬂm, (I — Z b?”ﬁ" H(F,(T) e Z {.!_.”__E).”__H

n=0 m=0 n=0

Called « product formula » in the QFTP of
Bender, Brody and Meister.

16



In case F(0)=G(0)=1, one can set

:U'H.-
F(y) = e;rp(z L.”__F) (1) = exp Z Vin—

n>1 N n=1
and then, g
H(F.G) = F(U—)G( )a=0 =

dr

20 . Z numpart(o)numpart(3)LV7

n>0 ! - al=|8]=

with «, Bel®) multiindices

‘ 8% ‘ 1

numpart(o) =

(1!){11 (21){;2 o (T!)ﬂ'r((Ll)!(ﬁlg)! o ((L-}-?)!



We will adopt the notation

o = 1&-1 2{12 o __rﬂ-?-

for the type of a (set) partition which means that
there are ai singletons a2 pairs a3 3-blocks a4 4-blocks
and so on.

The number of set partitions of type a as above is
well known (see Comtet for example)

numpart(o) =

(1)@ (2072 - - (7)o (ay) (ag)! - - - (@)

Then, with

o
F(y) = exp ZL ) Gla) =exp(y_ Vi)

n=>1 n=1

"'4-1



F(U) — EI]}(Z Lni—') T — exrp Z Vi m-—_y

=t n=1
one has
s o d
H(F.G) = F( UI)(T( )|y =
Z y" Z numpart(a)numpart(3)LV”
n=>0 ! |ﬂ| 13]=n

Now, one can count in another way the term
numpart(a)numpart(). Remarking that this is the
number of pairs of set partitions (P1,P2) with
type(P1)=a, type(P2)=[. But every pair of
partitions (P1,P2) has an intersection matrix ...

19



{1,5} {2} {3,4,6}
{1,2} 1 1 0 Classes of
! < packed matrices

see NCSF VI

{3,4} 0 0 2 (GD, Hivert,
and Thibon)

{5,6} 1 0 1 Feynman-type diagram

(Bender & al.)

s

20



Now the product formula for EGFs reads

yld
HF,G)= ) WL@<d>w<d>
d FBE—diagram

yld D)< rB(d
> —mult(d (d)Lyhld)
dEdlag‘ ‘

The main interest of these new forms is that we can
impose rules on the counted graphs and we can call
these (and their relatives) graphs : Feynman-Bender

Diagrams of this theory (here, the simplified model of
Quantum Field Theory of Partitions). 21



One has now 3 types of diagrams :

* the diagrams with labelled edges (from 1 to |d]).
Their set is denoted (see above) FB-diagrams.

* the unlabelled diagrams (where permutations of black
and white spots are allowed). Their set is denoted (see
above) diag.

* the diagrams, as drawn, with black (resp. white) spots
ordered i.e. labelled. Their set is denoted Idiag.

22



{1} {2,3,4}{5,6,7,8,9}{10,11}

Pl Ny

{2,3,5H1,4,6,7,849,10,11}

Fig 1. — Diagram from Py, P> (set partitions of [1---11]).
P, = {{2,3,5},{1,4,6,7,8},{9,10,11}} and P, = {{1},{2,3,4},{5,6,7,8,9},{10,11}}
(respectively black spots for Py and white spots for Py ).
The incidence matrirx corresponding to the diagram (as drawn) or these partitions is
(g ; % E) But, due to the fact that the defining partitions are unordered, one can permute
the spots (black and white, between themselves) and, so, the lines %Tl(é clof-;tmns of this matriz

can be permuted. the diagram could be represented by the matriz (2 2.1 g) as well.

23
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Hopf algebra structure

First step: Define the spaces
Diagzljd [0 diagrams C d LDiaQ:Dd O labelled diagrams C d

(functions with finite supports on the set of
diagrams).
At this stage, we have a natural arrow LDiag - Diag.

Second step: The product on Ldiag is just the
concatenation of diagrams

d,+d, =d, d,

And, setting m(d,L,V,z)=L*DVPD Zldl
one gets
m(dl*dZ’L’v’Z)= m(dllleIZ)m(dZIlelz) 26



This product is associative with unit (the empty
diagram). It is compatible with the arrow

LDiag - Diag and so defines the product on Diag
which,

in turn, is compatible with the product of monomials.

LDiag x LDiag —— Diag x Diag —— Mon x Mon

"' > Dlzra M(;n
LDiag g (d,’-’,'?,?)

27



The coproduct needs to be compatible with m(d,?,?,?

One has two symmetric possibilities (black spots and
white spots).

The « black spots co-product » reads

A, (d)=2d, O d,
the sum being taken over all the decompositions, (I,])
of the Black Spots of d into two subsets.
For example, with the following diagrams d, d, and d,

O O O O

one has Ag(d)=dO0O + O0Od + d,0d, + d,[0d,

28



If we concentrate on the multiplicative structure of
Ldiag, we remark that the objects are in one-to-one
correspondence with the so-called packed matrices
of NCSFVI (Hopf algebra MQSym), but the product of
MQSym is given (w.r.t. a certain basis MS)
according to the following example

MS |7 ] MS[z ) =

MS [10v0] + MS[?140] + MS[o0s1] + MS[2}21] + MS|2100]

0031 1031 1000 1000

29



It is possible to (re)connect these Hopf algebras to
MQSym and others of interest for physicists, by
deforming the product with two parameters.

The double deformation goes as follows

» Concatenate the diagrams

* Develop according to the rules :
o Every crossing “pays” a q_
» Every node-stacking "pays” a q_

30



In the expansion, the weights are given by the
intersection numbers.

2~ 6

9.9,

31






Fig 6. — Detail of the fourth monomial (with coefficient q2qt ). crossings (circles) and

superposings (black squares) are counted the same way but with a different variable.

33



We could check that this law is associative (now three
independent proofs). For example, direct computation
reads

(au T bv) | cw = (a(u ] bv) + g Nel ¢le P [2] (u ] v) + ¢““Vlb(au 1 v)) | ew

[a((u 1 bv) T cw) 4 gluHEvDiclzlallel [j ((u 1 bv) T w)+ gleudHbeblde(g(u 1 bv) | ELF)}

C

[q|u||h|t|a||b| [ﬂ (ulv]ecw)+ gl UlIBH(Jul+)el lal Bl4 |+ (Bl [b] (ulv?] w

l
B+l He Il lalel o [z] (w1 ) 1 wj}

g Mb((au T v) T cw) + glaullbh(aulHeDlel el H (au 1 v T w) + globl+ad+Heoblelo(p(ay 1 v) T u

34



au | (bv T cw) = au | (E}(-u [ cw) + g*ldglle H (v T w)+ g™ Me(by 1 J) =

[a.(-u. 1 b(v | cw)) 4 ¢IPlzlal®l [i] (ulv]ecw)+qg®Phlau T v CH.-‘)]-I-

[q|L-||,_~.|t|.5||.:~.|a{,“_T H (01 w)) + gUlebHueHD el D | ] (1 3 1 a0)t
a

gl lel+Haul(+1c]) 14 H (aul v w)]+
[qlf*vllﬂla(u 1 e(by T w)) + gUurHeid alid H (w1 b T w) + gDl oy 1 by 1 w)] (3)

dans la deuxieme expression, on regroupe les trois termes de téte des crochets et on trouve

a(u T b(v T cw)) + ¢4t a(u 1 H (v 1 w)) +¢"Ma(u T efbo T w)) = a(u 1 bv | cw)

(4)
dans la premiere expression, on regroupe les trois termes de queue des crochets et on trouve

aw|+|bv|i|e Tt i v a b
DI (3 1 ) 1 ) <+ gl ol HooDle ol ((H Chi

q|au||b|+ |au|+|bo|)|c] ( i ]\ ) T H) |'|au,|+|bt| [& (au T s ]\ 'i'_L-‘) (S)



au | (bv T cw) = au | (E}(-u [ cw) + g*ldglle H (v T w)+ g™ Me(by 1 J) =

[a.(-u. 1 b(v | cw)) 4 ¢IPlzlal®l [i] (ulv]ecw)+qg®Phlau T v CH.-‘)]-I-

[q|L-||,_~.|t|.5||.:~.|a{,“_T H (01 w)) + gUlebHueHD el D | ] (1 3 1 a0)t
a

gl lel+Haul(+1c]) 14 H (aul v w)]+
[qlf*vllﬂla(u 1 e(by T w)) + gUurHeid alid H (w1 b T w) + gDl oy 1 by 1 w)] (3)

dans la deuxieme expression, on regroupe les trois termes de téte des crochets et on trouve

a(u T b(v T cw)) + ¢4t a(u 1 H (v 1 w)) +¢"Ma(u T efbo T w)) = a(u 1 bv | cw)

(4)
dans la premiere expression, on regroupe les trois termes de queue des crochets et on trouve

aw|+|bv|i|e Tt i v a b
DI (3 1 ) 1 ) <+ gl ol HooDle ol ((H Chi

q|au||b|+ |au|+|bo|)|c] ( i ]\ ) T H) |'|au,|+|bt| [& (au T s ]\ 'i'_L-‘) (S)



This amounts to use a monoidal action with two
parameters. Associativity provides an identity in an
algebra which acts on a diagram as the algebra of the
sum of symmetric semigroups. Here, it is the
symmetric semigroup which acts on the black spots

Diagram

37



+ q2q° + ¢

The labelled diagrams are in one to one correspondence
with the packed matrices of MQSym and we can see
easily that the product of the latter is obtained for

q =1=q

38



Hopf interpolation : One can see that the more
intertwined the diagrams are the fewer connected
components they have. This is the main argument to
prove that LDIAG(q_q,) is free on indecomposable

diagrams. Therefore one can define a coproduct on
these generators by

A=(1-)A +t A

MQSym

this is LDIAG(q_q_t) (note that, here, t belongs to
{0,1})

39



‘LDIAG(q q, t) Planar decorated Trees

LDIAG(l q,,t) ‘
(0,0,0)
(1,1,1)
|LDIAG] IMQSym
\ \ | Connes-Kreimer
IDIAG] |[FQSym|~——| Sym

Notes :
1) The arrow Planar Dec. Trees — LDIAG(1,q ,t) 1s due to L. Foissy

i1) LDIAG, through a noncommutative alphabetic realization shows
to be a bidendriform algebra (FPSACO7 paper by ParisXIII & Monge).
40



In order to have an algebraic expression of the
product, we use a process similar to the shuffle
product. We must define local partial degrees.

For a black spot with label « i », we denote by BS(d,i)
its degree (number of adjacents edges).

Then, for d_1 (resp. d_2) with p (resp. q) black spots,
the product reads

l”rl HEILEQC,Qs] _ Z ( H mﬁﬁ'S[d,i}.ESEij:‘) ( H qSES[d,i:'.ESEd.-j:') lff‘lME]L-f

fesShsipqg) <

i<l 2l
Fli)=fld) fi8)=£(3)

where Shs(p,q) is the set of mappings f in
SSG_A{[1..p+qg]} with image of type [1...m] and such

that
f)<f@Q) < <flp): flp+1) < flp+2) << flp+q).

1
L,



This condition, similar to that of the shuffle product,
guarantees that the black spots of the diagrams are
kept in order during the process of shuffling with
superposition (hence the name Shs).

The graphic and symmetric-semigroup-indexed
description of the deformed law neither give
immediately a recursive definition nor an explanation
of *~ "why" the law is associative. We will, on our

way to understand this (as well as the different natures
of its parameters), proceed in three steps:

a) code the diagrams by words of monomials

b) present the law as a shifted law

C) give a recursive definition of the (non-shifted) law.

42



Fig 3. Coding the diagram of fig 2 by a word of monomials. The code here is

[x3x3 . myxoxy , 3xy]

43



Then, one has only to find the law « without shifting »
it reads

au|[b] ulfo] lallb)

Lgnomecxye T = w T Lgpome(xyye =0
au b = alulbv)+qg "hlaw]v)+ae " g a-b)u ] v)

It is now easy to interpret the crossing parameter as a
deformation of the tensor structure and the superposing
parameter as a perturbation of the ordinary coproduct.

44



Conclusion

There are arrows from LDIAG to polyzetas. Tuning the
parameters differently, one obtains the shuffle and
stuffle products. Other features (like coloured polyzetas)
can be obtained with a slightly modified setting

Thank you for your attention !

45
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