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Abstract. The Möbius inversion formula, introduced during the 19th century in number theory, was generalized to a
wide class of monoids called locally finite such as the free partially commutative, plactic and hypoplactic monoids
for instance. In this contribution are developed and used some topological and algebraic notions, similar to ordinary
objects such as the (total) algebra of a monoid, the augmentation ideal or the star operation on proper series. The main
concern is to extend the study of the Möbius function to some monoids with zero, i.e., with an absorbing element, in
particular the so-called Rees quotients of locally finite monoids. Some relations between the Möbius functions of a
monoid and its Rees quotient are also provided.

Résumé. La formule d’inversion de Möbius, connue depuis le XIXème siècle en théorie des nombres, fut généralisée à
la classe des monoı̈des localement finis, comprenant des objets tels que les monoı̈des partiellement commutatifs libres
ainsi que les monoı̈des plaxiques et hypoplaxiques par exemple. Dans ce papier nous étendons son étude à certains
monoı̈des à zéro, i.e., munis d’un élément absorbant, notamment les quotients de Rees de monoı̈des localement finis,
en développant et en employant des outils, algébriques et topologiques, analogues aux objets usuels tels que l’algèbre
(large) d’un monoı̈de, l’idéal d’augmentation ou encore l’étoile d’une série sans terme constant. Nous établissons
également des relations entre les fonctions de Möbius d’un monoı̈de et de son quotient de Rees.
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1 Introduction
The classic Möbius inversion formula from number theory, introduced during the 19th century, states
that, for any complex or real-valued functions f, g defined on the positive integers N \ {0}, the following
assertions are equivalent:

• For all n ∈ N \ {0}, g(n) =
∑
d|n

f(d).

• For all n ∈ N \ {0}, f(n) =
∑
d|n

µ(n/d)f(d).
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In both formulae the sums are extended over all positive divisors d of n, and µ is the Möbius function.
This result actually uses the fact that µ and ζ are inverse one from the other with respect to the usual
Dirichlet convolution, where ζ is the characteristic function of positive integers (see for instance [1]).

This classic version of the Möbius inversion formula was generalized in different ways by different
authors. P. Doubilet, G.-C. Rota, and R. P. Stanley proposed a systematic treatment of this problem for
locally finite posets in [12, 26], while P. Cartier and D. Foata in [7] proved such a formula holds in a
wide class of monoids called locally finite [15], and the Möbius function was even explicitly computed
for some of them. This paper is a contribution to the study of the Möbius inversion formula, still in the
context of locally finite monoids but for the particular case of monoids with zero. For instance, let M
be the set {0, 1, a, b, c, ab, ac, ba, bc, ca, cb, abc, acb, bac, bca, cab, cba}. It becomes a monoid with a zero
when equipped with concatenation of words without common letters, also called standard words; the
other products give 0. Let ζ0 be the characteristic function of M0 = M \ {0}. Then, ζ0 is invertible -
with respect to convolution - in the algebra Z0[M ] of all functions that annihilate the zero 0 of M , which
is, in a first approximation, the Z-algebra of polynomials in the noncommutative variables {a, b, c} with
only standard words as monomials. Indeed, ζ0 = 1 + ζ+

0 , where 1 is the characteristic function of the
singleton {1} and since ζ+

0 has no constant terms, as a noncommutative polynomials (that is ζ+
0 (1) = 0),

ζ0 is invertible, with inverse µ0 =
∑

n≥0(−ζ+
0 )n. Due to the particular multiplication in M , the “ proper

part ” ζ+
0 of ζ0 is actually nilpotent, and the previous summation stops after four steps. Therefore µ0 can

be computed by hand, and we obtain µ0 = 1− a− b− c.
Rather surprisingly, µ0 - interpreted as the Möbius function of the monoid with zero M - is the same as

the Möbius function of the free noncommutative monoid {a, b, c}∗. Moreover such a phenomenon also
appears for less tractable monoids with zero: for instance, let us consider a monoid similar to M but on
an infinite alphabet X: it is the set of all words on X without common occurrences of any letter, and with
product ω × ω′ equal to the usual concatenation ωω′ when each letter appears at most one time in the
resulting word, and 0 otherwise. Contrary to M , this monoid is found infinite. Nevertheless we can prove
its characteristic function to be invertible, and its inverse is still equal to the usual Möbius function of the
free monoid X∗. In this case, it is not as easy to compute because the corresponding “ proper part ” is no
more nilpotent, and the sum of a series need to be evaluated in some relevant topology.

The explanation of this general phenomenon is given in this paper whose main concern is the devel-
opment of an algebraic and topological toolbox for a systematic and rigorous treatment of the Möbius
inversion formula for locally finite monoids with zero.

2 Monoids with zero
A monoid with zero is an ordinary monoid with a two-sided absorbing element, called the zero. Such
structures obviously occur in ring theory (the multiplicative monoid of an associative ring with unit is a
monoid with zero), but they are also used to solve some (co)homological problems [22, 23], and mainly
in the study of ideal extensions of semigroups [2, 8, 9].

These structures are defined as follows: let M be an ordinary monoid (with 1M as its identity element)
such that |M | ≥ 2. Then, M is called a monoid with zero if, and only if, there is a two-sided absorbing
element 0M , i.e., x0M = 0M = 0Mx for every x ∈ M , with 0M 6= 1M . The distinguished element
0M is called the zero of M (uniqueness is obvious). If in addition M is commutative, then M is called a
commutative monoid with zero. For any monoid M with zero 0M , M0 stands for M \ {0M}.
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Example 1 1. The set of all natural numbers N with the ordinary multiplication is a commutative
monoid with zero;

2. The multiplicative monoid of any associative ring R with a unit 1R is a monoid with zero 0R;

3. IfM is any usual monoid (with or without zero), then for every 0 6∈M , M0 = M ∪{0} is a monoid
with zero 0: x0 = 0 = 0x for every x ∈ M0 extending the operation of M . It is commutative if,
and only if, the same holds for M . The transformation of M into M0 is called an adjunction of a
zero, and M0 is a monoid with a (two-sided) adjoined zero. Note that M0 is obviously isomorphic
with M z for every z 6∈M , where z plays the same role as 0;

4. The set ℵ0 ∪ {ℵ0} of all cardinal numbers less or equal to ℵ0 (that is, the initial segment [0,ℵ1[),
with the usual addition (recall that ℵ0 = [0,ℵ0[= N and n+ℵ0 = ℵ0 +n for every n ∈ ℵ0∪{ℵ0})
is a commutative monoid with ℵ0 as zero;

5. Let C be a small category [19]. Then its set of arrows A(C), together with adjoined zero 0 and
identity 1, is a monoid with zero when arrows composition is extended using f ◦ g = 0 whenever
dom(f) 6= codom(g) for every f ∈ A(C), and f ◦ 1 = f = 1 ◦ f , f ◦ 0 = 0 = 0 ◦ f for
every f ∈ A(C) ∪ {0, 1}. Now suppose that P is a poset, and Int(P ) is the set of its intervals
[x, y] = {z ∈ P : x ≤ z ≤ y} for all x ≤ y in P (see [12, 26]). An interval [x, y] may be seen
as an arrow from x to y, and a composition may be defined: [x, z] ◦ [z, y] = [x, y]. It follows that
P turns to be a small category, and Int(P ) ∪ {0, 1}, where 0, 1 6∈ Int(P ) and 0 6= 1, becomes a
monoid with zero. Another specialization is possible: let n ∈ N \ {0} be fixed, and consider the set
I of all pairs (i, j) of integers such that 1 ≤ i, j ≤ n. Any usual n-by-n matrix unit E(i,j) may be
seen as an arrow from i to j, and such arrows are composed by E(i,k) ◦ E(k,j) = E(i,j). Then I
becomes a small category, and the set of all matrix units, with adjoined 0 and 1, may be interpreted
as a monoid with zero which is also quite similar to A. Connes’s groupoids [11].

A major class of monoids with zero, that deserves a short paragraph on its own, is given by the so-
called Rees quotients (see [2, 9, 16]). Let M be a monoid and I be a two-sided ideal of M , that is
IM ⊆ M ⊇ MI , which is proper (I is proper if, and only if, I 6= M , or, in other terms, 1M 6∈ I). A
congruence θI on M is defined as follows: (x, y) ∈ θI if, and only if, x, y ∈ I or x = y. The equivalence

class of x ∈ M modulo θI is
{
{x} if x 6∈ I;
I if x ∈ I . Therefore I plays the role of a zero in the quotient

monoid M/θI , in such a way that it is isomorphic with the monoid with zero (M \ I) ∪ {0}, where
0 6∈M \ I , and with operation

x× y =
{
xy for xy 6∈ I
0 for xy ∈ I (1)

for every x, y ∈M \ I , and x× 0 = 0 = 0× x for every x ∈ (M \ I) ∪ {0}. This monoid, unique up to
isomorphism (the choice of the adjoined zero), is called the Rees quotient of M by I , and denoted M/I .
In what follows, we identify the carrier sets of both isomorphic monoids M/θI and (M \ I) ∪ {0}, and
we use juxtaposition for products in M/I and in M .

Remark 2 The fact that I is proper guarantees that 1M ∈M \ I , and therefore 1M 6= 0.
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Example 3 Let X = {a, b, c} and I = {ω ∈ X∗ : ∃x ∈ X, such that |ω|x ≥ 2}, where |ω|x denotes the
number of occurrences of the letter x in the word ω. Then X∗/I is the monoid with zero M encountered
in the Introduction (see Section 1).

3 Contracted monoid algebra
Convention: In this paper, a ring is assumed to be associative, commutative and with a unit 1R; the
zero of a ring is denoted by 0R. An R-algebra A is assumed to be associative (but non necessarily
commutative) and has a unit 1. Its zero is denoted by 0.

The main objective of this section is to recall the relevant version of the monoid algebra of a monoid
with zero over some given ring: in brief, the zeros of the monoid and the ring are identified. Let R be a
ring, and X be any set. The support of f ∈ RX is the set {x ∈ X : f(x) 6= 0R}. Now let M be a monoid
with zero 0M . Let us consider the usual monoid algebra R[M ] of M over R, which is, as an R-module,
the set R(M) of all maps from M to R with finite support, endowed with the usual Cauchy product. By
contracted monoid algebra ofM overR (see [9, 24]), we mean the factor algebraR0[M ] = R[M ]/R0M ,
where R0M is the two-sided ideal R[(0M )] = {α0M : α ∈ R}. Thus, R0[M ] may be identified with the
set of all finite sums

∑
x∈M0

αxx, subject to the componentwise addition and multiplication given by the
rule

x× y =
{
xy if xy 6= 0M ,
0 if xy = 0M

(2)

defined on basis M0 (formula (2) gives the constants of structure, see [4], of the algebra R0[M ]). In what
follows we use juxtaposition rather than “× ” for the products. From the definition it follows directly that
for any ordinary monoid M , R0[M0] ∼= R[M0]/R0 ∼= R[M ]. This fact is extended to the Rees quotients
as follows.

Lemma 4 [9, 24] Let M be a monoid and I be a proper two-sided ideal of M . Then R0[M/I] ∼=
R[M ]/R[I]. (Note that R[I] is the semigroup algebra of the ideal I .)

Example 5 Let X be any non empty set and n ∈ N \ {0, 1}. Let I be the proper ideal of X∗ of all words
ω of length |ω| ≥ n. Then R0[X∗/I] consists in noncommutative polynomials truncated at length n.

The notion of contracted monoid algebra is sufficient to treat the problem of the Möbius formula for finite
and locally finite (see Section 5) monoids with zero. Nevertheless infinite monoids with zero also occur,
and formal series must be considered in those cases.

4 Total contracted algebra of a finite decomposition monoid with
zero

Let R be a ring, and M be a usual monoid. The set of all functions RM has a natural structure of
R-module. By abuse of notation, any function f ∈ RM may be denoted by

∑
x∈M 〈f, x〉x, where(i)

〈f, x〉 = f(x) = πx(f) (πx is the projection onto Rx). The carrier structure of the algebra R[M ] of the
monoid M is then seen as a submodule of RM . Now taking M to be a monoid with zero, we can also
construct R[M ], however we would like to identify 0M with 0 of RM in the same way as R0[M ]. Let

(i) The notation “ 〈f, x〉 ” is commonly referred to as a “ Dirac bracket ”. It was successfully used by Schützenberger to develop his
theory of automata [3].
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us consider the set R0M = {f ∈ RM : ∀x 6= 0M , 〈f, x〉 = 0R}, i.e., R0M is the cyclic submodule
generated by 0M . Then the quotient module RM/R0M may be identified with the R-module RM0 of
all “ infinite ” sums(ii) ∑

x∈M0
〈f, x〉x, or more likely the space of all functions from M0 to R, i.e.,

RM0 = {f ∈ RM : f(0M ) = 0R}. This quotient module is the completion R̂0[M ] of the topological
module R0[M ] equipped with the product topology (R is given the discrete topology), also called “
topology of simple convergence ” or “ finite topology ”. It should be noticed that the quotient topology of
RM0 induced by RM is equivalent to its product topology.

Recall that an ordinary semigroup (resp. monoid) M is a said to be a finite decomposition semigroup
(resp. finite decomposition monoid), orM has the finite decomposition property, if, and only if, it satisfies
the following condition

∀x ∈M, |{(y, z) ∈M ×M : yz = x}| < +∞ . (3)

This condition is called the (D) condition in [4]. If (3) holds, then RM can be equipped with the usual
Cauchy or convolution product: therefore the R-algebra R[[M ]] of all formal power series over M with
coefficients in R is obtained, which is also called the total algebra of the semigroup (resp. monoid) M
over R. This notion is now adapted to the case of monoids with zero.

Definition 6 A monoidM with zero 0M is said to be a finite decomposition monoid with zero if, and only
if, it satisfies the following condition

∀x ∈M0, |{(y, z) ∈M ×M : yz = x}| < +∞ . (4)

Example 7 Let P be a locally finite poset ([12, 26]), i.e., such that every interval [x, y] ∈ Int(P ) is finite.
Then the monoid Int(P ) ∪ {0, 1} of example 1.5 is a finite decomposition monoid with zero.

Some obvious results are given below without proofs.

Lemma 8 1. LetM be a monoid with zero which has the finite decomposition property as an ordinary
monoid. Then M is finite.

2. Suppose that M is a finite decomposition monoid. Then M0 is a finite decomposition monoid with
zero.

3. Suppose that M is a finite decomposition monoid and I is a two-sided proper ideal of M . Then the
Rees quotient monoid M/I is a finite decomposition monoid with zero.

Let us suppose that M is a finite decomposition monoid with zero. Let f, g ∈ RM/R0M . Then we can
define the corresponding Cauchy product:

fg =
∑

x∈M0

(∑
yz=x

〈f, y〉〈g, z〉

)
x . (5)

The algebra RM/R0M is then denoted R0[[M ]] and called the total contracted algebra of the monoid M
over R. The R-module R0[[M ]] is the completion of R0[M ] and because the Cauchy product of “ formal
series ” in R0[[M ]] is the continuous extension of its polynomial version in R0[M ], the following lemma
holds.
(ii) It can be easily proved that such sums are actually the sums of summable series in the product topology on RM/R0M , with

discrete R.
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Lemma 9 Let M be a finite decomposition monoid with zero. Then R0[[M ]] is the completion of the
contracted algebra R0[M ], and, in particular, R0[[M ]] is a topological algebra.

Let M be an ordinary monoid and I be a two-sided proper ideal of M . Then the R-module RM/I/R0
is isomorphic to the set of all formal infinite R-linear combinations

∑
x 6∈I〈f, x〉x, where f ∈ RM . Now

suppose that M is a finite decomposition monoid. According to Lemma 8, M/I is a finite decomposition
monoid with zero. We can define both total algebras R[[M ]] and R0[[M/I]], with respectively RM and
RM/I/R0 as carrier sets. The product on RM/I/R0 is therefore given by∑

x 6∈I

〈f, x〉x

∑
x 6∈I

〈g, x〉x

 =
∑
x 6∈I

(∑
yz=x

〈f, y〉〈g, z〉

)
x . (6)

Let define
Φ : R[[M ]] → R0[[M/I]]∑

x∈M

〈f, x〉x 7→
∑
x 6∈I

〈f, x〉x . (7)

Then Φ is an R-algebra homomorphism, which is onto and obviously continuous (for the topologies
of simple convergence). Moreover ker(Φ) = R[[I]], then R0[[M/I]] ∼= R[[M ]]/R[[I]]. According to
lemma 9, R0[[M/I]] is complete (as an R-algebra) for the product topology. In summary we obtain:

Proposition 10 Let M be a finite decomposition monoid and I be a proper two-sided ideal of M . Then,

R0[[M/I]] ∼= ̂R0[M/I]
∼= R[[M ]]/R[[I]] .

(8)

5 Locally finite monoids with zero
In order to study the Möbius inversion formula for monoids with zero, we need to characterize invertible
series in the total contracted algebra. This can be done by exploiting a star operation on series without
constant terms (i.e., for which 〈f, 1M 〉 = 0). This star operation is easily defined when a topology on the
algebra of series is given by some filtration which generalizes the ordinary valuation. A particular class
of monoids with zero satisfies this requirement. First we recall some classic results, and then we mimic
them in the context of monoids with zero.

A locally finite monoid M [7, 15] is a monoid such that

∀x ∈M, |{(n, x1, · · · , xn) : x = x1 · · ·xn, xi 6= 1M}| < +∞ . (9)

For instance, any free partially commutative monoids [7, 13] is locally finite. A locally finite monoid is
obviously a finite decomposition monoid, but the converse is false since every non trivial finite group has
the finite decomposition property, but is not locally finite because it has torsion. Furthermore, in a locally
finite monoid, xy = 1M ⇒ x = y = 1M , or in other terms, M \ {1M} is a semigroup (and actually
a locally finite semigroup in a natural sense), or, equivalently, the only invertible element of M is the
identity (such monoids are sometimes called conical [10]).

Remark 11 In [6, 25] the authors - L.N. Shevrin and T.C. Brown - used another notion: they called
locally finite any semigroup in which every finitely-generated sub-semigroup is finite. This concept is
really different from the one used in this paper, and does not concern us.
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When M is locally finite, the R-algebra R[[M ]] may be equipped with a star operation defined for every
proper series f (i.e. such that 〈f, 1M 〉 = 0R) by f∗ =

∑
x∈M

(∑
n≥0

∑
x1···xn=x〈f, x1〉 · · · 〈f, xn〉

)
x

(i.e. by f∗ =
∑

n∈N f
n). It follows that the augmentation ideal M = {f ∈ R[[M ]] : f is proper}, kernel

of the ordinary augmentation map ε(f) = 〈f, 1M 〉 for every f ∈ R[[M ]], has the property that 1 + M is a
group (under multiplication; the inverse of 1− f ∈ 1 + M, when f is proper, is precisely f∗), called the
Magnus group (see [13] for instance). For this kind of monoids, we can define a natural notion of degree.
Let x ∈ M , then degM (x) = max{n ∈ N : ∃x1, · · · , xn ∈ M \ {1M}, x = x1 · · ·xn}. For instance if
M is a free partially commutative monoid F (X,C), then degM (ω) is the length |ω′| of ω′ ∈ X∗ of any
element ω′ ∈ ω.

Let us adapt this situation to the case of monoids with zero. In what follows, if M is any monoid
(ordinary or with zero), then M+ = M \ {1M}. A locally finite monoid with zero is a monoid with zero
M such that

∀x ∈M0, |{(n, x1, · · · , xn) : x = x1 · · ·xn, xi 6= 1M}| < +∞ . (10)

A locally finite monoid with zero obviously is also a finite decomposition monoid with zero. As for usual
monoids, the converse is false. Besides, if M is a locally finite monoid, and I is a two-sided proper ideal
of M , then the Rees quotient M/I is a locally finite monoid with zero.

Example 12 Let M = X∗/I . Then degM/I (ω) = |ω| for every ω ∈ X∗ \ I .

Counter-example 13 The monoid with zero Int(P ) ∪ {0, 1} of a non void locally finite poset is not a
locally finite monoid with zero, since for every x ∈ P , 1 6= [x, x] = [x, x] · [x, x] holds.

Similarly to the classic case, we can define a natural notion of degree in a locally finite monoid with zero:
let x ∈ M0, then degM (x) = max{n ∈ N : ∃x1, · · · , xn ∈ M+, x = x1 · · ·xn} (we use the notation
“ deg (x) ” when no confusion arises). Therefore deg (x) = 0 if, and only if, x = 1M . Moreover for
every x ∈ M0, if x = yz, then deg (x) ≥ deg (y) + deg (z). If M is a locally finite monoid and I is
a two-sided proper ideal of M , then we already know that M/I is a locally finite monoid with zero, and
more precisely for every x ∈M \ I , degM/I (x) = degM (x).

Now let, f ∈ R0[[M ]] (the total contracted algebra exists because M is a finite decomposition monoid
with zero since it is a locally finite monoid with zero). We define an order function or pseudo-valuation:
ω(f) = inf{deg (x) : x ∈ M0, 〈f, x〉 6= 0R}, where the infimum is taken in N ∪ {+∞}. In particular,
ω(f) = +∞ if, and only if, f = 0. The following holds:

1. ω(1) = 0;

2. ω(f + g) ≥ min{ω(f), ω(g)};

3. ω(fg) ≥ ω(f) + ω(g).

Let us introduce M = {f ∈ R0[[M ]] : 〈f, 1M 〉 = 0R} = {f ∈ R0[[M ]] : ω(f) ≥ 1}. This set obviously
is a two-sided ideal of R0[[M ]], called - as in the ordinary case - the augmentation ideal(iii). For each
n ∈ N, let M≥n = {f ∈ R0[[M ]] : ω(f) ≥ n}, in such a way that M≥0 = R0[[M ]], and M≥1 = M.
The following lemma holds trivially.

(iii) It is the kernel of the algebra homomorphism ε : R0[[M ]]→ R given by ε(f) = 〈f, 1M 〉 = π1M (f), for f ∈ R0[[M ]].
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Lemma 14 For every n, M≥n is a two-sided ideal of R0[[M ]], and the sequence (M≥n)n is an exhaus-
tive and separated decreasing filtration on R0[[M ]], i.e., M≥n+1 ⊆ M≥n,

⋃
n≥0

M≥n = R0[[M ]], and⋂
n≥0

M≥n = (0).

According to Lemma 14,R0[[M ]] with the topologyF defined by the filtration (M≥n)n is an Hausdorff
topological ring (note also that this topology is metrizable [5]), and even an Hausdorff topological R-
algebra when R is discrete.

Remark 15 It can be proved that if for every n ∈ N, M(n) = {x ∈ M0 : deg (x) = n} is finite,
then the topology of simple convergence and the topology F on R0[[M ]] are equivalent. In all cases, the
topology defined by the filtration is always finner than the product topology (in particular, each projection
πx : R0[[M ]] → R is continuous for the filtration), and it can be even strictly finner as it is shown in the
following example.

Example 16 Let us consider a countable set X = {xi}i∈N (that is xi 6= xj for every i 6= j). We
consider M as the monoid X∗ with some zero 0 adjoined. It is obviously a locally finite monoid with
zero but the number of elements of a given degree is not finite (for instance the number of elements of
degree 1 is ℵ0). We denote by |ω| the usual length of a word in X∗. Now let us consider the sequence
of series fn =

∑n
k=0 xk ∈ R0[M ] ⊂ R0[[M ]] which converges to the sum f =

∑∞
k=0 xk in R0[[M ]]

endowed with the product topology (f is the characteristic function of the alphabet X). But this series
does not converge in R0[[M ]] with the topology defined by the filtration, because ω(f − fn) = 1 for all
n. Nevertheless f belongs to R0[[M ]] since it is the completion of R0[M ] in the product topology.

Without technical difficulties the lemma below is obtained.

Lemma 17 The algebra R0[[M ]] with the topology F is complete.

Remark 18 Suppose that M is a locally finite monoid (with or without zero) which is also finite, then
there exists N ∈ N such that for every n ≥ N , M≥n = (0). In this case, the topology defined by the
filtration coincides with the discrete topology onR[[M ]] = R[M ] (orR0[[M ]] = R0[M ]). So no topology
is needed in this case as explained in Introduction (Section 1).

6 Star operation and the Möbius inversion formula
In this section, M is assumed to be a locally finite monoid with zero.

Lemma 19 For every f ∈M, (1− f) is invertible and (1− f)−1 =
∑

n≥0 f
n.

Proof: First of all,
∑+∞

n=0 f
n is convergent in R0[[M ]] (in the topology defined by the filtration), and is

even summable, because ω(fn)→∞ when n→ +∞ (see [5]). Now for every N ∈ N, (1− f)
∑N

n=0 =
1− fN+1 → 1 when N → +∞. Since

∑
n≥0 f

n is summable, and R0[[M ]] is a topological algebra, we
obtain asymptotically (1− f)

∑
n≥0 f

n = 1. 2

According to Lemma 19, for every element f ∈ M, we can define, as in the ordinary case, the star
operation f∗ =

∑
n≥0 f

n.
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Remark 20 Suppose that M is a locally finite monoid with zero which is also finite. Then for every
f ∈ M, f is nilpotent (since (fn)n∈N is summable in the discrete topology). So in this particular case,
there is no need of topology to compute f∗, as the example given in the Introduction.

Lemma 21 The set 1 + M is a group under multiplication.

Proof: It is sufficient to prove that 〈f∗, 1M 〉 = 1R for every f ∈ M. For every n > 0, 〈fn, 1M 〉 = 0.
Since the projection π1M

is continuous, we have

〈f∗, 1M 〉 = 〈1 +
∑
n≥1

fn, 1M 〉 = 〈1, 1M 〉+
∑
n≥0

〈fn, 1M 〉 = 1R . (11)

2

If M is an ordinary locally finite monoid, the characteristic series of M is define as the series ζ =∑
x∈X x ∈ R[[M ]]. If X ⊆ M , then X =

∑
x∈X x is the characteristic series of X . More generally,

if M is a locally finite monoid with zero, then we also define the characteristic series of M by ζ0 =∑
x∈M0

x ∈ R0[[M ]], and if X ⊆ M , then its characteristic series is X0 =
∑

x∈X0
x where X0 =

X \ {0M}. We are now in position to state the Möbius inversion formula in the setting of (locally finite)
monoids with zero.

Proposition 22 (Möbius inversion formula) The characteristic series ζ0 is invertible.

Proof: It is sufficient to prove that ζ0 ∈ 1 + M, which is obviously the case since ζ0 = 1 + ζ+
0 , where

ζ+
0 = M+

0 =
∑

x∈M0\{1M} x ∈M. 2

We now apply several of the previous results on Rees quotients. So let M be a locally finite monoid
and I be a two-sided proper ideal of M in such a way that M/I is a locally finite monoid with zero. Let
us denote by MI (resp. M) the augmentation ideal of M/I (resp. M ). Let Φ : R[[M ]] → R0[[M/I]]
be the R-algebra epimorphism defined in eq. (7). We know that it is continuous when both R[[M ]] and
R0[[M/I]] have their topology of simple convergence. It is also continuous for the topologies defined by
the filtrations (M≥n)n and ((MI)≥n)n. Indeed, let n ∈ N, then for every f ∈ M≥n, Φ(f) ∈ (MI)≥n.
It admits a section s from R0[[M/I]] into R[[M ]] (so Φ(s(f)) = f for every f ∈ R0[[M/I]]) defined by

〈s(f), x〉 =
{
〈f, x〉 if x 6∈ I ,
0R otherwise . This map is easily seen as an R-module morphism but in general not

a ring homomorphism.

Lemma 23 Let f ∈ 1 + MI , then s(f) ∈ 1 + M, and f−1 = Φ(s(f))−1.

Proof: Since 〈f, 1M/I〉 = 1R, then 〈s(f), 1M 〉 = 1R (because 1M/I = 1M ). Therefore s(f) ∈ 1 + M.
Thus s(f)−1 ∈ 1 + M, and Φ(s(f)−1) = Φ(s(f))−1 (because Φ is a ring homomorphism). Finally,
fΦ(s(f))−1 = Φ(s(f))Φ(s(f))−1 = 1 and Φ(s(f))−1 is a right inverse of f . The same holds for the
left-side. 2

In the ordinary case, i.e., when M is a (locally finite) monoid, the inverse (−ζ+)∗ of the characteristic
series ζ = 1 + ζ+ is called the Möbius series, and denoted µ(M). By analogy, we define the Möbius
series of a locally finite monoid with zero M as the series µ0(M) = (−ζ+

0 )∗, inverse of ζ0 = 1 + ζ+
0 in

R0[[M ]]. Therefore it satisfies µ0(M)ζ0 = ζ0µ0(M) = 1.
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Lemma 24 Let M be a locally finite monoid and I be a two-sided proper ideal of M . Then, µ0(M/I) =
Φ(µ(M)). Moreover if 〈µ(M), x〉 = 0R for every x ∈ I , then µ0(M/I) = µ(M).

Proof: The Rees quotient M/I is a locally finite monoid with zero, and so its Möbius series exists.
Moreover ζ0 = M/I

0
∈ 1+MI , and according to Lemma 23, s(ζ0) ∈ 1+M, and (ζ0)−1 = Φ(s(ζ0))−1.

We have
s(ζ0) =

∑
x6∈I

x

= M \ I
= M − I
= ζ − I .

(12)

The series ζ+ − I ∈ R[[M ]] belongs to the augmentation ideal M of R[[M ]] (as we already know), so
the series ζ − I = 1 + ζ+ − I is invertible in R[[M ]] with inverse (I − ζ+)∗. Therefore, according to
Lemma 23,

µ0(M/I) = Φ(s(ζ0))−1

= Φ(s(M/I
0
))−1

= Φ(s(M/I
0
)−1)

= Φ((I −M+)∗)
= Φ((I − ζ+)∗)
= (Φ(I − ζ+))∗

(because Φ is a continuous - for the filtrations - algebra homomorphism)
= (Φ(I)︸︷︷︸

=0

−Φ(ζ+))∗

= Φ((−ζ+)∗)
= Φ((1 + ζ+)−1)
= Φ(ζ−1)
= Φ(µ(M)) .

(13)

Now, if 〈µ(M), x〉 = 0R for every x ∈ I , then µ0(M) = Φ(µ(M)) = µ(M). 2

Corollary 25 Let X be any nonempty set. Let I be a proper two-sided ideal of X∗. Then,

µ0(X∗/I) =
{
µ(X∗) if X ∩ I = ∅ ,
µ((X \ I)∗) if X ∩ I 6= ∅ . (14)

Proof: We can apply Lemma 24 to obtain µ0(X∗/I) = Φ(µ(X∗)). According to [7], µ(X∗) = 1 −∑
x∈X x. If X ∩ I = ∅, then µ0(X∗/I) = Φ(µ(X∗)) = µ(X∗), and if X ∩ I 6= ∅, then let Y = X \ I .

We have Φ(µ(X∗)) = 1−
∑

y∈Y y = µ(Y ∗). 2

Example 26 1. Let X be any nonempty set. Let I = {ω ∈ X∗ : ∃x ∈ X, |ω|x ≥ 2}. The set
X∗/I consists of all standard words, i.e., word without repetition of any letter. Then according to
Corollary 25, µ0(X∗/I) = µ(X∗) = 1−X as announced in Section 1 Introduction.
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2. LetX be any set. A congruence≡ onX∗ is said multihomogeneous [13, 14] if, and only if, ω ≡ ω′
implies |ω|x = |ω′|x for every x ∈ X . A quotient monoid X∗/ ≡ of X∗ by a multihomogeneous
congruence is called a multihomogeneous monoid. For instance, any free partially commutative
monoid, the plactic [20], hypoplactic [18, 21], Chinese [14] and sylvester [17] monoids are multi-
homogeneous. Such a monoid M = X/ ≡ is locally finite and therefore admits a Möbius function
µ with µ(1M ) = 1 and µ(x) = −1 for every x ∈ X . An epimorphism Ev from M onto the free
commutative monoid X⊕, the commutative image, is given by Ev(ω) =

∑
x∈X |ω|xδx, where δx

is the indicator function of x. Any proper ideal I of X⊕ gives rise to a proper two-sided ideal
Ev−1(I) of M . Let I2 = {f ∈ X⊕ :

∑
x∈X f(x) ≥ 2}. Then, as sets, M/Ev−1(I) = {1M} ∪X

and µ0(M) = 1−X .
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