Radford theorem for generalized deformations of Hoffmann type

Gérard H. E. Duchamp^{1†} and Hoang Ngoc Minh¹

¹LIPN - UMR 7030, CNRS - Université Paris 13, 93430 Villetaneuse, France

Abstract. Résumé.

Keywords: Comultiplicatioon, Hopf algebra

1 Introduction

With the advent of Quantum theories emerged the need for deforming not only parameters or formulas but structures and laws (see [3]). On the other hand, computer science provided us with laws the revealed later to be better understood as dual as the shuffle product recursively defined by

$$au \sqcup bv = a(u \sqcup bv) + b(au \sqcup v) \tag{1}$$

and the q-infiltration product [5] by

$$au \uparrow bv = a(u \uparrow bv) + b(au \uparrow v) + q\delta_{a,b}a(u \uparrow v).$$
⁽²⁾

In fact all these laws are particular cases of diagonal deformations [7] and such deformations can be applied to stuffles.

.../...

Dual laws of theoretical computer science : shuffle, infiltration, q-infiltration (work with Luque), $LDIAG(q_{c,q} s)$ and explanation of the different natures of the parameters.

2 Background

Twisted products of graded algebras, diagonal deformations.

[†]The authors wish to acknowledge support from Agence Nationale de la Recherche (Paris, France) under Program No. ANR-08-BLAN-0243-2.

subm. to DMTCS © by the authors Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

3 Colour factors and products

Colours factors were introduced by [10] and the theory was developped or used in [6, 4, 9, 11].

Let $\mathcal{A} = \bigoplus_{\alpha \in \mathcal{D}} \mathcal{A}_{\alpha}$ and $\mathcal{B} = \bigoplus_{\beta \in \mathcal{D}} \mathcal{B}_{\beta}$ be two \mathcal{D} -graded associative algebras (\mathcal{D} is a commutative semigroup whose law is denoted additively). Readers that are not familiar with graded algebras can think of $\mathcal{D} = \mathbb{N}^{(X)}$, the free commutative monoid over X and $\mathcal{A}_{\alpha} = K[X]_{\alpha}$, the space of homogeneous polynomials of multidegree α .

We suppose given a mapping $\chi : \mathcal{D} \times \mathcal{D} \longrightarrow K$ and define a law of algebra on $\mathcal{A} \otimes \mathcal{B}$ by

$$(x_1 \otimes y_1)(x_2 \otimes y_2) = \chi(\beta_1, \alpha_2)(x_1 x_2 \otimes y_1 y_2)$$
(3)

for $(x_i) \in \mathcal{A}_{\alpha_i}$ and $(y_i) \in \mathcal{B}_{\beta_i}$ (i = 1, 2).

The computations of $((x_1 \otimes y_1)(x_2 \otimes y_2))(x_3 \otimes y_3)$ and $(x_1 \otimes y_1)((x_2 \otimes y_2)(x_3 \otimes y_3))$ using (3) both lead to the following proposition the second part – converse – of which relies on the existence of free elements.

Proposition 1 [11] Let $\chi : \mathcal{D} \times \mathcal{D} \longrightarrow K$. The following are equivalent i) For \mathcal{A} , $\mathcal{B} \mathcal{D}$ -graded associative algebras, the product defined by (3) is associative. ii) $(\forall \alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3) \in \mathcal{D}$

$$\chi(\beta_1, \alpha_2)\chi(\beta_1 + \beta_2, \alpha_3) = \chi(\beta_2, \alpha_3)\chi(\beta_1, \alpha_2 + \alpha_3)$$
(4)

Definition 2 Every mapping $\chi : \mathcal{D} \times \mathcal{D} \longrightarrow K$ which fulfills the equivalent conditions of proposition (1) will be called a colour factor.

Remark 3 *i)* If χ is bilinear, which means in this context that the following equations are satisfied (for all $\alpha, \alpha', \beta, \beta' \in D$)

$$\chi(\alpha + \alpha', \beta) = \chi(\alpha, \beta)\chi(\alpha', \beta)$$

$$\chi(\alpha, \beta + \beta') = \chi(\alpha, \beta)\chi(\alpha, \beta')$$
(5)

then, the two members of (3) amount to

$$\chi(\beta_1, \alpha_2)\chi(\beta_1, \alpha_3)\chi(\beta_2, \alpha_3) = \prod_{1 \le i < j \le 3} \chi(\beta_i, \alpha_j)$$
(6)

and hence χ is a colour factor. But the full class of colour factors is much larger than solutions of Eq. (5). Just observe that Eq.(4) is homogeneous in the classical sense i.e. for all $\lambda \in k$, if χ fulfills (4) then $\lambda \chi$ still does. Hence, for example, any constant function on $\mathcal{D} \times \mathcal{D}$ is a colour factor. This shows the existence of colour factors that are not bilinear.

ii) It may seem that one could generalize (5) to the case when \mathcal{D} is noncommutative but, in fact, there is no gain of generality because, as K is commutative, the bicharacter factorizes through \mathcal{D}^{ab} (the quotient of \mathcal{D} by the finest congruence \equiv such that \mathcal{D}/\equiv is abelian).

Note(s) 4 *i)* The colour product of two algebras $\mathcal{A} = \bigoplus_{\alpha \in \mathcal{D}} \mathcal{A}_{\alpha}$ and $\mathcal{B} = \bigoplus_{\beta \in \mathcal{D}} \mathcal{B}_{\beta}$ comes also as a graded algebra by

$$(\mathcal{A} \otimes \mathcal{B})_{\gamma} = \bigoplus_{\alpha + \beta = \gamma} \mathcal{A}_{\alpha} \otimes \mathcal{B}_{\beta}.$$
(7)

Radford theorem for generalized deformations of Hoffmann type

The usual identification

$$(\mathcal{A} \otimes \mathcal{B}) \otimes \mathcal{C} \simeq \mathcal{A} \otimes (\mathcal{B} \otimes \mathcal{C}) \tag{8}$$

holds for the coloured products.

ii) Moreover, if $\mathcal{A} \xrightarrow{f} \mathcal{A}'$ (resp. $\mathcal{B} \xrightarrow{g} \mathcal{B}'$) are two morphisms of (graded) algebras, then $\mathcal{A} \otimes \mathcal{B} \xrightarrow{f \otimes g} \mathcal{B} \otimes \mathcal{B}'$ is a morphism of algebras (colour products).

4 Special classes of laws

4.1 Dual laws

4.1.1 Algebras and coalgebras in duality

An algebra (\mathcal{A}, μ) and a coalgebra (C, Δ) are called in duality iff there is a non-degenerate pairing $\langle -|-\rangle$ such that for all $x, y \in \mathcal{A}, z \in C$

$$\langle \mu(x,y)|z\rangle = \langle x \otimes y|\Delta(z)\rangle^{\otimes 2} \tag{9}$$

In the following, we will call *dual law* a law $K\langle A \rangle \stackrel{*}{\longrightarrow} K\langle A \rangle$ on the free algebra which is the dual of a comultiplication, the pairing being given on the basis of words by $\langle u|v \rangle = \delta_{u,v}$.

Our first examples are essential in modern and not-so-modern research ([?, ?]). Firstly, we have the dual of the Cauchy product

$$\Delta_{Cauchy}(w) = \sum_{uv=w} u \otimes v .$$
⁽¹⁰⁾

Contrary to this one (10), which is not a morphism of algebras⁽ⁱ⁾

$$K\langle A \rangle \longrightarrow K\langle A \rangle \otimes K\langle A \rangle ,$$
 (11)

one has three very well-known examples being so, namely duals of the shuffle \Box , the Hadamard \odot and the infiltration product \uparrow . As they are morphisms between the algebras (11), they are well defined by their values on the letters. Respectively

$$\Delta_{\sqcup \sqcup}(x) = x \otimes 1 + 1 \otimes x \; ; \; \Delta_{\odot}(x) = x \otimes x \; ; \; \Delta_{\uparrow}(x) = x \otimes 1 + 1 \otimes x + x \otimes x \; . \tag{12}$$

One can prove that the deformations $\Delta_q = \Delta_{\sqcup \sqcup}(x) + q\Delta_{\odot}(x)$ are also co-associative and that they are the unique solutions of the problem of bialgebra comultiplications on $K\langle A \rangle$ that are compatible with subalphabets [5].

In the sequel, we will make use several time of the following lemma the proof of which is left to the reader.

Lemma 5 Let A be an algebra and C be a coalgebra in (non-degenerate) duality, then A is associative iff C is coassociative.

⁽ⁱ⁾ Unless $A = \emptyset$.

4.1.2 Duality between grouplike elements and unities

Let (\mathcal{C}, Δ) be a coalgebra with counit ϵ . We call *group-like* an element u such that

$$\epsilon(u) = 1 \; ; \; \Delta(u) = u \otimes u \; . \tag{13}$$

One then has $\mathcal{C} = ker(\epsilon) \oplus K.u$ and

$$\Delta(y) = \Delta^+(y) + y \otimes u + u \otimes y - \epsilon(y)u \otimes u .$$
⁽¹⁴⁾

where Δ^+ is a comultiplication on \mathcal{C} for which $ker(\epsilon) = \mathcal{C}^+$ is a subcoalgebra (i. e. $\Delta^+(\mathcal{C}^+) \subset \mathcal{C}^+ \otimes \mathcal{C}^+$) [?].

Proposition 6 Let $(\mathcal{C}, \Delta, \epsilon)$ be a coalgebra with counit, u a group-like element in \mathcal{C} and $(\mathcal{C}^+, \Delta^+)$ be as in (14). On the other hand, let \mathcal{A} be an algebra and $\mathcal{A}^{(1)} = \mathcal{A} \oplus K.v$ be the algebra with unit constructed from \mathcal{A} by adjunction of the unity v. Then, if \mathcal{C}^+ and \mathcal{A} are in duality by $\langle | \rangle$, so are \mathcal{C} and $\mathcal{A}^{(1)}$ by $\langle | \rangle_{\bullet}$ defined as follows

$$\langle x + \alpha v | y + \beta u \rangle_{\bullet} = \langle x | y \rangle + \beta \alpha .$$
⁽¹⁵⁾

Proof - Let

$$\langle (x_1 + \alpha_1 v) \otimes (x_2 + \alpha_2 v) | \Delta(y + \beta u) \rangle_{\bullet}^{\otimes 2} = \\ \langle (x_1 + \alpha_1 v) \otimes (x_2 + \alpha_2 v) | \Delta^+(y) + y \otimes u + u \otimes y + \beta u \otimes u) \rangle_{\bullet}^{\otimes 2}$$
(16)

but, according to the fact that

$$\langle x_i | u \rangle = \langle x_1 \otimes v | \Delta^+(y) \rangle = \langle v \otimes x_2 | \Delta^+(y) \rangle = \langle v \otimes v | \Delta^+(y) \rangle = \langle v | y \rangle = 0$$

one has from (16)

$$\langle (x_1 + \alpha_1 v) \otimes (x_2 + \alpha_2 v) | \Delta(y + \beta u) \rangle_{\bullet}^{\otimes 2} = \langle x_1 \otimes x_2 | \Delta^+(y) \rangle^{\otimes 2} + \alpha_2 \langle x_1 | y \rangle + \alpha_1 \langle x_2 | y \rangle + \alpha_1 \alpha_2 \beta = \langle x_1 x_2 + \alpha_2 x_1 + \alpha_1 x_2 + \alpha_1 \alpha_2 v | y + \beta u \rangle_{\bullet} = \langle (x_1 + \alpha_1 v) (x_2 + \alpha_2 v) | y + \beta u \rangle_{\bullet}$$
(17)

which proves the claim.

4.2 Deformed laws

Let S be a semigroup graded on a semigroup of degrees \mathcal{D} and $\mathcal{A} = K[S]$ its algebra. A colour factor $\chi : \mathcal{D} \times \mathcal{D} \to K$ being given, we endow the algebra $\mathcal{A} \otimes \mathcal{A}$ with the coloured tensor product structure. Notice that the diagonal subspace $D_S = \bigoplus_{x \in S} Kx \otimes x$ is a subalgebra as

$$(x \otimes x)(y \otimes y) = \chi(|x|, |y|)xy \otimes xy.$$
⁽¹⁸⁾

Carrying (18) back to A by means of the isomorphism of vector spaces, $A \to D_S$, on sees immediately that the deformed product on A given by

$$x_{\chi}y = \chi(|x|, |y|)xy \tag{19}$$

is associative.

If \mathcal{A} is endowed with the scalar product for which the basis $(s)_{s \in S}$ is orthonormal, the pairing is nondegenerate and the dual comultiplucation is given by

$$\Delta(z) = \sum_{xy=z} \chi(|x|, |y|) x \otimes y .$$
⁽²⁰⁾

The construction together with lemma (5) proves that this comultiplication on $\mathcal A$ is coassociative.

5 Generalized shuffles and stuffles

Discussion of the commutation factor

6 Conclusion

Grading polyzeta values

References

- [1] N. Bourbaki. Éléments de Mathématique Algèbre, chap. 1 à 3, 2nd edition, Springer, 2007.
- [2] N. Bourbaki. Éléments de Mathématique Algèbre commutative, chap. 1 à 4, Springer, 2006.
- [3] V. Chari, A. Pressley, A guide to quantum groups. Cambridge Univ. Press, 1994.
- [4] DÉSARMÉNIEN J., DUCHAMP G., KROB D., MELANÇON G, Quelques remarques sur les superalgèbres de Lie libres C.R.A.S. n⁰5 (1994).
- [5] G. Duchamp, M. Flouret, É. Laugerotte, J.-G. Luque, Direct and dual laws for automata with multiplicities, Theoret. Comp. Sci. 267 (2001) 105-120.
- [6] G H E DUCHAMP, A KLYACHKO, D KROB, J Y THIBON, Noncommutative symmetric functions III: Deformations of Cauchy and convolution algebras. Discrete Mathematics and Theoretical Computer Science Vol. 2 (1998).
- [7] DUCHAMP G. H. E., TOLLU C., Sweedler's duals and Schützenberger's calculus arXiv:0712.0125 (to be published).
- [8] S. Eilenberg. Automata, Languages and Machines, vol. A., Academic Press, 1974.
- [9] A. A. MIKHALEV AND A. A. ZOLOTYKH, Combinatorial Aspects of Lie Superalgebras. CRC Press, Boca Raton, New York, 1995.
- [10] R. REE, Generalized Lie elements, Canad. J. Math. 12 (1960), 493-502.
- [11] J. ZHOU, Combinatoire des derivations, Thèse de l'Université de Marne-la-Vallée (1996).

Gérard H. E. Duchamp and Hoang Ngoc Minh