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Abstract

We describe the problem of Sweedler’s duals for bialgebras as essentially be the
characterize the domain of the transpose of the multiplication. This domain is the
set of what could be called “representative linear forms” which are the elements of
the algebraic dual which are also representative on the multiplicative semigroup of
the algebra.
When the algebra is free, this notion is indeed equivalent to that of rational func-
tions of automata theory. For the sake of applications, the range of coefficients has
been considerably broadened i.e. extended to semirings, so that the results could
be specialized to boolean and multiplicity cases. This requires some caution (use of
“positive formulas” i.e. iteration replacing dimension and - Schein - rank replacing
dimension). For the theory and its applications has been created a rational calculus
which can, in return, be applied to harness Sweedler’s duals. A new theorem of ra-
tional closure and application to Hopf algebras of use in Physics and Combinatorics
is provided. 0

Representative functions on a semigroup

The aim of this paragraph is to discuss the dualization of bi-algebras and Hopf algebras.
This problem, solved by Sweedler’s duals, is the following.
Let (B, ., ∆, 1B, ε) be a k-bialgebra ; we know that, if B is finite-dimensional (resp. graded
in finite dimensions), the dual (resp. graded dual) endowed with the transpose elements
is a bialgebra and that, in case B is a Hopf algebra this statement carries over. Now the
question can be asked.
What is the good notion of retricted dual for the general (i.e. ungraded finite or infinite
dimensional case) ?
Analysing the dualization of the elements (., ∆, 1B, ε) of B, one sees at once that only the
dualization of the multiplication is problematic as, in the general case, the codomain of
the transpose of . is larger than B∗ ⊗ B∗.
The first result follows (and somehow extends) [1]. To state it, we need the notions of
shifts of functions on a semigroup. Let k be a field, (S, .) a semigroup and f ∈ kS. For
each s ∈ S define fs : x → f(sx) (right shift of f) and sf : x → f(xs) (left shift of f),

sft : x → f(txs) (bi-shift of f). Then, we have.
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Proposition 1.1 (see also [1] paragraph 2.2) Let k be a field, (S, .) a semigroup and
f ∈ kS. The following are equivalent :
i) The family (fs)s∈S is of finite rank in kS

ii) The family (sf)s∈S is of finite rank in kS

iii) The family (sft)s,t∈S is of finite rank in kS

iv) There exists a double (finite) family (gi, hi)1≤i≤n of functions such that

(

∀x, y ∈ S
)(

f(xy) =
n

∑

i=1

gi(x)hi(y)
)

(1)

iv) There exists λ ∈ k1×n, γ ∈ kn×1 and µ : (S, .) 7→ (kn×n,×) a morphim of semigroups
such that (∀s ∈ S)(f(s) = λµ(s)γ).

Moreover, if S admits a neutral (i.e. is a monoid), µ of (iv) above can be chosen to be
the unity matrix.

Proof — cf Annex A.

The elements of kS which fulfill the above conditions will be called representative functions
on S and denoted R(k, S, .).

Remark 1.2 vérifier i) When k is only a division algebra, theorem above still holds
with the four equivalent conditions shifts end the (left, right) and ranks computed on the
(left, right).
ii) If S is finite, R(k, S, .) = kS and if S is a group, one has

R(k, S, .) = kS ⇐⇒ S is finite

iii) If I ⊂ S is an ideal with finite set-theoretical complement then ???
iv) If S is a semigroup, the above is false in general as shown by the following counterex-
ample. Let G be a finite group and endow S = N×G with the law (n, g)∗(m,h) = (0, gh).
It can be easily checked that (S, ∗) is a semigroup and that R(k, S, .) = kS. iv) When W is
a shift-invariant space and f ∈ W ∩ R(k, S, .), the families (fs)s∈S, (sf)s∈S, (sft)s,t∈S are
of course in W ∩ R(k, S, .) (and are of finite rank). Two useful examples of such relative
representative functional spaces are with W = C(S) (continuous functions) and W = S∗

(linear forms, S is an algebra).

Semirings

Throughout the text “monoid” stands for “semigroup with unit”.
Semirings are the structures adapted to matrix (with unity) computation. A semiring
(k, +,×) consists of the following data

- a set k

- two binary laws +,× on k

such that

- (k, +) and (k,×) are monoids, the first being commutative, their neutrals will be
denoted respectively 0k and 1k
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- × is left and right distributive over +

- 0k is an annihilator i. e. (∀x ∈ k)(0k.x = x.0k = 0k)

Example 2.3 i) Any ring.
ii) The boolean semiring B = {0, 1} endowed with the laws x ⊕ y = x + y − xy and
x ⊗ y = xy.
iii) The semiring ([−∞, +∞[,max, +), called in the literature “(max,plus)-semiring”.
iv) This example is fundamental as it will be used in the definition of CM-modules. Let
(M, +) be a commutative monoid, then (End(M), +, ◦) (defined as for the case when M

is a group) is a semiring. The units being respectively, as in the group case, the constant
mapping M 7→ {0M} for + and IdM for ◦.

The structure of semiring defines a category larger than that of rings, the morphisms
being defined similarly. Let (ki, +i,×i), i = 1, 2 be two semirings, a mapping φ : k1 7→ k2

is called a morphism of semirings iff it is a morphim for the two structures of monoids
(additive and multiplicative), then compatible with the laws and units of k1 and k2.
The definition of modules (here called CM-modules as they are constructed on Commu-
tative Monoids as vector structure) follows also the classical pattern.
The structure of a (left) k-CM-module is given by the following data

- a commutative monoid (M, +)

- a morphism (the scaling morphism) of semirings s : k 7→ End(M).

The structure of (right) k-CM-module is defined by replacing End(M) by Endop(M) the
opposite semiring (constructed with the opposite multiplicative law). Bi- and multimod-
ules are defined as in [3] and follow the general philosophy of “structures with operators”.

Example 2.4 Let S be a set, then kS, the set of all functions X 7→ k is naturally endowed
with a tructure of k − k bimodule defined as in the case when k is a ring. So is k(S), the
set of finitely supported functions of kS.

The free monoid generated by a set X (finite of infinite) is the set of words (i.e. finite
sequences of elements of X comprising the empty one denoted by 1X∗) endowed with the
concatenation law.

Shift operators and rational closure

Let (M, .) be a (commutative or not) monoid. For a function f : M 7→ k and a ∈ M , we
define the following shift operators ([Reu, Eil, Abe])

- fa : x → f(ax) (right shift)

- af : x → f(xa) (left shift)

We also have to describe the analog, for CM-algebras, of full subalgebras and full subalge-
bras closures (see [4] Ch. 1.1.4) and this requires the notion of summability [2].
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Definition 2.5 A family {fi}i∈I of functions M 7→ k is called summable iff, for each
m ∈ M , {fi}i∈I is finitely supported. Then, the mapping m 7→

∑

i∈I f(m) is denoted
∑

i∈I fi and called the sum of {fi}i∈I .

As a consequence, it is easily checked that, if M is locally finite ([13] Vol. A VII.4) and
f : M 7→ k is without constant term (i.e. f(1m) = 0k), then the family {fn}n∈N

(convolutional powers) is summable and its sum

∑

n∈N

fn (2)

will be denoted f ∗ and called the star of f .

Note 2.6 There is a lot of literature about the star problem (see [18, 19]). For a general
discussion of star-type solutions in a semiring, see [11].

Now, we are in the position of stating the Kleene-Schützenberger theorem.

Theorem 2.7 Let M = X∗ be a free monoid, k a semiring and f ∈ kM . The following
are equivalent
i) the family (fw)w∈M belongs to a finitely generated shift-invariant left-submodule
ii) the family (wf)w∈M belongs to a finitely generated shift-invariant right-submodule
iii) there exists a row λ ∈ k1×n a column γ ∈ kn×1 and a representation (of monoids)
µ : M 7→ (kn×n,×) such that (∀w ∈ M)(f(w) = λµ(w)γ).
iv) if X is finite, f lies in the rational closure of X (i.e. the smallest subalgebra of
k << X >> closed by the star operation and containing X).

Remark 2.8 i) One can remove the hypothesis of freeness of M if k is a field. Indeed,
in this case, the submodule can be taken as generated by the shifts (right or left) of f and
the representation is automatically compatible with the relations of M .
ii) Here the star is used as the localization at one (i.e. with positive formulas) of the
inverse function. Indeed, with coefficients in a ring, if we are at the neighbourhood of 1,
the condition (1 − x)(1 + y) = 1 is equivalent to y = x + xy (and y = x + yx). These
self-reproducing positive conditions are taken as the definition of “y is a star of x” in a
semiring (see [11]).
iii) The condition (iv) is known under the name of Kleene-Schützenberger theorem as,
when k is specialized to B this is actually Kleene’s theorem. In this sense, this theorem
links is at the frontier of harmonic analysis (the set of representative functions is dense in
the Fourier space of compact groups), spectral theory (the notion of full subalgebra closure
comes from this theory) and theoretical computer science (the notion of star was devel-
opped as a computational model of iteration and the notion of a semiring was developped
to cope with general scalars as various as the ones arising in stochastic automata theory
and the shortest path problem).

In the general case (X finite or not), Kleene-Schützenberger’s theorem has to be modified
as follows.
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Theorem 2.9 Let M = X∗ be a free monoid, k a semiring and f ∈ kM . The following
are equivalent
i) the family (fw)w∈M belongs to a finitely generated shift-invariant left-submodule
ii) the family (wf)w∈M belongs to a finitely generated shift-invariant right-submodule
iii) it exists a row λ ∈ k1×n a column γ ∈ kn×1 and a representation (of monoids)
µ : M 7→ (kn×n,×) such that (∀w ∈ M)(f(w) = λµ(w)γ).
iv) the function f lies in the rational closure of kX = {

∑

x∈X α(x)x}α∈kX (i.e. the smallest

subalgebra of k << X >> closed by the star operation which contains kX).

Remark 2.10 The rational closure of X is, in fact, the intersection of the set of elements
characterized by (i-iii) i.e. Sweedlers dual of k〈X〉 and the algebra

⋃

F⊂X
F finite

k〈〈F 〉〉 of the

series whose support involves a finite alphabet.

3 Rational expressions

The construction of [6] was localized at zero, we extend it here to any localisation i.e. for
any mapping Λ : X 7→ k.
As the rational closure involves a unitary law (the star) partially defined, the definition
of universal formulas for this closure needs some caution. Indeed, we need to build in
parallel a “character” (the constant term) const so that all proper expressions should
have a star.

One first defines, as in [6] the completely free expressions (or formulas) as the terms of
the universal algebra defined on X ∪ {0E} (0E, which does not belong to X will serve as
a null or void expression and be mapped to the zero series). This algebra will be denoted
Ecf (X, k). More precisely

- If x ∈ X ∪ {0E} then x ∈ Ecf (X, k).

- If E,Ei ∈ Ecf (X, k), i = 1, 2 and λ ∈ k then

E1 + E2 ∈ Ecf (X, k), E1 · E2 ∈ Ecf (X, k)
λE ∈ Ecf (X, k), Eλ ∈ Ecf (X, k).

- If E ∈ Ecf (X, k) then E∗ ∈ Ecf (X, k).

The partial function const : Ecf (X, k) 7→ k (constant term) is constructed as follows
from the values const(x) = Λ(x).

1. If x ∈ X const(x) = Λ(x) and const(0E) = 0k.

2. If E,Ei ∈ Ecf (X, k), i = 1, 2 and λ ∈ k then

const(E1 + E2) = const(E1) + const(E2), const(E1 · E2) = const(E1) · const(E2)
const(λE) = λconst(E), const(Eλ) = const(E)λ.

3. If const(E) = 0k then const(E∗) = 1k.
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The domain of const will be called rational expressions and denoted EΛ(X, k). For example
0∗k ∈ EΛ(X, k).
Let now Θ : X 7→ k〈〈A〉〉 be a mapping such that,

(∀x ∈ X)(Θ(x)[1A∗ ] = Λ(x))

Following recursively (1-2-3) above, we can construct a polymorphism φΘ : EΛ(X, k) 7→
k〈〈A〉〉 which is a morphism for the laws (2 internal and 2 external) and the star. Moreover
δ1A∗ ◦ φΘ = const (i.e. const can be considered as a “constant term function” for the
expressions). The image of φΘ is exactly the rational closure of the set {Θ(x)}x∈X .

4 Dual laws

Let ∆ : A 7→ A×A be any comultiplication (i.e. A is a k-coalgebra). It is known that
its dual (A∗,t ∆) is an algebra and if A is coassociative (resp. cocomutative, counital), A
is associative (resp. comutative, unital) [1].
We would likre here to enlarge the framework of [12].
If A is a algebra, let us call dual law on A∗ a law of the form t∆ for some (not necessarily
coassociative) comultiplication on A.
In [12] were considered the dual laws on k〈〈X〉〉 ≃ k〈X〉∗ in order to prove that the
Hadamard and Infiltration products, which were known to preserve rationality, were es-
sentially the only (along with an interpolation between the two) alphabetic (associative
and unital) dual laws between series. As we will see, the notion of dual law provides an
implementation scheme for the automata so that the rationality preservation is naturally
effective.
Todo sharpness

Theorem 4.1 Let A be a k-algebra and ∆ : A 7→ A⊗A be a comultiplication which is
a morphism of algebras. Then
i) If k is a field, Sweedler’s dual A◦ of A is closed under the dual law t∆.
ii) If k is a semiring and A = k〈X〉, k〈〈X〉〉◦ is closed under the dual law t∆.

Note 4.2 Tout vérifier i) The theorem is no longer true if ∆ : A 7→ A ⊗ A is
arbitrary (i.e. not necessarily a morphism) as shows the following counterexample. With
∆ : Q[x] 7→ Q[x] ⊗ Q[x] such that ∆(x) = xn

n!
⊗ xn

n!
, one has

t∆(
1

1 − x
,

1

1 − x
) = exp(x).

ii) In (i) above, the restriction on scalars (to be a field) can be extended to inductive limits
of PIDs.
iii) Other coproducts than morphisms can preserve rationality. For example, let ∆ :
k〈X〉 7→ k〈X〉 ⊗ k〈X〉 be a morphism and ∆1 : k〈X〉 7→ k〈X〉 ⊗ k〈X〉 be a linear
mapping which coincides with ∆ except for a finite number of words of X⋆. It can be
checked that ∆1, although not a morphism, preserves rationality.
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5 Bialgebras

Let us now return to the case of a bialgebra (B, ., ∆, 1B, ε). The above proposition says
that, if a linear form on B is transformed by tm (m : B⊗B 7→ B is just the multiplication
mapping) into an element of B∗ ⊗ B∗, it must be of the (iv) form. It is, as we will see in
the next paragraph, exactly the automaton linear representation. For the moment, let us
state this in a precise form.

Proposition 5.1 Let (B,m, ∆, 1B, ε) be a bialgebra and f ∈ B∗.
1) The following are equivalent
i) tm(f) ∈ B∗ ⊗ B∗ (for the canonical embedding B∗ ⊗ B∗ →֒ (B ⊗ B)∗)
ii) f ∈ R(k,B, .)
iii) ker(f) contains a finite-codimension one-sided ideal
iv) ker(f) contains a finite-codimension two-sided ideal
v) There exists λ ∈ k1×n, γ ∈ kn×1 and µ : (B, +, .) 7→ (kn×n, +,×) a morphim of
k-algebras (associative with units) such that (∀x ∈ B)(f(x) = λµ(x)γ).
2) Moreover, let B0 be the set of linear forms as above, then (B0,t ∆,t m,t ε,t 1B) is a
bialgebra and if B admits an antipode σ (i.e. is a Hopf algebra), one has tσ(B0) ⊂ B0

and (B0,t ∆,t m,t ε,t 1B,t σ) is a Hopf algebra.

6 Concluding remarks
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