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Abstract.

1. Introduction

2. Introduction

Quantum Theory seen in action is an interplay of mathematical ideas and physical

concepts. From the present-day perspective its formalism and structure is founded on

theory of Hilbert spaces [Ish95, Per02]. According to a few basic postulates physical

notions of a system and apparatus, as well as transformations and measurements, are

described in terms of linear operators. In this way algebra of operators constitutes the

proper mathematical framework within which quantum theories are built. Structure of

this algebra is determined by two operations, addition and multiplication of operators,

which lie at the root of all fundamental aspects of Quantum Theory.

The formalism of quantum theory represents the physical concepts of states, observables

and their transformations as objects in some Hilbert space H and subsequently

provides a scheme for measurement predictions. Briefly, vectors in the Hilbert space
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describe states of a system, and linear forms in V∗ represent basic observables. Both

concepts combine in the measurement process which provides probabilistic distribution

of results and is given by the Born rule. Physical information about the system is

gained by transforming the system and/or apparatus in various ways and performing

measurements. Set of transformations usually possesses some structure – such as group,

semi-group, Lie algebra, etc. – and in general can be handled within the structure of an

algebra A. Action of the algebra on the vector space of states V and observables V∗ is

simply its representation. Hence if an algebra is to describe physical transformations it

has to have representations in all physically relevant systems. This requirement directly

leads to the Hopf algebra structures in physics.

From the mathematical viewpoint structure of the theory, modulo details, seems to be

clear. Physicists, however, need to have some additional properties and constructions

to move freely in this playground. Here we will show how the structure of Hopf algebras

enter into the game in the context of representations. The first issue at point is the

construction of tensor product of vector spaces which is needed for description of

composite systems. Suppose, we now how the algebra of some transformations acts

on individual systems, i.e. we know representations of the algebra in each vector

space V1 and V2, respectively. Hence, the natural need for a canonical construction

of induced representation of this algebra in V1 ⊗ V2 which would describe its action on

the composite system. Such scheme exists and is provided by the co-product in the

algebra, i.e. a morphism ∆ : A −→ A ⊗ A. Physical plausibility of this construction

requires equivalence of representations built on (V1 ⊗ V2) ⊗ V3 and V1 ⊗ (V2 ⊗ V3) –

since composition of three systems can not depend on the order in which it is done.

This requirement forces the co-product to be co-associative. Another point is connected

with the fact that from the physical point of view vector space C represents a trivial

system having only one property – ”being itself” – which can not change. Hence one

should have a canonical representation of the algebra on a trivial system, denoted by

ε : A −→ C. Next, since composition of any system with a trivial can not introduce

new quality representations on V ans V ⊗ C should be equivalent. This requirement

imposes the condition on ε to be a co-unit in the algebra. In this way we motivate

need for a structure of bi-algebra in physics. The concept of an antipode enters the

game in the context of measurement. Measuring apparatus combined with a system

is described in V∗ × V and measurement predictions are given through the canonical

pairing c : V∗ × V −→ C. Observables, described in the dual space V∗, also can be

transformed and representations of appropriate algebras are given with the help of an

anti-morphism α : A −→ A. Physics requires that transformation preformed on the

system and apparatus simultaneously should not change the measurement results, hence

the pairing should trivially transform under the action of the bi-algebra. We thus obtain

the condition on α to be an antipode the last condition for a Hopf Algebra.

The conception of many Hopf algebras is motivated by various theories (physical or

close to physics) like renormalization [?, ?, ?, ?, ?], non-commutative geometry [?, ?],

physical chemistry [?, ?], computer science [?], algebraic combinatorics [?, ?, ?, ?],
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algebra [?, ?, ?].
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