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Abstract.

1. Introduction

Quantum Physics

Operator Algebras

Construction of new operator algebras

Need for ⊕ and ⊗
This very general setting specializes nicely in the combinatorial realm. This is what we

call combinatorial physics.

2. Operators

2.1. Generalities

Throughout this text we will consider (linear) operators ω : V −→ V , where V is a

vector space over k (k, a field of scalars can be thought to be R or C). The set of
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all (linear) operators V −→ V is an algebra (see appendix) which will be denoted by

EndK(V ).

2.2. What is a representation

It is not rare in Physics that we consider, instead of a single operator, a set or a family

of operators (ωα)α∈A and often the index set itself has a structure. As a family (ωα)α∈A

is no more than a mapping [ ρ : A �→ EndK(V ) ] (see [4], Ch. II 3.4 remark), we will

rather exhibit the mapping by considering it defined by a mapping . This will exactly

be the concept of representation that we will illustrate by familiar examples.

• First case: A is a group

In this case, we ask that the action of the operators be compatible with the laws of

group that is to say that, for all α, β ∈ A,

{
ρ(α) ◦ ρ(β) = ρ(α.β)

ρ(α−1) = (ρ(α))−1 (1)

which is equivalent to

{
ρ(α) ◦ ρ(β) = ρ(α.β)

ρ(1A) = 1End(V )
(2)

note that, each of these conditions imply that ρ actually ranges in AutK(V ), the set of

one-to-one elements of EndK(V ) [ (called automorphisms) ].

• Second case: A is a Lie algebra

In this case, one requires that

[ρ(α), ρ(β)] = ρ(α)ρ(β)− ρ(β)ρ(α) = ρ([α, β]). (3)

We will see that these two types of actions (of a group or Lie algebra) can be unified

through the concept of representation of an algebra (or which amounts to the same, of

a module).

[ The following sentence brakes the flow (might be put some earlier) ]In the

old books one finds the family-like notation, where ρ(α) is denoted, say, ωα, but using

arrows allows, as we will see more clearly below, for extensions and factorizations pro-

cedures. In the first case, one invokes the group algebra C[A] [ Should be: C[G]

] (see appendix). In the case of a Lie algebra, one invokes the enveloping algebra

U(A) [ Should be: C[G] (also the letter G is not readable - maybe could

be changed) ] (see appendix). [ Reader is refered to appendix, but these

notions are missing there ] In both cases, the original representation ρ is extended

to a representation of an associative algebra with unit (AAU) as follows:

2



G
ρ ��

can

��

End(V )

C[G]

ρ̂

�����������

G
ρ ��

can

��

End(V )

U(G)

ρ̂

�����������

We have not, so far, defined what a representation of AAU was. Keeping the philosophy

of (1) (or (2)) and (3), we can state the following definition:

Definition 2.1 Let (A,+, ·) be an AAU. A collection of operators {ρ(α)}α∈A in a vector

space V is said to be a representation of A iff the mapping ρ : A �→ End(V ) is compatible

with the operations and units of A. This means that, identically (i. e. for all α, β ∈ A
and λ ∈ K). ⎧⎪⎨

⎪⎩
ρ(α + β) = ρ(α) + ρ(β), ρ(λα) = λρ(α),

ρ(α · β) = ρ(α) ◦ ρ(β),

ρ(1A) = IdV ,

(4)

[ where ◦ denotes composition of operators. ]

Remarks 2.2 (i) It amounts to the same to say that the arrow ρ : A �→ End(V ) from

A to End(V ) is a morphism of algebras (with units).

(ii) In this case, it is sometimes convenient to denote α.v the action of ρ(α) on v (i.e.

the element ρ(α)[v]) for α ∈ A and v ∈ V .

(iii) It may happen (and this occurs many times) that a representation has relations

that are not present in the original algebra. In this case the representation is

said to be not faithful. [ I think that more familiar definition of faithful

representation is through ker(ρ) - maybe it should be mentioned ]

Example 2.3 : Let G = {1, c, c2} be the cyclic group of order 3 (c is the cycle

1→ 2→ 3→ 1), G admits the plane representation by

ρ(c) =

(
−1/2 −√3/2√

3/2 −1/2

)
(it is the matrix of 1/3 of the full turn). (5)

Thus,

ρ(c2) =

(
−1/2

√
3/2

−√3/2 −1/2

)
and, of course, ρ(1) =

(
1 0

0 1

)
(6)

The representation ρ is faithful while its extension to the group algebra is not , as

seen from:

ρ(1 + c+ c2) =

(
0 0

0 0

)
whereas 1 + c + c2 	= 0 in C[G]. (7)

Note that the situation is even worse for a Lie algebra, as U(G) is infinite dimensional

if only G is not zero.
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3. Operations on representations

Now, we would like to see the representations of AAU as building blocks to construct

new ones. The elementary operations on vector spaces are:

- sums

- tensor products

- duals

Hence, important problem is given representations ρi : A �→ Vi on the

building blocks Vi ; i = 1, 2 how to naturally construct representations

on V1 ⊕ V2, V1 ⊗ V2 and V ∗
i ρ1 ⊕ ρ2 : A �→ V1 ⊗ V2

Sums will cause no problem as the sum V1 ⊕ V2 of two vector spaces V1 and V2

amounts to taking their cartesian product V1 ⊕ V2
∼= V1 × V2. Then, if ρi :

A �→ Vi ; i = 1, 2 are two representations of A then the mapping ρ1 ⊕ ρ2 : A �→ V1⊗ V2

such that

ρ1 ⊕ ρ2(a)[(v1, v2)] = (ρ1(a)[v1], ρ2(a)[v2]) (8)

which can be symbolically written

ρ1 ⊕ ρ2 =

(
ρ1 0

0 ρ2

)
, (9)

is representation of A in �→ V1 ⊕ V2.

Dualization will be discussed later and solved by the existence of an antipode. Now, we

start with the problem of constructing representations on tensor products. This will

be solved by means of the notion of “scheme of actions” which is to be formalized, in

our case, by the concept of comultiplication (or coproduct).

3.1. Arrows and addition or multiplication formulas

Let us give first some examples where the comultiplication naturally arises.

We begin with functions admitting an “addition formula” (see exercise (11.1) on

representative functions) or “multiplication formula”. This means functions such that

for all x, y

f(x ∗ y) =

n∑
i=1

f
(1)
i (x)f

(2)
i (y), (10)

where ∗ is a certain (associative) operation on the defining set of f and (f
(1)
i , f

(2)
i )n

i=1 be

two (finite) families of functions on the same set.

The first examples are taken in the function space RR (with ∗ = +, the ordinary

addition of real numbers). The following functions admit “addition formulas” which

can be diagramized as follows.
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Diagram Addition formula

R×R
+ ��

cos1 cos2 − sin1 sin2 ���
��

��
��

��
R

cos

��
R

cos(x+ y) = cos(x) cos(y)− sin(x) sin(y)

R×R
+ ��

sin1 cos2 +sin2 cos1 ���
��

��
��

��
R

sin
��

R

sin(x+ y) = sin(x) cos(y) + sin(y) cos(x)

R× R
+ ��

exp1 exp2 ���
��

��
��

��
R

exp

��
R

exp(x+ y) = exp(y) exp(x)

R× R
+ ��

Pn
j=0 (n

j)pr
(j)
1 pr

(n−j)
2 ���

��
��

��
��

R

( )n

��
R

(x+ y)n =
∑n

j=0

(
n
j

)
xj yn−j

Another example can be given where the domain set (source) is C
n×n, the algebra

of square n × n matrices with complex coefficients. Let aij : Cn×n −→ C be the

linear form which “takes” the coefficient of address (i, j) (raw i and column j), that

is to say aij(M) := M [i, j]. Then, the law of multiplication of matrices says that

MN [i, j] =
∑n

k=1M [i, k]N [k, j], which can be represented in the style of Eq. (10) by

aij(MN) =

n∑
k=1

aik(M)akj(N). (11)

Cn×n × Cn×n
product ��

Pn
k=1(aik)1(akj )2

������������������� Cn×n

aij

��
C

[ I’ve improved the above drawiang ]

Remark 3.1 Note that formula (11) holds when the definition set (source) is a

(multiplicative) semigroup of matrices (for example, the semigroup of unipotent positive

matrices).

We go now to linear mappings that admit such “addition” or, rather, “multiplication”

formula.

Derivations : Let A be an arbitrary algebra with law of multiplication:

A⊗A μ−→ A. (12)
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A derivation of A is an operator D : A −→ A which follows the Leibniz rule, that is for

all x, y ∈ A, one has

D(xy) = D(x)y + xD(y) (Leibniz rule). (13)

In the spirit of what has been represented above one has

A⊗A μ ��

D1Id2+Id1D2 ���
��

��
��

��
A

D
��
A

which (as we have linear spaces and mappings) can be better represented by

A⊗A μ ��

D⊗Id+Id⊗D
��

A
D
��

A⊗A μ �� A

Automorphisms : An automorphism of A is an invertible linear mapping g : A −→ A
such that for all x, y ∈ A, one has

g(xy) = g(x)g(y), (14)

which, in the spirit of what precedes can be represented by

A⊗A μ ��

g⊗g

��

A
g

��
A⊗A μ �� A

Now, remark that, classically, group representations act as automorphisms and

representations of Lie algebras act as derivations. This provides immediately a

scheme for constructing tensor products of two representations.

Tensor product of two representations (groups and Lie algebras): First, take

two representations of a group G, ρi : G −→ End(Vi), i = 1, 2. The action of g ∈ G on

the tensor space V1 ⊗ V2 is given by

g(v1 ⊗ v2) = g(v1)⊗ g(v2). (15)

This means that the “tensor product” of the two (group) representations ρi, i = 1, 2 is

given by the following data

• Space : V1 ⊗ V2

• Action : ρ1×ρ2 : g → ρ1(g)⊗ ρ2(g)

Likewise, if we have two representations ρi : G −→ End(Vi), i = 1, 2 of the Lie algebra

G the action of g ∈ G on a tensor product V1 ⊗ V2 is given by

g(v1 ⊗ v2) = g(v1)⊗ v2 + v1 ⊗ g(v2). (16)

Again, the “tensor product” of the two (Lie algebra) representations ρi, i = 1, 2 is given

by the following data

6



• Space : V1 ⊗ V2

• Action : ρ1×ρ2 : g → ρ1(g)⊗ IdV2(g) + IdV1(g)⊗ ρ2(g)

Roughly speaking, in the first case g acts by g⊗g and in the second one by g⊗1+1⊗g.
In view of two above cases it is convenient to construct linear mappings:

A Δ−→ A⊗A , (17)

such that ρ1×ρ2 = (ρ1 ⊗ ρ2) ◦Δ.

In the first case (A = C[G]) one gets

Δ

(∑
g∈G

αgg

)
=
∑
g∈G

αgg ⊗ g. (18)

In the second case, one has first to construct the comultiplication on the monomials

g1...gn; gi ∈ G) as they span (A = U(G)). Then, using the rule Δ(g) = g⊗1+1⊗g (for

g ∈ G) and the fact that Δ is supposed to be a morphism for the multiplication (the

justification of this rests on the fact that the constructed action must be a representation

see below around formula (35) and exercise (11.2)), one has

Δ(g1...gn) = (g1 ⊗ 1 + 1⊗ g1)(g2 ⊗ 1 + 1⊗ g2)...(gn ⊗ 1 + 1⊗ gn)

=
∑

I+J=[1...n]

g[I]⊗ g[J ]. (19)

Where, for I = {i1, i2, · · · , ik} (1 ≤ i1 < i2 < · · · < ik ≤ n), g[I] stands for gi1gi2 · · · gik

In each case (group algebra and envelopping algebra). One again gets a mapping

Δ : A �→ A⊗A which will be expressed by

Δ(a) =
n∑

i=1

a
(1)
i ⊗ a(2)

i (20)

which is rephrased compactly by

Δ(a) =
∑
(1)(2)

a(1) ⊗ a(2). (21)

The action of a ∈ A on a tensor v1 ⊗ v2 is then, in these two cases, given by

a.(v1 ⊗ v2) =
n∑

i=1

a
(1)
i .v1 ⊗ a(2)

i .v2 =
∑
(1)(2)

a(1).v1 ⊗ a(2).v2. (22)

[ I’ve lowered dots ]

One can easily check that a.b.(v1 ⊗ v2) = (ab).(v1 ⊗ v2).

Expression (21) is very convenient for proofs and computations and known as Sweedler’s

notation.

Remarks 3.2 i) In every case, we have extracted the “scheme of action” for building the

tensor product of two representations. This scheme (a linear mapping Δ : A �→ A⊗A)

is independent of the considered representations and, in each case,

ρ1×ρ2 = (ρ1 ⊗ ρ2) ◦Δ (23)
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ii) [ I’d skip point ii) ] For readers that are unfamiliar (and untrusting)

Sweedler’s notation, one can speak the language of “structure constants”. Let Δ : C �→
C ⊗ C be a comultiplication and (bi)i∈I a (linear) basis of C. One has

Δ(bi) =
∑
j,k∈I

λj,k
i bj ⊗ bk . (24)

the family (λj,k
i )i,j,k∈I is called the “structure constants” of the comultiplication Δ. Note

the duality with the notion the “structure constants” of a multiplication

μ : A⊗A �→ A : if (bi)i∈I is a (linear) basis of A, one has

μ(bi ⊗ bj) =
∑
k∈I

λk
i,j bk . (25)

For necessary and sufficient conditions for a family to be structure constants see exercise

(11.7).

Then, the general construction for tensor products goes as follows.

Definition 3.3 : Let A be a vector space, a comultiplication Δ on A is a linear mapping

A Δ−→ A⊗A.

Such a pair (vector space, comultiplication) without any prescription about the linear

mapping “comultiplication” is called a coalgebra.

Now, imitating (23), if A is an algebra and ρ1, ρ2 are representations of A in V1, V2, for

each a ∈ A, we can construct an action of a on V1 ⊗ V2 by

V1 ⊗ V2
(ρ1⊗ρ2)◦Δ(a)−→ V1 ⊗ V2. (26)

This means that if Δ(a) =
∑

(1)(2) a(1) ⊗ a(2) then group representations act as

a.(v1 ⊗ v2) =
∑
(1)(2)

a(1).v1 ⊗ a(2).v2 =
∑
(1)(2)

ρ1(a(1))[v1]⊗ ρ2(a(2))[v2]. (27)

[ I’ve lowered dots ]

But, at this stage, it is just an action and not (necessarily) a representation of A. We

will see further on the requirements on Δ for the construction of tensor product to be

reasonable (i. e. compatible with the usual tensor properties).

For the moment let us take a pause and consider some well known examples of

comultiplications.

4. Combinatorics of some comultiplications [ I would make it a subsection

]

The first type of comultiplication is given by duality. This means by a formula of type

〈Δ(x)|y ⊗ z〉⊗2 = 〈x|y ∗ z〉 (28)
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for a certain law of algebra V ⊗ V ∗�→ V , where 〈 | 〉 is a non degenerate scalar product

in V and 〈 | 〉⊗2 stands for its extension to V ⊗ V . In the case of words ∗ being the

concatenation and 〈 | 〉 being given by 〈u|v〉 = δu,v the comultiplication ΔCauchy, dual

to the concatenation, is given on a word w by

Δ(w) =
∑
uv=w

u⊗ v. (29)

In the same spirit, one can define a comultiplication on the algebra of a finite group by

Δ(g) =
∑

g1g2=g

g1 ⊗ g2. (30)

The second example is given by multiplication law of elementary comultiplications, that

is, if for each letter x one has Δ(x) = x⊗ 1 + 1⊗ x, then

Δ(w) = Δ(a1...an) = Δ(a1)Δ(a2)...Δ(an)

=
∑

I+J=[1...n]

w[I]⊗ w[J ] (31)

where w[{i1, i2, · · · ik}] = ai1ai2 · · ·aik (for 1 ≤ i1 < i2 < · · · < ik ≤ n). This

comultiplication is dual to (33) below for q = 0 (shuffle product).

Another example is a deformation (perturbation for small q) of the preceding. With

Δ(a) = a⊗ 1 + 1⊗ a+ qa⊗ a, one has

Δ(w) = Δ(a1...an) = Δ(a1)Δ(a2)...Δ(an)

=
∑

I∪J=[1...n]

q|I∩J |w[I]⊗ w[J ]. (32)

Note that this comultiplication is dual (in the sense of (28)) of the q-infiltration product

given by the recursive formula (for general q and with 1A∗ as the empty word)

w ↑ 1A∗ = 1A∗ ↑ w = w

au ↑ bv = a(u ↑ bv) + b(au ↑ v) + qδa,b(u ↑ v) (33)

this product is an interpolation between shuffle (q = 0) and (classical) infiltration (q = 1)

[12].

4.1. Requirements for a reasonable construction of tensor products

We have so far constructed an action of A on tensors, but nothing indicates that this is

a representation (see exercise (11.2)). So, the following question is natural.

Q.1.) If A is an algebra and Δ : A �→ A⊗A, what do we require on Δ if we want the

construction above to be a representation of A on tensor products ?

For a, b ∈ A, ρi representations of A in Vi, and vi ∈ Vi for i = 1, 2, we

must have the following identity:

a.(b.v1 ⊗ v2) = (ab).v1 ⊗ v2 =⇒ Δ(ab).v1 ⊗ v2 = Δ(a).(Δ(b).v1 ⊗ v2). (34)
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[ I’ve added before last Δ(b) and added =⇒ (reads better) One can prove

that, if this is true identically for all a, b ∈ A and all pairs of representations (see

exercise (11.2)), one has

Δ(ab) = Δ(a)Δ(b). (35)

and, of course, if the latter holds, (34) is true.

This can be rephrased by saying that Δ is morphism A �→ A⊗A.

Now, one would like to keep the compatibility with the associativity of tensor products,

this means that if we want to tensor u ⊗ v with w it must give the same actions as

tensoring u with v ⊗ w. This means that we have to address the following question

Q.2.) If A is an algebra and Δ : A �→ A ⊗ A a morphism of algebras, what do we

require on Δ if we want the construction above to be associative ?

More precisely, for three representations ρi, i = 1, 2, 3 of A, we want

ρ1×(ρ2×ρ3) = (ρ1×ρ2)×ρ3 (36)

up to the identifications (u⊗ v)⊗ w = u ⊗ (v ⊗ w) = u ⊗ v ⊗ w (if one is not satisfied

with this identification, see exercise (11.3)).

Let us compute (up to the identification above)

a.[(u⊗ v)⊗ w] = Δ(a).(u⊗ v)⊗ w =
(
(Δ⊗ Id) ◦Δ(a)

)(
u⊗ v ⊗ w

)
(37)

on the other hand

a.[u⊗ (v ⊗ w)] = Δ(a).u⊗ (v ⊗ w) =
(
(Id⊗Δ) ◦Δ(a)

)(
u⊗ v ⊗ w

)
. (38)

Again, one can prove (see exercise (11.3)) that this holds identically (i. e. for every

a ∈ A and triple of representations) iff (Id⊗Δ) ◦Δ = (Δ⊗ Id) ◦Δ, i.e.

A Δ ��

Δ
��

A⊗A
Id⊗Δ
��

A⊗A Δ⊗Id �� A⊗A⊗A

(39)

Remark 4.1 Property (39) is called co-associativity as, if one reverses the arrows and

replaces Δ by μ, the multiplication in an algebra, the diagram expresses associativity

(see also exercise (11.4) on duals of co-algebras).

A⊗A⊗A μ⊗Id ��

Id⊗μ
��

A⊗A
μ

��
A⊗A μ �� A
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But the tensor product is not only associative, it has a “neutral” which is “tensoring by

the field of scalars”. This derives from the fact that the canonical mappings

V ⊗C C
canr−→ V

canl←− C⊗C V. (40)

[ we had field k everywer efore and now we insist on C - is it necessary?

] are isomorphisms and we must ask that they be as well compatible with the proce-

dure defined in (27).

This can be summarized by the following question.

Q.3.) If A is an algebra and Δ : A �→ A ⊗ A a co-associative morphism of algebras,

what do we require on Δ if we want the construction above to admit “tensoring by the

field of scalars” as neutral ?

More precisely, we must have a representation of A in C (which means a morphism of

algebras A ε−→ C) such that for a representations ρ of A, we want

ρ×ε = ε×ρ = ρ (41)

up to the identification u⊗ 1 = 1⊗ u = u through the isomorphisms (40) (if one is not

satisfied with this identification, see exercise (11.5)).

Hence, for all a ∈ A and ρ representation on V we should have:

canr(a.(v ⊗ 1)) = a.v, (42)

and

a.(v ⊗ 1) =
( ∑

(1)(2)

ρ(a(1))⊗ ε(a(2))
)
[v ⊗ 1]

= (ρ⊗ IdC) ◦
( ∑

(1)(2)

a(1) ⊗ ε(a(2))
)
[v ⊗ 1] (43)

= (ρ⊗ IdC) ◦ (Id⊗ ε) ◦Δ(a)[v ⊗ 1],

a.v = ρ(a)[v] = canr(ρ(a)[v]⊗ 1) = canr(ρ⊗ Id(a)[v ⊗ 1]). (44)

Similar computations should be made on the left. [ For me I had to make this

calculation longer - maybe also helpful for reader (decide) ]

This means that one should require that

A Δ ��

Id
��

A⊗A
Id⊗ε
��

A A⊗ C
canr��

A Δ ��

Id
��

A⊗A
ε⊗Id
��

A C⊗Acanr��

Such a mapping ε : A −→ C is called a co-unit

Remark 4.2 Again, one can prove (see excercice (11.4) for details) that

ε is a counit for (A, Δ) ⇐⇒ ε is a counit for (A, ∗Δ) (45)
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5. Bialgebras

Motivated by the preceding discussion, we will call bialgebra an algebra (asso-

ciative with unit) endowed with a comultiplication (co-associative with counit) which

allows for the two tensor properties of associativity and unit (see discussion above).

More precisely

Definition 5.1 : (A, ·, 1A,Δ, ε) is said to be a bialgebra iff

(1) (A, ·, 1A) is an AAU,

(2) (A,Δ, ε) is a coalgebra coassociative with counit,

(3) Δ is a morphism of AAU and ε is a morphism of AAU.

The name bialgebra comes from the fact that the space A is endowed with two structures

(one of AAU and one of co-AAU) with a certain compatibility between the two.

5.1. Examples of bialgebras

Free algebra (word version : noncommutative polynomials)

Let A be an alphabet (a set of variables) and A∗ be the free monoid constructed on A

(see Basic Structures (12.2)). For any field of scalars k (one can think first of k = R or

C), we call algebra of noncommutaive polynomials k〈A〉, the algebra k[A∗] of the free

monoid A∗ constructed on A. This is the set of functions f : A∗ �→ k with finite support

endowed with the convolution product

f ∗ g(w) =
∑
uv=w

f(u)g(v) (46)

Each word w ∈ A∗ is identified with its characteristic function (i.e. the Dirac function

with value 1 at w and 0 elsewhere). These functions form a basis of k〈A〉 and then,

every f ∈ k〈A〉 can be written uniquely as a finite sum f =
∑
f(w)w.

The inclusion mapping A ↪→ k〈A〉 will be denoted here by canA. [ Most of the above

is in appendix. ]

Comultiplications The free algebra k〈A〉 admits many comultiplications (even with

the two requirements to be a morphism and coassociative). As A∗ is a basis of k〈A〉,
it is sufficient to define it on the words (if we require Δ to be a morphism it is

enough to define it on letters).

Example 1 . — The first example is the dual of the Cauchy (or convolution) product

Δ(w) =
∑
uv=w

u⊗ v (47)

is not a morphism as

Δ(ab) = ab⊗ 1 + a⊗ b+ 1⊗ ab
and

Δ(a)Δ(b) = ab⊗ 1 + a⊗ b+ b⊗ a + 1⊗ ab
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but, it can be checked that it is coassociative (see also exercice (11.4) for a lightspeed

proof of this fact).

Example 2 . — Second example is given, on the alphabet A = {a, b} by

Δ(a) = a⊗ b; Δ(b) = b⊗ a

then Δ(w) = w⊗ w̄ where w̄ stands for the word w with a (resp. b) changed in b (resp.

a). This comultiplication is a morphism but not coassociative as

(I ⊗Δ) ◦Δ(a) = a⊗ b⊗ a ; (Δ⊗ I) ◦Δ(a) = a⊗ a⊗ b

Example 3 . — The third example is given on the letters by

Δ(a) = a⊗ 1 + 1⊗ a+ qa⊗ a

where q ∈ k. One can prove that

Δ(w) = Δ(a1...an) = Δ(a1)Δ(a2)...Δ(an) =
∑

I∪J=[1..|w|]
q|I∩J |w[I]⊗ w[J ] (48)

this comultiplication is coassociative.

For q = 0, one gets a comultiplication given on the letters by Δs(a) = a ⊗ 1 + 1 ⊗ a.
For every polynomial P ∈ k〈A〉, set ε(P ) = P (1A∗) (the constant term). Then

(k〈A〉, ∗,Δs, ε) is a bialgebra.

One has also another bialgebra structure with, for all a ∈ A
Δh(a) = a⊗ a ; εaug(a) = 1 (49)

this bialgebra (k〈A〉, ∗,Δh, εaug) is a substructure of the bialgebra of the free group.

Algebra of polynomials (commutative polynomials)

We continue with the same alphabet A, but this time take as algebra k[A]. The

construction is similar but the monomials, instead of words, are all the commutative

products of letters i.e. aα1
1 a

α2
2 · · ·aαn

n with n arbitrary and αi ∈ N. Denoting A⊕

the monoid of these monomials (comprising, as neutral, the empty one) and with

Δs(a) = a ⊗ 1 + 1 ⊗ a, ε(P ) = P (1A⊕), one can again check that (k[A], ∗,Δs, ε) is

a bialgebra.

Algebra of partially commutative polynomials

[ For me it is introduced too quick and sketchily. ]

For the detailed construction of partially commutative monoid, the reader is refered to

[9, 13]. These monoids generalize both the free and free commutative monoids. To a

13



given graph (non-oriented and without loop) ϑ ⊂ A×A, one can asssociate the monoid

presented by generators and relations

M(A, ϑ) = 〈A; (xy = yx)(x,y)∈ϑ〉Mon . (50)

It is exactly the monoid obtained as a quotient structure of the free monoid (A∗) by the

smallest equivalence compatible with products (congruence) which contains the pairs

(xy, yx)(x,y)∈ϑ. A geometric model of this monoid using pieces was developped by X.

Viennot [29] where pieces are located on “positions” (drawn on a plane) two pieces

“commute” iff they are on positions which do not intersect (see fig 1 below).

[ All this part is a bit to formal and dry (at least for me). Some simple

illustration would be in order. I recall that once you gave us a very nice

and simple example which you called boxed numbers, i.e. free commutative

algebra of natural numbers (generated by primes). It is a Hopf algebra I

guess. For me it was a very nice and simple example - hence maybe it is worth

adding. ]
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The partially commutative algebra k〈A, ϑ〉 is the algebra k[M(A, ϑ)]. Again, one can

check that (k〈A, ϑ〉, ∗,Δs, ε) (constructed as above) is a bialgebra.

Algebra of a group

Let G be a group. The algebra under consideration is k[G]. We define, for g ∈ G,

Δ(g) = g ⊗ g and ε(g) = 1, then, one can check that (k[G], .,Δ, ε) is a bialgebra.

6. The problem of duals

Each vector space V comes with its dual

V ∗ = HomC(V,C). (51)

They are in duality by

〈p, ψ〉 = p(ψ) (52)

[ As I recall this duality is only for continuous homomorphism. Is it relevant?

] Now, if one has representation (on the left) of A on V , one gets a representation

on the right on V ∗ by

〈p.a, ψ〉 = 〈p, a.ψ〉 (53)

If we want to have the action of A on the right again, one should use an anti-morphism

α : A −→ A that is α ∈ Endk(A) such that, for all x, y ∈ A
α(xy) = α(y)α(x). (54)

In the case of groups g −→ g−1 does the job, in the case of Lie algebra g −→ −g
(extended by reverse products to the enveloping algebra) works.

The concept that unifies the two preceding examples is that of the antipode. It is a

linear mapping α : A −→ A such that for all a ∈ A∑
(1)(2)

α(a(1))a(2) =
∑
(1)(2)

a(1)α(a(2)) = 1Aε(a). (55)

One can prove (see exercise (11.8)), that this means that α is the inverse of IdA for a

certain product of algebra (AAU) on Endk(A) and this implies (see exercise (11.8)) that

(i) If α exists (as a solution of Eq.(55)), it is unique.

(ii) If α exists, it is an antimorphism.

Definition 6.1 : (Hopf Algebra) (A, ·, 1A,Δ, ε, S) is said to be a Hopf algebra iff

(1) B = (A, ·, 1A,Δ, ε) is a bialgebra,

(2) S is an antipode (then unique) for B
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In many combinatorial cases (see exercise on local finiteness (11.6)), one can compute

the antipode by

α(d) =

∞∑
k=0

(−1)k+1(I+)(∗k)(d)). (56)

where I+ is the projection on B+ = ker(ε) such that I+(1B) = 0.

[ This is a very concise and sketch if compared with the previous part on

bi-algebra. I understood why we need an antimorphism - but there might be

many. I do not understand what is so special about this additional requirement

Eq.(55). I feel that it is because of this convolution introduced in the

exercises but I have no feeling what that could be useful for and what could

be physical need for that very specific property. Could you please explain

the motivation in a simple way? ]

7. Hopf algebra and partition functions

7.1. Partition Function Integrand

Consider the Partition Function Z of a Quantum Statistical Mechanical System

Z = Trexp(−βH) (57)

whose hamiltonian is H (β ≡ 1/kT , k = Boltzmann’s constant T =

absolute temperature). We may evaluate the trace over any complete set of states;

we choose the (over-)complete set of coherent states

|z〉 = e−|z|2/2
∑

n

(zn/
√
n!)a+n|0〉 (58)

where a+ is the boson creation operator satisfying [a, a+] = 1 and for which the

completeness or resolution of unity† property is

1

π

∫
dz|z〉〈z| = I ≡

∫
d(z)|z〉〈z|. (59)

† Sometimes physicists write d2z to emphasize that the integral is two dimensional (over R) but here,
the l. h. s. of (59) is the integration of the operator valued function z → |z〉〈z| - see [7] Chap. III
Paragraph 3 - w.r.t. the Haar mesure of C which is dz.

16



The simplest, and generic, example is the free singleboson hamiltonian H = εa+a for

which the appropriate trace calculation is

Z =
1

π

∫
dz〉z|exp(−βa+a)|z〈=

=
1

π

∫
dz〈z| : exp(a+a(e−βε − 1) : |z〉 . (60)

Here we have used the following wellknown relation for the forgetful normal ordering

operator : f(a, a+) : which means “normally order the creation and annihilation

operators in f forgetting the com mutation relation [a, a+] = 1” ‡. We may write

the Partition Function in general as

Z(x) =

∫
F (x, z)d(z) (61)

thereby defining the Partition Function Integrand (PFI) F (x, z). We have explicitly

written the dependence on x = −β, the inverse tem perature, and ε, the energy scale in

the hamiltonian.

7.2. Combinatorial aspects: Bell numbers

The generic freeboson example Eq. (61) above may be rewritten to show the connection

with certain wellknown combinatorial numbers. Writing y = |z|2 and x = −βε, Eq.(??)

becomes

Z =

∫ ∞

0

dy exp(y(ex − 1)) . (62)

This is an integral over the classical exponential generating function for the Bell

polynomials

exp(y(ex − 1)) =

∞∑
n=0

Bn(y)
xn

n!
(63)

where the Bell number is Bn(1) = B(n), the number of ways of putting n different

objects into n identical containers (some may be left empty). Related to the Bell

numbers are the Stirling numbers of the second kind S(n, k), which are defined as the

number of ways of putting n different objects into k identical containers, leaving none

empty. From the definition we have B(n) =
∑n

k=1 S(n, k) (for n 	= 0). The foregoing

gives a combinatorial interpretation of the partition function integrand F (x, y) as the

exponential generating function of the Bell polynomials.

7.3. Graphs

We now give a graphical representation of the Bell numbers. Consider labelled lines

which emanate from a white dot, the origin, and finish on a black dot, the vertex. We

shall allow only one line from each white dot but impose no limit on the number of

‡ Of course, this procedure may alter the value of the operator to which it is applied.
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lines ending on a black dot. Clearly this simulates the definition of S(n, k) and B(n),

with the white dots playing the role of the distinguishable objects, whence the lines are

labelled, and the black dots that of the indistinguishable containers. The identification

of the graphs for 1,2 and 3 lines is given in Figure 1. We have concentrated on the Bell

number sequence and its associated graphs since, as we shall show, there is a sense in

which this sequence of graphs is generic. That is, we can represent any combinatorial

sequence by the same sequence of graphs as in the Fig. 1

with suitable vertex multipliers (denoted by the V terms in the same figure). Consider

a general partition function

Z = Trexp(−βH) (64)

where the Hamiltonian is given by H = εw(a, a+), with w a string (= sum of products

of positive powers) of boson creation and annihilation operators. The partition function

integrand F for which we seek to give a graphical expansion, is

Z(x) =

∫
F (x, z)d(z) (65)

where

F (x, z) = 〈z|exp(xw)|z〉 = (x = −βε)
=

∞∑
n=0

〈z|wn|z〉x
n

n!

=
∞∑

n=0

Wn(z)
xn

n!

= exp
( ∞∑

n=1

Vn(z)
xn

n!

)
(66)

with obvious definitions of Wn and Vn. The sequences {Wn} and {Vn} may each be

recursively obtained from the other. This relates the sequence of multipliers {Vn} of

Figure 1 to the Hamiltonian of Eq. (64). The lower limit 1 in the Vn summation is a

consequence of the normalization of the coherent state |z〉.

7.4. The Hopf Algebra LBell

We briefly describe the Hopf algebra LBell which the diagrams of Figure 1 define.

1. Each distinct diagram is an individual basis element of LBell ; thus the dimension is

infinite. (Visualise each diagram in a “box”.) The sum of two diagrams is simply the

two boxes containing the diagrams. Scalar multiples are formal; for example, they may

be provided by the V coefficients. Precisely, as a vector space, LBell is the space freely

generated by the digrams of Fig 1 (see APPENDIX : Function Spaces).

2. The identity element e is the empty diagram (an empty box).

3. Multiplication is the juxtaposition of two diagrams within the same “box”. LBell is

generated by the connected diagrams; this is a consequence of the Connected Graph
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Theorem [28]. Since we have not here specified an order for the juxtaposition, multipli

cation is commutative.

4. The comultiplication Δ : LBell �→ LBell ⊗ LBell is defined by

Δ(e) = e⊗ e (unit e, the empty box)

Δ(x) = x⊗ e+ e⊗ x (generator x)

Δ(AB) = Δ(A)Δ(B) otherwise

so that Δ is an algebra homomorphism. (67)

8. The case of two modes

Let us consider an hamiltonian on two modes H(a, a+, b, b+), with

[a, a+] = 1

[b, b+] = 1

[aε1, bε2 ] = 0, εi being + or empty (4 relations) (68)

Since all the a′s commute with all the b′s, one can express H as

H(a, a+, b, b+) = H1(a, a
+) +H2(b, b

+). (69)

[ Be cautious: it factorizes is only in specific cases, e.g. H = ab do

not factorize into a sum. ]

Suppose that, exp(λH1) and exp(λH2) (λ = −β) are solved i.e. that we have expressions

F (λ) = exp(λH1) =

∞∑
n=0

λn

n!
H

(n)
1 (a, a+) ; G(λ) = exp(λH2) =

∞∑
n=0

λn

n!
H

(n)
2 (b, b+)(70)

It is not difficult to check that

exp(λH) = exp(λH1 +H2) = F (λ
d

dx
)G(x)

∣∣∣
x=0

(71)

This leads us to define, in general, the “Hadamard exponential product”. Let

F (z) =
∑
n≥0

an
zn

n!
, G(z) =

∑
n≥0

bn
zn

n!
(72)

and define their product (the “Hadamard exponential product”) by

H(F,G) :=
∑
n≥0

anbn
zn

n!
= H(F,G) = F

(
z
d

dx

)
G(x)

∣∣∣∣
x=0

. (73)

When F (0) andG(0) are not zero one can normalize the functions in this bilinear product

so that F (0) = G(0) = 1. We would like to obtain compact and generic formulas. If we

write the functions as

F (z) = exp

( ∞∑
n=1

Ln
zn

n!

)
, G(z) = exp

( ∞∑
n=1

Vn
zn

n!

)
. (74)

19



that is, as free exponentials, then by using Bell polynomials in the sets of variables L,V

(see [11, 16] for details), we obtain

H(F,G) =
∑
n≥0

zn

n!

∑
P1,P2∈UPn

L
Type(P1)

V
Type(P2) (75)

where UPn is the set of unordered partitions of [1 · · ·n]. An unordered partition P of a

set X is a collection of (nonempty) subsets of X, mutually disjoint and covering X (i.e.

the union of all the subsets is X, see [18] for details).

The type of P ∈ UPn (denoted above by Type(P )) is the multi-index (αi)i∈N+ such that

αk is the number of k-blocks, that is the number of members of P with cardinality k.

At this point the formula entangles and the diagrams of the theory arise.

Note particularly that

• the monomial LType(P1)VType(P2) needs much less information than that which is

contained in the individual partitions P1, P2 (for example, one can relabel the

elements without changing the monomial),

• two partitions have an incidence matrix from which it is still possible to recover the

types of the partitions.

The construction now proceeds as follows.

(i) Take two unordered partitions of [1 · · ·n], say P1, P2

(ii) Write down their incidence matrix (card(Y ∩ Z))(Y,Z)∈P1×P2

(iii) Construct the diagram representing the multiplicities of the incidence matrix : for

each block of P1 draw a black spot (resp. for each block of P2 draw a white spot)

(iv) Draw lines between the black spot Y ∈ P1 and the white spot Z ∈ P2; there are

card(Y ∩ Z) such.

(v) Remove the information of the blocks Y, Z, · · ·.
In so doing, one obtains a bipartite graph with p (= card(P1)) black spots, q (= card(P2))

white spots, no isolated vertex and integer multiplicities. We denote the set of such

diagrams by diag.
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� � � �

� � �

{1} {2, 3, 4} {5, 6, 7, 8, 9} {10, 11}

{2, 3, 5} {1, 4, 6, 7, 8} {9, 10, 11}

Fig 1. — Diagram from P1, P2 (set partitions of [1 · · · 11]).
P1 = {{2, 3, 5}, {1, 4, 6, 7, 8}, {9, 10, 11}} and P2 = {{1}, {2, 3, 4}, {5, 6, 7, 8, 9}, {10, 11}}
(respectively black spots for P1 and white spots for P2).
The incidence matrix corresponding to the diagram (as drawn) or these partitions is⎛
⎝ 0 2 1 0

1 1 3 0
0 0 1 2

⎞
⎠. But, due to the fact that the defining partitions are unordered, one can

permute the spots (black and white, between themselves) and, so, the lines and columns of this

matrix can be permuted. Thus, the diagram could be represented by the matrix

⎛
⎝ 0 0 1 2

0 2 1 0
1 0 3 1

⎞
⎠

as well.

The product formula now reads

H(F,G) =
∑
n≥0

zn

n!

∑
d∈diag
|d|=n

mult(d)Lα(d)
V

β(d) (76)

where α(d) (resp. β(d)) is the “white spots type” (resp. the “black spots type”) i.e.

the multi-index (αi)i∈N+ (resp. (βi)i∈N+) such that αi (resp. βi) is the number of white

spots (resp. black spots) of degree i (i lines connected to the spot) and mult(d) is the

number of pairs of unordered partitions of [1 · · · |d|] (here |d| = |α(d)| = |β(d)| is the

number of lines of d) with associated diagram d.

8.1. Diagrams

One can design a (graphically) natural multiplicative structure on diag such that the

arrow

d �→ L
α(d)

V
β(d). (77)

be a morphism. This is provided by the concatenation of the diagrams (the result, i.e.

the diagram obtained in placing d2 at the right of d1, will be denoted by [d1|d2]D). One
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must check that this product is compatible with the equivalence of the permutation of

white and black spots among themselves, which is rather straightforward (see [11, 18]).

We have

Proposition 8.1 [18] Let diag be the set of diagrams (including the empty one).

i) The law (d1, d2) �→ [d1|d2]D endows diag with the structure of a commutative monoid

with the empty diagram as neutral element(this diagram will, therefore, be denoted by

1diag).

ii) The arrow d �→ Lα(d)Vβ(d) is a morphism of monoids, the codomain of this arrow

being the monoid of (commutative) monomials in the alphabet L ∪V i.e.

MON(L∪V) = {Lα
V

β}α,β∈(N+)(N) =
⋃

n,m≥1

{Lα1
1 L

α2
2 · · ·Lαn

n V β1

1 V β2

2 · · ·V βm
m }αi,βj∈N

.(78)

iii) The monoid (diag, [−|−]D, 1diag) is a free commutative monoid. The set on which

it is built is the set of the connected (non-empty) diagrams.

Remark 8.2 The reader who is not familiar with the algebraic structure of MON(X)

can find rigorous definitions in paragraph (12.2).

We denote φmon,diag the arrow diag �→MON(L ∪V).

8.2. Labelled diagrams

We have seen the diagrams (of diag) are in one-to-one correspondence with classes of

matrices as in Fig. 1. In order to fix one representant of this class, we have to number

the black (resp. white) spots from 1 to, say p (resp. q). Doing so, one obtains a packed

matrix [15] that is a matrix of integers with no raw nor column full of zeroes. In this

way, we define the labelled diagrams.

Definition 8.3 A labelled diagram of size p × q is a bi-coloured (vertices are p black

and q white spots) graph

• with no isolated vertex

• every black spot is joined to a white spot by an arbitrary quantity (but a positive

integer) of lines

• the black (resp. white) spots are numbered from 1 to p (resp. from 1 to q).

As in paragraph (8.1), one can concatenate the labelled diagrams, the result, i.e. the

diagram obtained in placing D2 at the right of D1, will be denoted by [D1|D2]L). This

time, one has not to check any compatibility with classes. We have a structure of free

monoid (but not commutative this time)

Proposition 8.4 [18] Let ldiag be the set of labeled diagrams (including the empty

one).

i) The law (d1, d2) �→ [d1|d2]L endows ldiag with the structure of a noncommutative

monoid with the empty diagram (p = q = 0) as neutral element (which will, therefore,
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be denoted by 1ldiag).

ii) The arrow from ldiag to diag, which implies “forgetting the labels of the vertices”

is a morphism of monoids.

iii) The monoid (ldiag, [−|−]L, 1ldiag) is a free (noncommutative) monoid which is

constructed on the set of irreducible diagrams which are diagrams d 	= 1ldiag which

cannot be written d = [d1|d2]L ; di 	= 1ldiag.

Remark 8.5 i) In a general monoid (M, �, 1M), the irreducible elements are the

elements x 	= 1M such that x = y � z =⇒ 1M ∈ {y, z}.
ii) It can happen that an irreducible of ldiag has an image in diag which splits, as

shown by the simple example of the cross defined by the incidence matrix

(
0 1

1 0

)
.

8.3. Hopf algebras DIAG and LDIAG

Let us first construct the Hopf algebra on the labelled diagrams (details can be found

in [18]). In order to define the comultiplication, we need the notion of “restriction of

a labelled diagram”. Let indeed d ∈ ldiag of size p × q. For any subset I ⊂ [1..p], we

define a labelled diagram d[I] (of size k× l, k = cardI) by taking the k = |I| blackspots

numbered in I and the edges (resp. white spots) that are connected to them. We take

this subgraph and relabel increasingly the black (resp. white) spots.

The construction of the Hopf algebra LDIAG goes as follows :

(i) the algebra structure is that of algebra of the monoid ldiag so that the elements

of LDIAG read

x =
∑

d∈ldiag

αdd (79)

(the sum is finitely supported)

(ii) the comultiplication is given, on a labelled diagram d ∈ ldiag of size p× q, by

ΔL(d) =
∑

I+J=[1..p]

d[I]× d[J ] (80)

(iii) the counity is “taking the coefficient of the void diagram”,

that is, for x as in Eq. (79),

εL(x) = α1ldiag
. (81)

One can check that (LDIAG, [−|−]L, 1ldiag,ΔL, εL) is a bialgebra (for proofs see [18]).

Now one can check that we are in conditions of exercise (11.6) question 5 and the antipode

SL can be computed by the procedure of question 4 of the same exercise (i.e. by formula

(56)).

We have so far constructed the Hopf algebra (LDIAG, [−|−]L, 1ldiag,Δ, ε, SL).

The constructions above are compatible with the arrow

φDIAG,LDIAG : LDIAG �→ DIAG
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deduced from the class-map φdiag,ldiag : ldiag �→ diag (a diagram is a class of labelled

diagrams under permutations of black and white spots between themselves). So that,

one can deduce “by taking quotients” a structure of Hopf algebra on the algebra of

diag. This algebra being denoted DIAG, one has a natural structure of Hopf algebra

(DIAG, [−|−]D, 1diag,ΔD, εD, SD) and one can prove that this is the unique structure

of Hopf algebra such that φDIAG,LDIAG is a morphism for the algebra and coalgebra

structures.

9. Link between LDIAG and other Hopf algebras

9.1. The deformed case

One can construct a three-parameter Hopf algebra deformation of LDIAG (see [18]),

denoted LDIAG(qc, qs, qt) such that LDIAG(0, 0, 0) = LDIAG and

LDIAG(1, 1, 1) = MQSym the algebra of Matrix Quasi Symmetric Functions [15]).

On the other hand, it was proved by L. Foissy [20] that one of the planar decorated

trees Hopf algebra is isomorphic MQSym and even to LDIAG(1, qs, t) for every qs and

t ∈ {0, 1}. The complete picture is given below.

10. Duals of Hopf algebras

The question of dualizing a Hopf algebra (i.e. endowing the dual - or a subspace of it -

with a structure of Hopf algebra) is solved, in complete generality, by the machineray

of Sweedler’s duals. The procedure consists in taking the “representative” linear forms

(instead of all the linear forms) and dualize w.r.t. the following table
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comultiplication → multiplication

counit → unit

multiplication → comultiplication

unit → counit

antipode → trsnspose of the antipode.

In the case when the Hopf algebra is free as an algebra (which is often the case with

noncommutative hopf algebras of combinatorial physics), one can use rational expres-

sions of Automata Theory to get a genuine calculus within this dual (see [19]).
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11. EXERCISES

Exercise 11.1 Representative functions on R. A function R
f−→ K (K = R,C)

is said to be representative if there exist (f
(1)
i )n

i=1 and (f
(2)
i )n

i=1 such that, for all x, y ∈ R

one has

f(x+ y) =

n∑
i=1

f
(1)
i (x)f

(2)
i (y). (82)

1.1) Show that cos, cos2, sin, exp and a→ an are representative. Provide minimal sums

of type Eq.(82) 1.2) Show that the following are equivalent

i) f is representative.

ii) There exists group representation (R,+)
ρ−→ M(n,K), a row vector λ ∈ K1×n, a

column vector γ ∈ K
n×1 such that f(x) = λρ(x)γ.

iii) (ft)t∈R is of finite rank in KR (here ft, the shift of f by t, is the function

x −→ f(x+ t)).

1.3) Show that the minimal n such that formula Eq.(82) holds is also the rank of (ft)t∈R.

1.4) a) If f is continuous then ρ can be chosen so and ρ(x) = exT for a certain matrix

T ∈M(n,C).

b) In this case show that representative functions are linear combinations of products of

polynomials and exponentials.

1.5) f ∈ CR is representative iff Re(f) = (f + f̄)/2 and Im(f) = (f − f̄)/2i are

representative in RR.

1.6) Show that the set of representative functions of KR is a vector space. This space

will be denoted RepK(R).

1.7) Show that the functions ϕn,λ = xneλx are a basis of RepC(R) ∩ Co(R; C).

2.) Let M be a monoid (semigroup with unit) and K = R,C. For a function M
f−→ K

one defines the shifts:

fz : x −→ f(zx), (83)

yf : x −→ f(xy), (84)

yfz : x −→ f(zxy). (85)

(86)

2.1)a) Check the following formulas

(fy1)y2 = fy1y2, (87)

y2(y1f) =y2y1 f. (88)

b) Define from Eqs.(87) and (88) the two canonical M-module structures of K
M .

Do they commute ?

2.2)a) Show that the following are equivalent

i) (fz)z∈M is of finite rank in KM .

ii) (yf)y∈M is of finite rank in KM .

iii) (yfz)y,z∈M is of finite rank in KM .
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iv) There exist two families (f
(1)
i )n

i=1 and (f
(2)
i )n

i=1 such that

f(xy) =
n∑

i=1

f
(1)
i (x)f

(2)
i (y). (89)

v) There exists a representation of M ρ : M −→ C
n×n, a row vector λ ∈ C

1×n, a column

vector γ ∈ Cn×1 such that f(x) = λρ(x)γ for all x ∈M .

b) Using (v) above show that the (pointwise) product of two representative functions is

representative.

Exercise 11.2 Let A be an AAU and Δ : A �→ A ⊗ A a comultiplication. We build

(tensor) products of two representations by the formula (23), more precisely by

can ◦ (ρ1 ⊗ ρ2) ◦Δ (90)

where can : End(V1)⊗ End(V2) �→ End(V1 ⊗ V2) is the canonical mapping.

a) Prove that, if Δ is a morphism of algebras, then the linear mapping

ρ1
×

ρ2 : A �→ End(V1 ⊗ V2)

defined by the composition (90) is a morphism of AAU (and hence a representation).

b) Prove that, if ρ1
×

ρ2 is a representation for any pair ρ1, ρ2 of representations of A,

then Δ is morphism of AAU (use ρ1 = ρ2, the - regular - representation of A on itself

by multiplications on the left).

Exercise 11.3 We consider the canonical isomorphisms

can1|23 : V1 ⊗ (V2 ⊗ V3) �→ V1 ⊗ V2 ⊗ V3

can12|3 : (V1 ⊗ V2)⊗ V3 �→ V1 ⊗ V2 ⊗ V3 (91)

Show that, in order to have (36) for every triple ρi, i = 1, 2, 3 of representations it is

necessary and sufficient that

can12|3 ◦ (Δ⊗ IdA) ◦Δ = can1|23 ◦ (IdA ⊗Δ) ◦Δ (92)

(for the necessary condition, consider again the left regular representations).

Exercise 11.4 Let (A,Δ) be a coalgebra (Δ is an arbitrary - but fixed - linear mapping)

and (A∗, ∗Δ) be its dual algebra. Explicitely, for f, g ∈ A∗ and x ∈ A (for convenience,

the law is written in infix denotation)

〈f ∗Δ g|x〉 = 〈f ⊗ g|Δ(x)〉 (93)

Prove the following equivalences

Δ is co-associative ⇐⇒ ∗Δ is associative (94)

(∀ε ∈ A∗)
(
ε is a unity for (A∗, ∗Δ)⇐⇒ ε is a co-unity for (A,Δ)

)
(95)

27



Exercise 11.5 The mappings canl, canr are as in (40). Prove that, in order that, for

any representation ρ of A, one has

canl ◦ (ε⊗ ρ) ◦Δ = canr ◦ (ρ⊗ ε) ◦Δ (96)

it is necessary and sufficient that ε be a counity.

Exercise 11.6 1) Let (B, ∗, 1,Δ, ε) be a bialgebra, we denote by B+ the kernel of ε.

a) Prove that B = B+ ⊕ k.1B.

We denote I+ the projection of B+ with respect to the preceding decomposition.

b) Prove that, for every x ∈ B+, one can write

Δ(x) = x⊗ 1 + 1⊗ x+
∑
(1)(2)

x(1) ⊗ x(2) with x(i) ∈ B+ (97)

2) One sets, for x ∈ B+,

Δ+(x) = Δ(x)− (x⊗ 1 + 1⊗ x) =
∑
(1)(2)

x(1) ⊗ x(2) (98)

a) Check that (B+,Δ+) is a coassociative coalgebra.

One sets

(B∗)+ = {f ∈ B∗|f(1) = 0} (99)

b) Prove that (B∗)+ is a subalgebra of (B, ∗Δ) and that its law is dual of Δ+.

c) Prove that the algebra (B∗, ∗Δ is obtained from (B∗)+, ∗Δ+ by adjunction of the unity ε.

3) The bialgebra is called locally finite if

(∀x ∈ B)(∃k ∈ N
∗)(Δ+(k)(x) = 0). (100)

The projection I+ being as above, show that, in case B is locally finite,

(∀x ∈ B)(∃N ∈ N
∗)(∀k ≥ N)((I+)k(x) = 0) (101)

and that

S =
∑
n∈N

(−I+)n (102)

is an antipode for B.
4) Let G be a group and H = (C[G], ., 1G,Δ, ε, S) be the Hopf algebra of G.

a) Show that {(g − 1)}g∈G−{1} is a basis of H+ and that Δ+(g − 1) = (g − 1)⊗ (g − 1).

b) Show that, if G 	= {1}, H+ is not locally finite, but H admits an antipode.

5) Prove that if the coproduct of H is graded (i.e. it exists a decomposition H = ⊕n∈NHn

with Δ(Hn) ⊂∑a+b=nHa⊗Hb) and H0 = k.1H then the comultiplication is locally finite.

6) Define the degree of a labelled diagram as its number of edges and LDIAGn as the

vector space generated by the diagrams of degree n and check that we are in conditions

of exercise question 5.
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Exercise 11.7 1) Show that, in order that a family (λk
i,j)i,j,k∈I be the family of structure

constants of some algebra it is necessary and sufficient that

(∀(i, j) ∈ I2)
(
(λk

i,j)k∈I is finitely supported
)

(103)

2) Similarly show that in order that a family (λj,k
i )i,j,k∈I be the family of structure

constants of some algebra it is necessary and sufficient that

(∀i ∈ I)
(
(λj,k

i )(j,k)∈I2 is finitely supported
)

(104)

3) Give examples of mappings λ : I3 �→ k such that the corresponding families satisfy

i) (103) and (104)

ii) (103) and not (104)

iii) (104) and not (103)

iv) none of (103) and (104)

4) Give again examples such as in 3) i-iii but with associative (resp. coassociative)

multiplications (resp. comultiplications).

Exercise 11.8 Let (C,Δ) be a coalgebra and (A, μ) ba an algebra on the same

(commutative) field of scalars k. We define a multiplication (called convolution) on

Homk(C,A) by

f ∗ g = μ ◦ (f ⊗ g) ◦Δ (105)

so that, if Δ(x) =
∑

(1)(2) x(1)x(2),

f ∗ g(x) =
∑
(1)(2)

f(x(1))g(x(2)).

1) If A is associative and C coassociative, show that the algebra (Homk(C,A), ∗) is

associative.

2) We suppose moreover that C admits a counit ε : C �→ k and A a unit 1A (identified

with the linear mapping k �→ A given by λ→ λ1A).

Show that 1A ◦ ε (traditionnally denoted 1Aε) is the unit of the algebra (Homk(C,A), ∗).
3) Let (B, ∗, 1,Δ, ε) be a bialgebra. The convolution under consideration will be that

constructed between the coalgebra (B,Δ, ε) and the algebra (B, ∗, 1).

a) Let S ∈ End(B). Show that the following are equivalent

i) S is an antipode for B
ii) S is the inverse of IdB in (Endk(B), ∗).
b) Deduce from (b) that the antipode, if it exists, is unique.

c) Prove that the bialgebra (k〈A〉, ∗,Δh, εaug) defined around equation (49) admits no

antipode (if the alphabet A is not empty).

4) Let (C,Δ, ε) be a coalgebra coassociative with counit. We define Δ2 by T2,3 ◦Δ ⊗Δ

where T2,3 : C⊗4 �→ C⊗4 is the flip between the 2nd and the 3rd component

T2,3(x1 ⊗ x2 ⊗ x3 ⊗ x4) = x1 ⊗ x3 ⊗ x2 ⊗ x4 (106)
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a) Show that (C ⊗ C,Δ2, ε⊗ ε) (with ε⊗ ε(x ⊗ y) = ε(x)ε(y)) is coassociative coalgebra

with counit.

Let (H, μ, 1,Δ, ε, S) be a Hopf algebra. The convolution ∗ here will be that constructed

between the coalgebra (H⊗H,Δ2, ε⊗ ε) and the algebra (H, μ, 1). We consider the two

elements νi ∈ (Homk(H ⊗ H,H), ∗) defined by ν1 = S ◦ μ and ν2(x ⊗ y) = S(y)S(x).

b) Show that the elements νi are the convolutional inverses of μ. Deduce from this that

S : H �→ H is an antimorphism of algebras.

12. APPENDIX

12.1. Function spaces

Throughout the text, we use basic construction of set theory and algebra (see [4, 5]).

The set of mappings between two sets X and Y being denoted Y X , if k is a field one

notes

kX = {f : X −→ K} (107)

the vector space of all functions defined onX with values in k. For each function f ∈ kX ,

we call “support of f”, the set of points x ∈ X such that f(x) is not zeroΣ

supp(f) = {x ∈ X : f(x) 	= 0} (108)

the set of functions with finite support is a vector subspace of kX which is denoted k(X).

12.2. Basic structures

Definition 12.1 (Semigroup) A semigroup (S, ∗) is a set S endowed with an associative

law, this means that, for all x, y, z ∈ S one has x ∗ (y ∗ z) = (x ∗ y) ∗ z.
http://en.wikipedia.org/wiki/Semigroup

Definition 12.2 (Monoid) A monoid (M, ∗) is a semigroup which possesses a neutral,

i.e. an element e ∈M such that, for all x ∈M :

e ∗ x = x ∗ e = x. (109)

Such an element, if it exists is unique. The neutral is often denoted 1M .

http://en.wikipedia.org/wiki/Monoid

The free monoid of alphabet X is the set of strings x1x2 · · ·xn with letters xi ∈ X. This

set is denoted X∗ and its law is the concatenation. It is easily seen that this monoid

is free in the following sense. For any “set-theoretical” mapping φ : X �→ M , where

(M, ∗) is a monoid, φ can be uniquely extended to morphism φ̄ so that

X
φ ��

can
		�

��
��

��
� M

X∗
φ̄





Σ In integration theory, the support of a function is the closure of what we define as the (algebraic)
support.
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The free commutative monoid of alphabet X is the set of monomials Xα (α ∈ N(X)).

This set is denoted MON(X) and its law is the multiplication of monomials

XαXβ = Xα+β (110)

It is easily seen that this monoid is free in the following sense. For all “set-theoretical”

mapping φ : X �→ M , where (M, ∗) is a commutative monoid, φ cn be extended to

monomials such that

X
φ ��

can
		�

��
��

��
� M

X∗
φ̄





Definition 12.3 (Group) A group (G, ∗) is a monoid such that for each x ∈ G there

exists y such that

x ∗ y = y ∗ x = e. (111)

For fixed x such an element is unique and is usually denoted by x−1 and colled the

inverse of x.

Definition 12.4 (Algebra of a monoid) Let k be a field (scalars, if not familiar one can

think k = R or C). The algebra k[M ] of a monoid M (with coefficients in k) is the set

of mappings K(M) endowed with the convolution product

f ∗ g(w) =
∑
uv=w

f(u)g(v). (112)

The algebra (k[M ], ∗) is an AAU.

Each m ∈ M may be identified with its characteristic function (i.e. the Dirac function

δm with value 1 at m and 0 elsewhere). These functions form a basis of k[M ] and

then, every f ∈ k[M ] can be written as a finite sum f =
∑

w f(w)w. Through this

identification the unity of M and k[M ] coincide.
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