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Please, don’t spread before discussion

1 A version of the exponential formula

Applying the exponential paradigm one can feel sometimes incomfortable wondering
whether “one has the right” to do so (as for example for coloured structures). The
following is aimed at giving a rather large framework where this formula holds.

Exponential formula can be traced back to works by Touchard and Ridell & Uhlenbeck
[5, 3]. For an other exposition see for example [2, 4].
We are interested to compute various examples of EGF for combinatorial objects having
(a finite set of) nodes (i.e. their set-theoretical support) so we use as central concept the
mapping σ which associates to every structure, its set of nodes.
We need to draw what could be called “square-free decomposable objects” (SFD). This
version is suited to our needs for the “exponential formula”. It is sufficiently general to
contain, as a particular case, the case of multivariate series.
Let FSt the category of finite sets and C be a class of (combinatorial) objects endowed
with a mapping σ : C 7→ FSt. The setting (C, σ) will be called (SFD) if it fulfills the two
following conditions.

(DS) Direct sum. — There is a (partial) binary law ⊕ on C, defined for couples of objects
(ω1, ω2) such that σ(ω1) ∩ σ(ω2) = ∅, which is associative, commutative and such that

CF1 × CF2

⊕→ CF1∪F2 (1)

is into.
Moreover, C∅ consists in a single element {ε} which is neutral in the sense that, identically

ε⊕ ω = ω ⊕ ε = ω (2)

(LP) Levi’s property. — Let ω = ω1 ⊕ ω2 = ω1 ⊕ ω2 be two decompositions. Then it can
be found a four terms decomposition ω = ⊕i,j=1,2ω

i
j refining the original data in the sense

that the maginal sums give the factors of the decompositions i.e.

ωj = ω1
j ⊕ ω2

j and ωi = ωi1 ⊕ ωi2; i, j = 1, 2 (3)

Note 1.1 Condition (1) implies that σ(ω1 ⊕ ω2) = σ(ω1) t σ(ω2).

Now, an atom is any object ω 6= ε which cannot be split, formally

ω = ω1 ⊕ ω2 =⇒ ε ∈ {ω1, ω2} (4)

Example 1.2 As example of this setting we have:

1. the positive square-free integers σ(n) being the set of primes which divide n, the
atoms being the primes.

2. the positive integers σ(n) being the set of primes which divide n, the atoms being
the primes.
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3. graphs, hypergraphs, (finitely) coloured, weighted graphs, σ(G) being the set of nodes
and ⊕ the juxtaposition, here the atoms are connected graphs.

4. the class of endofunctions f with σ(f) = dom(f)

5. the (multivariate) polynomials in N[X] with σ = Alph and ⊕ = +.

6. the square-free monic (for a given order on the variables) polynomials ; σ(P ) being
the set of irreducible monic divisors of P and ⊕ being the multiplication.

7. complex algebraic curves ; σ(V ) being the set of monic irreducible bivariate polyno-
mials vanishing on an infinite subset of V .

The prescriptions (DS,LP) imply that decomposition of objects into atoms always exists
and is unique.

Proposition 1.3 Let ω ∈ C then ω = ω1 ⊕ ω2 ⊕ · · · ⊕ ωl the ωi being (dinstinct) atoms
and the set {ω1, ω2 · · ·ωl} depends only on ω.

In the class C, objects are conceived to be “measured” by different parameters (data in
statistical language). So, to get a general purpose tool, we suppose that the statistics
takes it’s values iin a ring K which contains Q (as, to write EGFs it is convenient to have
no trouble with the fractions 1

n!
). Let then c : C → K be the given statistic. In order to

write generating series, we need

1. that the sum cF =
∑

ω∈CF c(w) exists

2. that F → cF should depend only of the cardinality of F .

3. c(ω1 ⊕ ω2) = c(ω1).c(ω2)

We formalize it in

(LF) Local finiteness. — For each finite set F , the subclass

CF = {ω ∈ C|σ(ω) = F} (5)

is a finite set.
(Eq) Equivariance. —

|F1| = |F2| =⇒ cF1 = cF2 (6)

(Mu) Multiplicativity. —
c(ω1 ⊕ ω2) = c(ω1).c(ω2) (7)

Note 1.4 a) In fact, (LF) is a property of the class C, while (Eq) is a property of the
statistics. In practice, we choose C which is locally finite and choose equivariant statistics
for instance

c(ω) = x(number of cycles)y(number of fixed points)

for some variables x, y.

b) More generally, it is typical to take integer-valued partial (additive) statistics c1, · · · ci, · · · , cr
(for every ω ∈ C, ci(ω) ∈ N) and set c(ω) = x

c1(ω)
1 x

c2(ω)
2 · · ·xcr(ω)

r .

c) The class of examples 1.2.2 is not locally finite, but other examples satisfy (LF): 1.2.3
if one asks that the number of arrows and weight is finite, 1.2.1 and 1.2.5 to 1.2.7 in any
case.

2



Now, we are in position to state the exponential formula as it will be used throughout
the paper.

Proposition 1.5 Let C be a locally finite (SFD) and c : C → K an equivariant statistics
on C. For every subclass F one sets the following exponential generating series

E(F ; z) =
∞∑
n=0

c(F[1..n])
zn

n!
(8)

Let Ca be the set of atoms of C. Then, one has

E(C; z) = eE(Ca;z) (9)

Proof — (First Step). — We consider the subclasses of objects the atoms of which have
a support of cardinality n i.e.

C[n] = {ω ∈ C|ω = ω1⊕ω2⊕· · ·⊕ωs = ω with ωi ∈ Ca and |σ(ω)| = n for i = 1..s} (10)

These subclasses are closed under compositions (i.e. under ⊕) and decompositions and
their atoms Ca[n] = {ω ∈ C[n] ∩ Ca}. Now, one has, thanks to the partitions of [1..n]

C[1..n] =
⊔

k≥0, 0<n1<n2<···<nk
n1+n2+···nk=n

⊔
|Pj |=nj

P1tP2t···Pk=[1..n]

CP1 ⊕ CP2 ⊕ · · · ⊕ CPk (11)

c(C[1..n]) =
∑

k≥0

∑
0<n1<n2<···<nk
n1+n2+···nk=n

∑
|Pj |=nj

P1tP2t···Pk=[1..n]

c(CP1)c(CP2) · · · c(CPk) (12)

as, for disjoint sets, it is easy to check that c(CX ⊕ CY ) = c(CX)c(CY ). Now, due to the
equivariance of c and to the fact that partitions (P1, P2, · · · , Pk) such that Pj = nj and
P1 t P2 t · · ·Pk = [1..n] are in number

n!

n1!n2! · · ·nk!
we get

c(C[1..n]) =
∑

k≥0

∑
0<n1<n2<···<nk
n1+n2+···nk=n

n!

n1!n2! · · ·nk!c(C[1..n1])c(C[1..n2]) · · · c(C[1..nk]) (13)

thus
E(C) =

∏
n>0

E(C[n]) (14)

We then compute the factors.

E(C[n]) =
∑

k≥0

c(C[n][1..nk])
znk

(nk)!
(15)

but

E(Ca[n]) = c(Ca[1..n])
zn

n!
(16)
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(one monomial) and

eE(Ca[n]) =
∑

k≥0

c(Ca[1..n])
k znk

(n!)kk!
=
∑

k≥0

c(Ca[1..n])
k znk

(nk!)

(nk)!

(n!)kk!
=

∑

k≥0

c(C[n][1..nk])
znk

(nk)!
= E(C[n])

due to the fact that the number of (unordered) partitions of [1..nk] into k blocs of car-

dinality n is (nk)!
(n!)kk!

. To end the proof, it suffices to remark that Ca = tn>0Ca[n] and
then

E(C) =
∏
n>0

E(C[n]) =
∏
n>0

eE(Ca[n]) = e
P
n>0 E(Ca[n]) = eE(Ca) (17)

Note 1.6 The proof suggests us that it is fruitful to factor a class C into (full) subclasses
i.e. that are generated by a partition of the atoms.
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