A Three-Parameter Hopf Deformation of the Algebra of Feynman-like Diagrams

G H E Duchamp ${ }^{a}$, P Blasiak ${ }^{b}$, A Horzela ${ }^{b}$, K A Penson ${ }^{c}$, A I Solomon ${ }^{c, d}$,
${ }^{a}$ LIPN - UMR 7030
CNRS - Université Paris 13
F-93430 Villetaneuse, France
${ }^{b}$ H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences ul. Eliasza-Radzikowskiego 152, PL 31342 Kraków, Poland
${ }^{c}$ Laboratoire de Physique Théorique de la Matière Condensée Université Pierre et Marie Curie, CNRS UMR 7600
Tour 24 - 2ième ét., 4 pl. Jussieu, F 75252 Paris Cedex 05, France
${ }^{d}$ The Open University, Physics and Astronomy Department Milton Keynes MK7 6AA, United Kingdom
E-mail:
ghed@lipn-univ.paris13.fr, a.i.solomon@open.ac.uk
pawel.blasiak@ifj.edu.pl, andrzej.horzela@ifj.edu.pl, penson@lptl.jussieu.fr,

Abstract

We construct a three-parameter deformation of the Hopf algebra LDIAG. This is the algebra that appears in an expansion in terms of Feynman-like diagrams of the product formula in a simplified version of Quantum Field Theory. This new algebra is a true Hopf deformation which reduces to LDIAG for some parameter values and to the algebra of Matrix Quasi-Symmetric Functions (MQSym) for others, and thus relates LDIAG to other Hopf algebras of contemporary physics. Moreover, there is an onto linear mapping preserving products from our algebra to the algebra of Euler-Zagier sums.

Contents

1 Introduction 2
2 How and why these Feynman-like Diagrams arise 2
3 Non-commutative lifting (classical case) 5
3.1 Free monoids 5
3.2 Labeling the nodes 6
3.3 Coding ldiag with"lists of monomials" 7
4 The Hopf algebra LDIAG (non-deformed case) 8
4.1 The monoid $\left(\mathfrak{M O N}^{+}(X)\right)^{*}$ and the submonoid of codes of diagrams 8
4.2 The Hopf algebras $\mathcal{C}_{\text {ldiag }}$ and LDIAG 10
4.3 Subalgebras of LDIAG 13
4.3.1 Graphic primitive elements 13
4.3.2 Level subalgebras 14
4.3.3 BELL and LBELL 15
5 The algebra LDIAG $\left(q_{c}, q_{s}, q_{t}\right)$ (deformed case) 15
5.1 Counting crossings $\left(q_{c}\right)$ and superpositions $\left(q_{s}\right)$ 15
5.2 Modified laws 16
6 Coproducts 19
7 More on LDIAG $\left(q_{c}, q_{s}, q_{t}\right)$: structure, images and the link with Euler- Zagier sums 20
8 Concluding remarks 21

1. Introduction

We briefly describe the passage from the product formula, as described by by Bender et al. [3], and the related Feynman-like diagrams, to the description of Hopf algebra structures [13] on the diagrams themselves compatible with their evaluations.
First, C. M. Bender, D. C. Brody, and B. K. Meister [3] introduced a special field theory which proved to be particularly rich in combinatorial links and by-products.
Second, the Feynman-like diagrams produced by this theory label monomials; these monomials combine in a manner compatible with the monomial multiplication and coaddition \ddagger. This is the Hopf algebra DIAG.
Third, the natural noncommutative pull-back of this algebra, LDIAG, has a basis (the labeled diagrams) which is in one-to-one correspondence with that of the Matrix Quasi-Symmetric Functions (the packed matrices of MQSym), but their algebra and co-algebra structures are completely different. In particular, in this basis, the multiplication of MQSym implies a sort of shifted shuffle with overlappings reminiscent of Hoffmann's shuffle used in the theory of of polyzeta functions[10]. The superpositions and overlappings involved there are not present in the (non-deformed) LDIAG and, moreover, the coproduct of LDIAG is co-commutative while that of MQSym is not.

The aim of this paper is to introduce a "parametric algebra" which mediates between the two Hopf algebras LDIAG and MQSym. The striking result is that when we introduce parameters which count the crossings and overlappings of the shifted shuffle, one notes that the resulting law is associative (graded with unit). We also show how to interpolate with a coproduct which makes, at each stage, our algebra a Hopf algebra. The result is thus a three-parameter Hopf algebra deformation which reduces to LDIAG at $(0,0,0)$ and to MQSym at $(1,1,1)$. Moreover it appears that, for one set of parameters, the multiplication rule of LDIAG recovers that of Euler-Zagier sums.

Acknowledgements: The authors are pleased to acknowledge the hospitality of institutions in Paris, Cracow and New York. Special thanks are due to Catherine Borgen for having created a fertile atmosphere in Exeter (UK) where the first and last parts of this manuscript were prepared. We take advantage of these lines to acknowledge support from the Polish Ministry of Science and Higher Education under Grant N ${ }^{0} 202$ 107 32/2832. Also, we are grateful to Loic Foissy and Jim Stasheff for their thorough reading.

2. How and why these Feynman-like Diagrams arise

The beginning of the story was fully explained in [30, 31, 32, 25, 4, 5] and the Hopf algebra structure was made precise in $[13,34]$. In this note we shall emphasize the
\ddagger i.e. the commultiplication obtained by replacing each variable by the sum of two (independent) copies of it.
latter part of the analysis, where the algebraic structure constructed on the diagrams themselves arise.

Our starting point is the formula (product formula) of Bender and al. [3], which can be considered as an expression of the Hadamard product for an exponential generating series. That is, using

$$
\begin{equation*}
F(z)=\sum_{n \geq 0} a_{n} \frac{z^{n}}{n!}, G(z)=\sum_{n \geq 0} b_{n} \frac{z^{n}}{n!}, \mathcal{H}(F, G):=\sum_{n \geq 0} a_{n} b_{n} \frac{z^{n}}{n!} \tag{1}
\end{equation*}
$$

one can check that

$$
\begin{equation*}
\mathcal{H}(F, G)=\left.F\left(z \frac{d}{d x}\right) G(x)\right|_{x=0} \tag{2}
\end{equation*}
$$

When $F(0)$ and $G(0)$ are not zero one can normalize the functions in this bilinear product so that $F(0)=G(0)=1$. We wish to obtain compact and generic formulas. If we write the functions as

$$
\begin{equation*}
F(z)=\exp \left(\sum_{n=1}^{\infty} L_{n} \frac{z^{n}}{n!}\right), \quad G(z)=\exp \left(\sum_{n=1}^{\infty} V_{n} \frac{z^{n}}{n!}\right) . \tag{3}
\end{equation*}
$$

that is, as free exponentials, then by using Bell polynomials in the sets of variables \mathbb{L}, \mathbb{V} (see [13, 19] for details), we obtain

$$
\begin{equation*}
\mathcal{H}(F, G)=\sum_{n \geq 0} \frac{z^{n}}{n!} \sum_{P_{1}, P_{2} \in U P_{n}} \mathbb{L}^{\text {Type }\left(P_{1}\right)} \mathbb{V}^{\text {Type }\left(P_{2}\right)} \tag{4}
\end{equation*}
$$

where $U P_{n}$ is the set of unordered partitions of $[1 \cdots n]$. An unordered partition P of a set X is a subset of $P \subset \mathfrak{P}(X)-\{\emptyset\} \S$ (that is an unordered collection of blocks, i. e. non-empty subsets of X) such that

- the union $\bigcup_{Y \in P} Y=X$ (P is a covering)
- P consists of disjoint subsets, i. e.
$Y_{1}, Y_{2} \in P$ and $Y_{1} \cap Y_{2} \neq \emptyset \Longrightarrow Y_{1}=Y_{2}$.
The type of $P \in U P_{n}$ (denoted above by Type (P)) is the multi-index $\left(\alpha_{i}\right)_{i \in \mathbb{N}^{+}}$such that α_{k} is the number of k-blocks, that is the number of members of P with cardinality k.

At this point the formula entangles and the diagrams of the theory arise.
Note particularly that

- the monomial $\mathbb{L}^{\text {Type }\left(P_{1}\right)} \mathbb{V}^{T y p e\left(P_{2}\right)}$ needs much less information than that which is contained in the individual partitions P_{1}, P_{2} (for example, one can relabel the elements without changing the monomial),

[^0]- two partitions have an incidence matrix from which it is still possible to recover the types of the partitions.

The construction now proceeds as follows.
(i) Take two unordered partitions of $[1 \cdots n]$, say P_{1}, P_{2}
(ii) Write down their incidence matrix $(\operatorname{card}(Y \cap Z))_{(Y, Z) \in P_{1} \times P_{2}}$
(iii) Construct the diagram representing the multiplicities of the incidence matrix : for each block of P_{1} draw a black spot (resp. for each block of P_{2} draw a white spot)
(iv) Draw lines between the black spot $Y \in P_{1}$ and the white spot $Z \in P_{2}$; there are $\operatorname{card}(Y \cap Z)$ such.
(v) Remove the information of the blocks Y, Z, \cdots.

In so doing, one obtains a bipartite graph with $p\left(=\operatorname{card}\left(P_{1}\right)\right)$ black spots, q $\left(=\operatorname{card}\left(P_{2}\right)\right)$ white spots, no isolated vertex and integer multiplicities. We denote the set of such diagrams by diag.
$\{1\} \quad\{2,3,4\}\{5,6,7,8,9\}\{10,11\}$

Fig 1. - Diagram from P_{1}, P_{2} (set partitions of $[1 \cdots 11]$).
$P_{1}=\{\{2,3,5\},\{1,4,6,7,8\},\{9,10,11\}\}$ and $P_{2}=\{\{1\},\{2,3,4\},\{5,6,7,8,9\},\{10,11\}\}$ (respectively black spots for P_{1} and white spots for P_{2}).
The incidence matrix corresponding to the diagram (as drawn) or these partitions is $\left(\begin{array}{llll}0 & 2 & 1 & 0 \\ 1 & 1 & 3 & 0 \\ 0 & 0 & 1 & 2\end{array}\right)$. But, due to the fact that the defining partitions are unordered, one can permute the spots (black and white, between themselves) and, so, the lines and columns of this matrix can be permuted. the diagram could be represented by the matrix $\left(\begin{array}{llll}0 & 0 & 1 & 2 \\ 0 & 2 & 1 & 0 \\ 1 & 0 & 3 & 1\end{array}\right)$ as well.

The product formula now reads

$$
\begin{equation*}
\mathcal{H}(F, G)=\sum_{n \geq 0} \frac{z^{n}}{n!} \sum_{\substack{d \in d i a g \\|d|=n}} \operatorname{mult}(d) \mathbb{L}^{\alpha(d)} \mathbb{V}^{\beta(d)} \tag{5}
\end{equation*}
$$

where $\alpha(d)$ (resp. $\beta(d)$) is the "white spots type" (resp. the "black spots type") i.e. the multi-index $\left(\alpha_{i}\right)_{i \in \mathbb{N}^{+}}\left(\right.$resp. $\left.\left(\beta_{i}\right)_{i \in \mathbb{N}^{+}}\right)$such that α_{i} (resp. β_{i}) is the number of white
spots (resp. black spots) of degree i (i lines connected to the spot) and mult (d) is the number of pairs of unordered partitions of $[1 \cdots|d|]$ (here $|d|=|\alpha(d)|=|\beta(d)|$ is the number of lines of d) with associated diagram d.

Now one may naturally ask Q1) "Is there a (graphically) natural multiplicative structure on diag such that the arrow

$$
\begin{equation*}
d \mapsto \mathbb{L}^{\alpha(d)} \mathbb{V}^{\beta(d)} \tag{6}
\end{equation*}
$$

be a morphism ?"
The answer is "yes". The desired product just consists in concatenating the diagrams (the result, i.e. the diagram obtained in placing d_{2} at the right of d_{1}, will be denoted by $\left.\left[d_{1} \mid d_{2}\right]_{D}\right)$. One must check that this product is compatible with the equivalence of the permutation of white and black spots among themselves, which is rather straightforward (see [13]). We have

Proposition 2.1 Let diag be the set of diagrams (including the empty one).
i) The law $\left(d_{1}, d_{2}\right) \mapsto\left[d_{1} \mid d_{2}\right]_{D}$ endows diag with the structure of a commutative monoid with the empty diagram as neutral element(this diagram will, therefore, be denoted by $1_{\text {diag }}$).
ii) The arrow $d \mapsto \mathbb{L}^{\alpha(d)} \mathbb{V}^{\beta(d)}$ is a morphism of monoids, the codomain of this arrow being the monoid of (commutative) monomials in the alphabet $\mathbb{L} \cup \mathbb{V}$ i.e.

$$
\mathfrak{M O N}(\mathbb{L} \cup \mathbb{V})=\left\{\mathbb{L}^{\alpha} \mathbb{V}^{\beta}\right\}_{\alpha, \beta \in(\mathbb{N}+)^{(N)}}=\bigcup_{n, m \geq 1}\left\{L_{1}^{\alpha_{1}} L_{2}^{\alpha_{2}} \cdots L_{n}^{\alpha_{n}} V_{1}^{\beta_{1}} V_{2}^{\beta_{2}} \cdots V_{m}^{\beta_{m}}\right\}_{\alpha_{i}, \beta_{j} \in \mathbb{N}}
$$

iii) The monoid (diag, $[-\mid-]_{D}, 1_{\text {diag }}$) is a free commutative monoid. Its letters are the connected (non-empty) diagrams.

Remark 2.2 The reader who is not familiar with the algebraic structure of $\mathfrak{M O N}(\mathbb{X})$ can find rigorous definitions in paragraph (3.1) where this structure is needed for the proofs relating to deformations.

3. Non-commutative lifting (classical case)

The "classical" construction of the Hopf algebra LDIAG was given in [13]. We give the proofs below, using a coding through "lists of monomials" needed for the deformed (quantum) case. The entries of a list can be considered as "coordinate functions" for the diagrams (see introduction of section (4)).

3.1. Free monoids

We recall here the construction of the free and free-commutative monoids generated by a given set of variables (i.e. an alphabet) [2].
Let \mathbb{X}, be a set. We denote by \mathbb{X}^{*} the set of lists of elements of \mathbb{X}, including the empty one. In many works, and in the sequel, the list $\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ will be considered as a
word $x_{1} x_{2} \cdots x_{n}$ so that the concatanation of two lists $\left[x_{1}, x_{2}, \cdots, x_{n}\right]$, $\left[y_{1}, y_{2}, \cdots, y_{m}\right]$ is just the word $x_{1} x_{2} \cdots x_{n} y_{1} y_{2} \cdots y_{m}$. For this (associative) law, the empty list [] is the neutral element and will therefore be denoted by $1_{\mathbb{X}^{*}}$

Similarly, we denote by $\mathbb{N}^{(\mathbb{X})}$ [6] the set of multisubsets of \mathbb{X} (i.e. the set of multiplicity - mappings with finite support $\mathbb{X} \mapsto \mathbb{N}$). Every element α of $\mathbb{N}^{(X)}$ can be written multiplicatively, following the classical multi-index notation

$$
\begin{equation*}
\mathbb{X}^{\alpha}=\prod_{x \in \mathbb{X}} x^{\alpha(x)} \tag{7}
\end{equation*}
$$

and the set $\mathfrak{M O N}(X)=\left\{\mathbb{X}^{\alpha}\right\}_{\alpha \in \mathbb{N}^{(X)}}$ is exactly the set of (commutative) monomials with variables in \mathbb{X}. It is a monoid, indeed a (multiplicative) copy of $\mathbb{N}^{(X)}$ as $\mathbb{X}^{\alpha} \mathbb{X}^{\beta}=\mathbb{X}^{\alpha+\beta}$. The subset of its non-unit elements is a semigroup which will be denoted by $\mathfrak{M O N}^{+}(X)$ $\left(=\mathfrak{M O N}(X)-\left\{\mathbb{X}^{0}\right\}\right)$.

3.2. Labeling the nodes

There are (at least) two good reasons to look for non-commutative structures which may serve as a noncommutative pullback for diag.

- Rows and Columns of matrices are usually (linearly) ordered and we have seen that a diagram is not represented by a matrix but by a class of matrices
- The complexity of diag and its algebra is not sufficient to relate it to other (noncommutative or non-cocommutative) algebras relevant to contemporary physics

The solution (of the non-deformed problem [13]) is simple and consists in labeling the nodes from left to right and from " 1 " to the desired number as follows.

Fig 2. - Labelled diagram of format 3×4 corresponding to the one of Fig 1 .

The set of these graphs (i.e. bipartite graphs on some product $[1 . . p] \times[1 . . q]$ with no isolated vertex) will be denoted by ldiag. The composition law is, as previously, concatenation in the obvious sense. Explicitly, if $d_{i}, i=1,2$ are two diagrams of dimension $\left[1 . . p_{i}\right] \times\left[1 . . q_{i}\right]$, one relabels the black (resp. white) spots of d_{2} from $p_{1}+1$ to $p_{1}+p_{2}$ (resp. from $q_{1}+1$ to $\left.q_{1}+q_{2}\right)$ the result will be noted $\left[d_{1} \mid d_{2}\right]_{L}$. One has

Proposition 3.1 Let ldiag be the set of labeled diagrams (including the empty one).
i) The law $\left(d_{1}, d_{2}\right) \mapsto\left[d_{1} \mid d_{2}\right]_{L}$ endows ldiag with the structure of a noncommutative monoid with the empty diagram $(p=q=0)$ as neutral element(which will, therefore, be denoted by $1_{\text {ldiag }}$).
ii) The arrow from ldiag to diag, which implies "forgetting the labels of the vertices" is a morphism of monoids.
iii) The monoid (ldiag, $[-\mid-]_{L}, 1_{\text {ldiag }}$) is a free (noncommutative) monoid. Its letters are the irreducible diagrams (denoted from now on by irr(ldiag)).

Remark 3.2 i) In a general monoid $\left(M, \star, 1_{M}\right)$, the irreducible elements are the elements $x \neq 1_{M}$ such that $x=y \star z \Longrightarrow 1_{M} \in\{y, z\}$.
ii) It can happen that an irreducible of ldiag has an image in diag which splits, as shown by the simple example of the cross defined by the incidence matrix $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.

3.3. Coding ldiag with "lists of monomials"

One can code every labelled diagram by a "list of (commutative) monomials" in the following way.

- Let $\mathbb{X}=\left\{x_{i}\right\}_{i \geq 1}$ be an infinite set of indeterminates and $d \in \operatorname{ldiag}_{p \times q}$ a diagram ($\boldsymbol{\operatorname { d d i a g }}_{p \times q}$ is the set of diagrams with p black spots and q white spots).
- Associate with d the multiplicity function $[1 . . p] \times[1 . . q] \rightarrow \mathbb{N}$ such that $d(i, j)$ is the number of lines from the black spot i to the white spot j.
- The code associated with d is $\varphi_{l m}(d)=\left[m_{1}, m_{2}, \cdots, m_{p}\right]$ such that $m_{i}=\prod_{j=1}^{q} x_{j}^{m(i, j)}$

Fig 3. - Coding the diagram of fig 2 by a word of monomials. The code here is $\left[x_{2}^{2} x_{3}, x_{1} x_{2} x_{3}^{3}, x_{3} x_{4}^{2}\right]$

As a data structure, the lists of monomials are elements of $\left(\mathfrak{M O N}^{+}(X)\right)^{*}$, the free monoid whose letters are $\mathfrak{M O} \mathfrak{N}^{+}(X)=\mathfrak{M O N}(X)-\left\{\mathbb{X}^{0}\right\}$, the semigroup of non-unit monomials over \mathbb{X}.

It is not difficult to see that, through this coding, concatenation is reflected in the following formula

$$
\begin{equation*}
\varphi_{l m}\left(\left[d_{1} \mid d_{2}\right]_{L}\right)=\varphi_{l m}\left(d_{1}\right) * T_{\max \left(\operatorname{IndAlph}\left(\varphi_{l m}\left(l_{1}\right)\right)\right)}\left(\varphi_{l m}\left(d_{2}\right)\right) \tag{8}
\end{equation*}
$$

where T_{p} is the translation operator which changes the variables according to $T_{p}\left(x_{i}\right)=x_{i+p}$ (which corresponds to the relabelling of the white spots) and p_{1} is the number of black spots of d_{1}.
For example, one has

$$
\begin{equation*}
T_{2}\left(\left[x_{2}^{2} x_{3}, x_{1} x_{2} x_{3}^{3}, x_{3} x_{4}^{2}\right]\right)=\left[x_{4}^{2} x_{5}, x_{3} x_{4} x_{5}^{3}, x_{5} x_{6}^{2}\right] ; T_{6}\left(\left[x_{1}, x_{2}^{2}\right]\right)=\left[x_{7}, x_{8}^{2}\right] \tag{9}
\end{equation*}
$$

4. The Hopf algebra LDIAG (non-deformed case)

In [13], we defined a Hopf algebra structure on the space of diagrams LDIAG. The aim of this section is to give complete proofs and details for this construction through the use of the special space of coordinates constructed above (the complete vector of coordinates of a diagram being its code).

4.1. The monoid $\left(\mathfrak{M O N}^{+}(X)\right)^{*}$ and the submonoid of codes of diagrams

Formula (8) can be written using lists as

$$
\begin{equation*}
l_{1} \bar{*} l_{2}=l_{1} * T_{\max \left(\operatorname{IndAlph}\left(l_{1}\right)\right)}\left(l_{2}\right) \tag{10}
\end{equation*}
$$

which defines a monoid structure on $\left(\mathfrak{M O N}^{+}(X)\right)^{*}$ (the set of lists of non-unit monomials) with the empty list as neutral (i.e. [] which will, therefore, be denoted by " $1_{\left(\mathfrak{M O N}^{+}(X)\right)^{*}}$ " or simply " 1 " when the context is clear).
We will return to this construction (called shifting [18]) later.
The alphabet of a list is the set of variables occurring in the list. Formally

$$
\begin{equation*}
\operatorname{Alph}\left(\left[m_{1}, m_{2}, \cdots m_{n}\right]\right)=\bigcup_{1 \leq i \leq k} \operatorname{Alph}\left(m_{i}\right) \tag{11}
\end{equation*}
$$

where, classically, for a monomial $m=\mathbb{X}^{\alpha}, \operatorname{Alph}(m)=\left\{x_{i}\right\}_{\alpha(i) \neq 0}$.
Now, we can define the "compacting operator" on $k\left\langle\mathfrak{M O N}^{+}(X)\right\rangle$ by its action on the lists. This operator actually removes the holes in the alphabet of a list by pushing to the left the indices which are at the right of a hole. For example (we denote by cpt the operator)

$$
\begin{equation*}
\operatorname{cpt}\left(\left[x_{2}^{2} x_{10}, x_{3} x_{4} x_{8}^{3}, x_{3} x_{4}^{2}\right]\right)=\left[x_{1}^{2} x_{5}, x_{2} x_{3} x_{4}^{3}, x_{2} x_{3}^{2}\right] . \tag{12}
\end{equation*}
$$

The alphabet of the list on the LHS is $\operatorname{Alph}(l)=\operatorname{Alph}\left(\left[x_{2}^{2} x_{10}, x_{3} x_{4} x_{8}^{3}, x_{3} x_{4}^{2}\right]\right)=$ $\left\{x_{2}, x_{3}, x_{4}, x_{8}, x_{10}\right\}$, its indices are $\operatorname{IndAlph}(l)=\{2,3,4,8,10\}$ and the re-indexing function is the unique strictly increasing mapping from $\{2,3,4,8,10\}$ to [[5]]. Here the compacting operator is just the substitution

$$
x_{1} \leftarrow x_{2} ; x_{2} \leftarrow x_{3} ; x_{3} \leftarrow x_{4} ; x_{4} \leftarrow x_{8} ; x_{5} \leftarrow x_{10}
$$

The formal definitions are the following

$$
\text { - } \operatorname{IndAlph}(l)=\left\{i \mid x_{i} \in \operatorname{Alph}(l)\right\}
$$

- l being given, let ϕ_{l} be the unique increasing mapping from $\operatorname{IndAlph}(l)$ to $[[\operatorname{card}(\operatorname{IndAlph}(l))]]$ (in fact, $\operatorname{card}(\operatorname{IndAlph}(l))=\operatorname{card}(\operatorname{Alph}(l)))$
- let s_{l} be the substitution $x_{i} \leftarrow x_{\phi_{l}(i)}$ in the monomials.
- Then, if $l=\left[m_{1}, m_{2}, \cdots m_{n}\right], \operatorname{cpt}(l)=\left[s_{l}\left(m_{1}\right), s_{l}\left(m_{2}\right), \cdots s_{l}\left(m_{n}\right)\right]$.

Définition 4.1 The compacting operator cpt : $k\left\langle\mathfrak{M O N}^{+}(X)\right\rangle \mapsto k\left\langle\mathfrak{M O N}^{+}(X)\right\rangle$ is the extension by linearity of the mapping cpt defined above.

It can be checked easily that, for $l \in\left(\mathfrak{M O N}^{+}(X)\right)^{*}$, the following are equivalent
(i) $\operatorname{cpt}(l)=l$
(ii) $\operatorname{IndAlph}(l)=[[\operatorname{card}(\operatorname{IndAlph}(l))]]$
(iii) there is no hole in $\operatorname{Alph}(l)$; that is, there exists no $i \geq 1$ s.t. $x_{i} \notin \operatorname{Alph}(l)$ and $\left.x_{i+1} \in \operatorname{Alph}(l)\right)$
(iv) l is the code of some (then unique) diagram d.

It follows from the preceding properties that cpt is a projector with range the subspace $\mathcal{C}_{\text {ldiag }}$ of $k\left\langle\mathfrak{M} \mathfrak{V}^{+}(\mathbb{X})\right\rangle$ generated by the codes of the diagrams. Formula (8) proves that $\mathcal{C}_{\text {ldiag }}$ is closed under the shifted concatenation defined by (10). More precisely Proposition 4.2 The algebra $\mathcal{C}_{\text {ldiag }}$ is a free algebra on the set of the codes of irreducible diagrams.

These codes are also the non-empty lists l which are compact (i.e. $c p t(l)=l$) and cannot be factorized into a product of two non-empty lists i.e. $l=l_{1} * l_{2} ; l_{i} \neq[$] (one can check easily that, if $l_{1} * l_{2}$ is compact, so are l_{1} and l_{2}).

4.2. The Hopf algebras $\mathcal{C}_{\text {ldiag }}$ and LDIAG

The algebra LDIAG is endowed with the structure of a bi-algebra by the comultiplication

$$
\begin{equation*}
\Delta_{B S}(d)=\sum_{I+J=[1 . . p]} d[I] \otimes d[J] \tag{13}
\end{equation*}
$$

where p is the number of black spots and $d[I]$ is the "restriction" of d to the black spots selected by the $I \subset[1 . . p]$.
On the other hand, we have a standard Hopf algebra structure on the free algebra, expressed in terms of concatenation and subwords $[23,28]$. Let \mathbb{A} be an alphabet (a set of letters) and $w \in \mathbb{A}^{*}$ a word, if we write w a a sequence of letters $w=a_{1} a_{2} \cdots a_{n} ; a_{i} \in \mathbb{A}$, the length $|w|$ of w is n and if $I=\left\{i_{1}, i_{2}, \cdots i_{k}\right\} \subset[1 . . n]$, the subword $w[I]$ is $a_{i_{1}} a_{i_{2}} \cdots a_{i_{k}}$ (this notation is slightly different from that of [28] where it is $\left.w\right|_{I}$). Then, the free algebra $k\langle\mathbb{A}\rangle$ is a Hopf algebra with comultiplication [28, 23].

$$
\begin{equation*}
\Delta_{\text {LieHopf }}(w)=\sum_{I+J=[1 . . n]} w[I] \otimes w[J] . \tag{14}
\end{equation*}
$$

One has the following relation between restrictions of diagrams and subwords

$$
\begin{equation*}
\varphi_{l m}(d[I])=\operatorname{cpt}\left(\varphi_{l m}(d)[I]\right) \tag{15}
\end{equation*}
$$

this suggests that the coproduct

$$
\begin{equation*}
\Delta_{l i s t}(l)=\sum_{I+J=[1 . . n]} c p t(l[I]) \otimes \operatorname{cpt}(l[J]) \tag{16}
\end{equation*}
$$

could be a Hopf algebra comultiplication for the shifted algebra $\left(k\left\langle\mathfrak{M O N}^{+}(\mathbb{X})\right\rangle, \bar{\kappa},[]\right)$. Unfortunately, this fails due to the lack of counit (i and ii of the following Theorem),
but the "ground subalgebra" $\mathcal{C}_{\text {ldiag }}$ is a genuine Hopf algebra (which is exactly what we do need here).

Theorem 4.3 Let $\mathcal{A}=\left(k\left\langle\mathfrak{M O N}^{+}(\mathbb{X})\right\rangle, \bar{*},[]\right)$ be the algebra of lists of (non-unit) monomials endowed with the shifted concatenation of formula (10). Then
i) \mathcal{A} is a free algebra.
ii) The coproduct $\Delta_{\text {list }}$ (recalled below) is co-associative and a morphism of algebras $\mathcal{A} \mapsto \mathcal{A} \otimes \mathcal{A}$ (i.e. \mathcal{A} is a bi-algebra without counit).

$$
\begin{equation*}
\Delta_{l i s t}(l)=\sum_{I+J=[1 . . n]} c p t(l[I]) \otimes \operatorname{cpt}(l[J]) \tag{17}
\end{equation*}
$$

iii) The algebra $\mathcal{C}_{\text {ldiag }}$ is a sub-algebra and coalgebra of \mathcal{A} which is a Hopf algebra for the following co-unit and antipode.

- Counit

$$
\begin{equation*}
\varepsilon(l)=\delta_{l,[]} \quad \text { (Kronecker delta) } \tag{18}
\end{equation*}
$$

- Antipode

$$
\begin{equation*}
S(l)=\sum_{r \geq 0} \sum_{\substack{I_{1}+I_{2}+\ldots I_{r}=[1 . p] \\ I_{j} \neq \emptyset}}(-1)^{r} \operatorname{cpt}\left(l\left[I_{1}\right]\right) \operatorname{cpt}\left(l\left[I_{2}\right]\right) \cdots \operatorname{cpt}\left(l\left[I_{r}\right]\right) \tag{19}
\end{equation*}
$$

Proof - i) Throughout the proof, we will denote by $*$ the concatenation between lists and $\bar{\not}$ the shifted concatenation defined by the formula (10). We first remark that, if $l=l_{1} \mp l_{2}$, then $\max \left(\operatorname{IndAlph}\left(l_{1}\right)\right)<\min \left(\operatorname{IndAlph}\left(l_{2}\right)\right)$. This leads us to define, for a (non-shifted) factorization $l=l_{1} * l_{2}=l[1 . . t] * l[t+1 . . p](p=|l|)$, a gauge of the degree of overlapping of the intervals (of integers) [1..max (IndAlph(l1))] and $[\min (\operatorname{IndAlph}(l 2)) . . \infty[$, thus the function

$$
\begin{align*}
& \omega_{l}(t)=\operatorname{card}([1 . . \max (\operatorname{IndAlph}(l[1 . . t])] \cap[\min (\operatorname{IndAlph}(l[t+1 . . p]) . . \infty[)= \\
& (\max (\operatorname{IndAlph}(l[1 . . t]))-\min (\operatorname{IndAlph}(l[t+1 . . p]))+1)^{+} . \tag{20}
\end{align*}
$$

(We recall that, for a real number x, x^{+}is its positive part $x^{+}=\max (x, 0)=\frac{1}{2}(|x|+x)$ [7]). It can be easily checked that the points t where $\omega_{l}(t)=0$ determine the (unique) factorisation of l in irreducibles. It follows that the monoid $\left(\left(\mathfrak{M O N}^{+}(\mathbb{X})\right)^{*}, \bar{*},[]\right)$ is free and so is its algebra $\left(k\left\langle\mathfrak{M O N}^{+}(\mathbb{X})\right\rangle, \bar{*},[]\right)$.
ii) If we denote $\Delta: \mathcal{A} \mapsto \mathcal{A} \otimes \mathcal{A}$ the standard coproduct given, for a list l of length p, by formula (14), one can remark that
(i) $\operatorname{cpt}\left(l_{1}\right) \bar{*} c p t\left(l_{2}\right)=\operatorname{cpt}\left(l_{1} \bar{*} l_{2}\right)$
(ii) $\Delta_{\text {list }}=(c p t \otimes c p t) \circ \Delta$
(iii) $\Delta_{\text {list }} \circ c p t=\Delta_{l i s t}$
(iv) $(\forall n \in \mathbb{N})\left(c p t\left(T_{n}(l)\right)=c p t(l)\right)$
(v) $(\forall n \in \mathbb{N})\left(\Delta \circ T_{n}=\left(T_{n} \otimes T_{n}\right) \circ \Delta\right)$.

Coassociativity of $\Delta_{\text {list }}$. -
One has

$$
\begin{align*}
& \left(\Delta_{l i s t} \otimes I d\right) \circ \Delta_{l i s t}=\left(\Delta_{l i s t} \otimes I d\right) \circ(c p t \otimes c p t) \circ \Delta=‘ \\
& \left(\left(\Delta_{l i s t} \circ c p t\right) \otimes c p t\right) \circ \Delta=\left(\Delta_{l i s t} \otimes c p t\right) \circ \Delta= \\
& (((c p t \otimes c p t) \circ \Delta) \otimes c p t) \circ \Delta= \\
& (c p t \otimes c p t \otimes c p t) \circ(\Delta \otimes I d) \circ \Delta=(c p t \otimes c p t \otimes c p t) \circ(I d \otimes \Delta) \circ \Delta \\
& (c p t \otimes((c p t \otimes c p t) \circ \Delta)) \circ \Delta=\left(c p t \otimes \Delta_{l i s t}\right) \circ \Delta= \\
& \left(c p t \otimes\left(\Delta_{l i s t} \circ c p t\right)\right) \circ \Delta= \\
& \left(I d \otimes \Delta_{l i s t}\right) \circ(c p t \otimes c p t) \circ \Delta=\left(I d \otimes \Delta_{l i s t}\right) \circ \Delta_{l i s t} \tag{21}
\end{align*}
$$

$\Delta_{l i s t}$ IS A MORPHISM. -
For two lists $u, v \in$, let us compute $\Delta_{l i s t}(u \bar{*} v)$. With $p=\max (\operatorname{IndAlph}(u))$, one has

$$
\begin{align*}
& \Delta_{\text {list }}(u \bar{*} v)=(c p t \otimes c p t) \circ \Delta\left(l_{1} * T_{p}(v)\right)= \\
& (c p t \otimes c p t)\left(\Delta(u) *^{\otimes 2} \Delta\left(T_{p}(v)\right)\right)= \\
& (c p t \otimes c p t)\left(\Delta(u) *^{\otimes 2}\left(T_{p} \otimes T_{p}\right) \Delta(v)=\right. \\
& (c p t \otimes c p t)\left(\sum_{(1)(2)} u_{(1)} \otimes u_{(2)}\right) *^{\otimes 2}\left(T_{p} \otimes T_{p}\right)\left(\sum_{(3)(4)} v_{(3)} \otimes v_{(4)}\right)= \\
& (c p t \otimes c p t)\left(\sum_{(1)(2)(3)(4)} u_{(1)} * T_{p_{1}}\left(T_{p-p_{1}}\left(v_{(3)}\right)\right) \otimes u_{(2)} * T_{p_{2}}\left(T_{p-p_{2}}\left(v_{(4)}\right)\right)\right) \tag{22}
\end{align*}
$$

with, for each term in the sum

$$
p_{1}=\max \left(\operatorname{IndAlph}\left(u_{(1)}\right)\right) \leq p ; p_{2}=\max \left(\operatorname{IndAlph}\left(u_{(2)}\right)\right) \leq p
$$

so, the quantity in (22) is

$$
\begin{aligned}
& (c p t \otimes c p t)\left(\sum_{(1)(2)(3)(4)} u_{(1)} \bar{*}\left(T_{p-p_{1}}\left(v_{(3)}\right)\right) \otimes u_{(2)} \bar{*}\left(T_{p-p_{2}}\left(v_{(4)}\right)\right)\right)= \\
& \sum_{(1)(2)(3)(4)} c p t\left(u_{(1)} \bar{*}\left(T_{p-p_{1}}\left(v_{(3)}\right)\right)\right) \otimes \operatorname{cpt}\left(u_{(2)} \bar{*}\left(T_{p-p_{2}}\left(v_{(4)}\right)\right)\right)= \\
& \sum_{(1)(2)(3)(4)}\left(c p t\left(u_{(1)}\right) \overline{\mathcal{*}} c p t\left(T_{p-p_{1}}\left(v_{(3)}\right)\right)\right) \otimes\left(c p t\left(u_{(2)}\right) \bar{\mp} c p t\left(T_{p-p_{2}}\left(v_{(4)}\right)\right)\right)= \\
& \sum_{(1)(2)(3)(4)}\left(c p t\left(u_{(1)}\right) \bar{*} c p t\left(v_{(3)}\right)\right) \otimes\left(c p t\left(u_{(2)}\right) \bar{*} c p t\left(v_{(4)}\right)\right)= \\
& \left(\sum_{(1)(2)} c p t\left(u_{(1)}\right) \otimes \operatorname{cpt}\left(u_{(2)}\right)\right) \overline{\mathcal{F}}^{\otimes 2}\left(\sum_{(3)(4)} c p t\left(v_{(3)}\right) \otimes c p t\left(v_{(4)}\right)\right)=
\end{aligned}
$$

$$
\begin{equation*}
\Delta_{l i s t}(u) \bar{\star}^{\otimes 2} \Delta_{l i s t}(v) \tag{23}
\end{equation*}
$$

iii) As $\mathcal{C}_{\text {ldiag }}$ is generated by the image of $c p t$ it is clear that this space is a subcoalgebra of \mathcal{A}. Moreover, $c p t$ is a (multiplicative) morphism $\mathcal{A} \mapsto \mathcal{A}$ and thus its image $\mathcal{C}_{\text {ldiag }}$ is a subalgebra of \mathcal{A}. We now supply the missing ingredients to complete the proof of the Hopf algebra structure.

```
\(\varepsilon\) IS A COUNIT. -
```

Let $l=\operatorname{cpt}(l)$ be a compact list. We remark that, for any list u, one has $\operatorname{cpt}(u)=[] \Longleftrightarrow u=[]$. Then, with $\mu_{l}: k \otimes \mathcal{A} \mapsto \mathcal{A}$ the scaling operator

$$
\begin{gather*}
\mu_{l}(\varepsilon \otimes I d) \Delta_{l i s t}(l)=\sum_{\substack{I+J=[1 . . n] \\
I=\emptyset}} \varepsilon(c p t(l[I])) \operatorname{cpt}(l[J])+\sum_{\substack{I+J=[1 . . n] \\
I \neq \emptyset}}^{I+J=[1 . . n]} \varepsilon(c p p t(l[I])) \operatorname{cpt}(l[J[J])= \\
\sum_{\substack{ \\
I \neq 0}} \varepsilon(\operatorname{cpt}(l[J])=\operatorname{cpt}(l)+0=l \tag{24}
\end{gather*}
$$

the proof of the fact that ε is a left counit is similar.

S IS THE ANTIPODE. -

One has $\mathcal{C}_{\text {ldiag }}=k .1 \oplus \operatorname{ker}(\varepsilon)$, let us denote $I d^{+}$the projection $\mathcal{C}_{\text {ldiag }} \mapsto \operatorname{ker}(\varepsilon)$ according to this decomposition.
Then, for every list l,

$$
\sum_{\substack{r \geq 0}} \sum_{\substack{I_{1}+I_{2}+\ldots I_{r}=[1 . . p] \\ I_{j} \neq \emptyset}}(-1)^{r} \operatorname{cpt}\left(l\left[I_{1}\right]\right) \operatorname{cpt}\left(l\left[I_{2}\right]\right) \cdots \operatorname{cpt}\left(l\left[I_{r}\right]\right)
$$

is well defined as the first sum is locally finite. Thus, the operator

$$
\sum_{r \geq 0} \sum_{\substack{I_{1}+I_{2}+\ldots I_{r}=[1 . . p] \\ I_{j} \neq 0}}(-1)^{r} \underbrace{\left(I d^{+} * I d^{+} * \cdots * I d^{+}\right)}_{r \text { times }}
$$

is well defined and is the convolutional inverse of $I d$.

4.3. Subalgebras of LDIAG

4.3.1. Graphic primitive elements The problem of Graphic Primitive Elements (GPE) is the following.
Let \mathcal{H} be a Hopf algebra with (linear) basis G, a set of graphs. The GPE are the primitive elements $\Gamma \in G$ which are primitive i.e.

$$
\begin{equation*}
\Gamma \text { is a GPE } \Longleftrightarrow \Gamma \in G \text { and } \Delta(\Gamma)=\Gamma \otimes 1+1 \otimes \Gamma . \tag{25}
\end{equation*}
$$

It is not difficult to check that, in any case, the subalgebra $\mathcal{H}^{\mathrm{GPE}}$ generated by these elements is also a sub-coalgebra.
We make an extra hypothesis (which is often fulfilled)

$$
\begin{equation*}
1_{\mathcal{H}} \in G \text { and }\left(\Gamma \in G-\left\{1_{\mathcal{H}}\right\} \Longrightarrow \varepsilon(\Gamma)=0\right) . \tag{26}
\end{equation*}
$$

Then (if (26) is fulfilled) $\mathcal{H}^{\text {GPe }}$ is a sub-Hopf algebra as the antipode of the product $\Gamma_{1} \Gamma_{2} \cdots \Gamma_{p}$ of (GPE) is

$$
\begin{equation*}
S\left(\Gamma_{1} \Gamma_{2} \cdots \Gamma_{p}\right)=(-1)^{p} \Gamma_{p} \Gamma_{p-1} \cdots \Gamma_{1} . \tag{27}
\end{equation*}
$$

The following proposition helps to determine LDIAG ${ }^{\text {GPE }}$.
Proposition 4.4 In LDIAG (with basis $G=\mathrm{ldiag}$), the following are equivalent
i) d is a GPE
ii) d has only one black spot.

Then, the Hopf algebra LDIAG ${ }^{\text {GPE }}$ is generated by the product of "one-black-spot" diagrams.

Fig 4. - Graphic Primitive Elements of LDIAG have only one black spot and therefore are coded by the sequence of the ingoing degrees of their white spots (a composition). The first one here has code $[1,2,3,1]$. The picture shows an element of the monoid generated by Graphic Primitive Elements (a linear basis of LDIAG ${ }^{G P E}$) which is then coded by a list of compositions, here $[[1,2,3,1],[2,3,1],[2,1,4]]$.

4.3.2. Level subalgebras

One can also impose limitations on the incoming degrees of the white spots in a way compatible with the coproduct. In this case, one defines an infinity of Hopf-subalgebras of LDIAG which we will call "level subalgebras".
More precisely, given an integer $l>0$, one can ask for spaces generated by the diagrams d for which every white spot has an incoming degree $\leq l$. This amounts to say that the "white spot type" of every diagram d is of the form

$$
\alpha(d)=\left(\alpha_{1}, \alpha_{2}, \cdots \alpha_{k}, 0,0 \cdots 0, \cdots\right) ;\left(\text { all the } \alpha_{i} \leq l \text { for } i \leq k \text { and } \alpha_{i}=0 \text { for } i>k\right)
$$

We denote by LDIAG ${ }^{\leq l}$ the subspace generated by these diagrams. One has a chain of Hopf algebras

$$
\begin{equation*}
\mathbf{L D I A G}^{\leq 1} \subset \mathbf{L D I A G}^{\leq 2} \subset \cdots \text { LDIAG }^{\leq l} \subset \text { LDIAG }^{\leq l+1} \subset \cdots \subset \text { LDIAG } \tag{28}
\end{equation*}
$$

In the next paragraph, we will specially be interested in

$$
\mathbf{L B E L L}=\mathbf{L D I A G}^{\leq 1} \cap \text { LDIAG }^{\mathrm{GPE}} .
$$

4.3.3. BELL and LBELL

The algebras BELL and LBELL were defined in [33].

The algebra LBELL is the intersection LDIAG ${ }^{\leq 1} \cap$ LDIAG $^{\text {GPE }}$ and since they are subspaces generated by subsets of ldiag, LBELL is generated by diagrams that

- are concatenations of one-black-spot-diagrams
- such that the incoming degree of every white spot is one.

Let d_{k} be the diagram with code $\left[x_{1}, x_{2}, \cdots x_{k}\right]$. LBELL is generated by concatenations of these diagrams. Indeed, the diagrams d_{k} are a subalphabet of the free monoid ldiag so that they generate a free submonoid which we will denote here lbell.

Fig 5. - An element of lbell, concatenation $d_{1} d_{3} d_{2}$.
The algebras LDIAG and LBELL are both enveloping algebras. They are generated by their primitive elements which are in general linear combinations of diagrams and not pure diagrams. For an analysis of "graphic primitive elements" see section (4.3.1).

5. The algebra LDIAG $\left(q_{c}, q_{s}, q_{t}\right)$ (deformed case)

5.1. Counting crossings $\left(q_{c}\right)$ and superpositions $\left(q_{s}\right)$

The preceding coding is particularly well adapted to the the deformation we want to construct here. The philosophy of the deformed product is expressed by the descriptive formula||.

$$
\left[d_{1} \mid d_{2}\right]_{L\left(q_{c}, q_{s}\right)}=\sum_{\begin{array}{c}
c s(?) \text { all crossing and } \\
\text { superpositions of black spots }
\end{array}} q_{c}^{n c \times \text { weight }} q_{s}^{\text {weight } \times \text { weight }} c s\left(\left[d_{1} \mid d_{2}\right]_{L}\right)(29)
$$

where

- $q_{c}, q_{s} \in \mathbb{C}$ or q_{c}, q_{s} formal. These and other cases may be unified by considering the set of coefficients as belonging to a ring K.
- the exponent of $q_{c}^{n c \times w e i g h t ~ i s ~ t h e ~ n u m b e r ~ o f ~ c r o s s i n g s ~ o f ~ " w h a t ~ c r o s s e s " ~ t i m e s ~ i t s ~}$ weight
$\|$ Exact definition of the coefficient $q_{c}^{n c \times w e i g h t} q_{s}^{w e i g h t \times w e i g h t ~ i s ~ t h e ~ r e s u l t ~ o f ~ c r o s s i n g ~ a n d ~ s h i f t i n g ~}$ processes which will be detailed in paragraph (5.2).
- the exponent of $q_{s}^{\text {weight×weight }}$ is the product of the weights of "what is overlapped"
- $c s()$ are the diagrams obtained from $\left[d_{1} \mid d_{2}\right]_{L}$ by the process of crossing and superposing the black spots of d_{2} on to those of d_{1}, the order and distinguishability of the black spots of d_{1} (i.e. d_{2}) being preserved.
What is striking is that this law is associative. This result will be established after the following paragraph.

Fig 5. - Counting crossings and superposings produces an associative law.

Fig 6. - Detail of the fourth monomial (with coefficient $q_{c}^{2} q_{s}^{6}$), crossings (circles) and superposings (black squares) are counted the same way but with a different variable.

5.2. Modified laws

- Twisting

Proposition 5.1 Let $A=\left(A_{n}\right)_{n \in \mathbb{N}}$ a graded semigroup and A^{*} the set of lists (denoted by $\left.\left[a_{1}, a_{2}, \cdots a_{k}\right]\right)$ with letters in A.

For convenience we define the operator $*$ (left append) $A \times A^{*} \mapsto A^{*}$ by

$$
\begin{equation*}
a *\left[b_{1}, b_{2}, \cdots b_{n}\right]:=\left[a, b_{1}, b_{2}, \cdots b_{n}\right] \tag{30}
\end{equation*}
$$

Let $q_{c}, q_{s} \in k$ be two elements in a ring k. We define on $k<A>=k\left[A^{*}\right]$ a new $l a w \uparrow b y$

$$
\begin{align*}
& w \uparrow 1_{A^{*}}=1_{A^{*}} \uparrow w=w \\
& a * u \uparrow b * v=a *(u \uparrow b * v)+q_{c}^{|a * u||b|} b *(a * u \uparrow v)+q_{c}^{|u||b|} q_{s}^{|a||b|} a b *(u \uparrow v) \tag{31}
\end{align*}
$$

where the weights $\left(|x|=n\right.$ if $\left.x \in A_{n}\right)$ are extended additively to lists by

$$
\left|\left[a_{1}, a_{2}, \cdots, a_{k}\right]\right|=\sum_{i=1}^{k}\left|a_{i}\right|
$$

Then the new law \uparrow is graded, associative with $1_{A^{*}}$ as unit.

Proof - It suffices to prove the identity $x \uparrow(y \uparrow z)=(x \uparrow y) \uparrow z ; x, y, z$ being lists (as the two members are trilinear). It is obviously true when one of the factors is the empty list. We show it when the three factors are non-empty (throughout the computation, the law $*$ will have priority over other operators).

$$
\begin{align*}
& (a * u \uparrow b * v) \uparrow c * w= \\
& \left(a *(u \uparrow b * v)+q^{|u||b|} t^{|a||b|}(a b)(u \uparrow v)+q^{|a * u||b|} b(a * u \uparrow v)\right) \uparrow c * w= \\
& {\left[a *((u \uparrow b * v) \uparrow c * w)+q^{(|u|+|b * v|)|c|} t^{|a| c \mid}(a c)((u \uparrow b * v) \uparrow w)\right.} \\
& \left.+q^{(|a * u|+|b * v|)|c|} c *(a *(u \uparrow b * v) \uparrow w)\right]+ \\
& {\left[q^{|u||b|} t^{|a||b|}(a b)(u \uparrow v \uparrow c * w)+q^{|u||b|+(|u|+|v|)|c|} t^{|a||b|} t^{(|a|+|b|)|c|}(a b c)(u \uparrow v \uparrow w)+\right.} \\
& \left.q^{|u||b|+(|a * u|+|b * v|)|c|} t^{|a||b|} c(((a b)(u \uparrow v)) \uparrow w)\right]+ \\
& {\left[q^{|a * u||b|} b((a * u \uparrow v) \uparrow c * w)+q^{|a * u||b|+(|a * u|+|v|)|c|} t^{|b||c|}(b c)(a u \uparrow v \uparrow w)+\right.} \\
& \left.q^{|a * u||b|+(|a * u|+|b * v|)|c|} c(b(a * u \uparrow v) \uparrow w)\right] \tag{32}\\
& a * u \uparrow(b * v \uparrow c * w)= \\
& a * u \uparrow\left(b *(v \uparrow c * w)+q^{|v||c|} t^{|b||c|}(b c)(v \uparrow w)+q^{|b * v||c|} c(b * v \uparrow w)\right)= \\
& {\left[a *(u \uparrow b *(v \uparrow c * w))+q^{|u| b \mid} t^{|a||b|}(a b)(u \uparrow v \uparrow c * w)+q^{|a * u||b|} b(a * u \uparrow v \uparrow c * w)\right]+} \\
& {\left[q^{|v||c|} t^{|b||c|} a *(u \uparrow(b c)(v \uparrow w))+q^{|v||c|+|u|(|c|+|b|)} t^{|b||c|+|a|(|b|+|c|)}(a b c)(u \uparrow v \uparrow w)+\right.} \\
& \left.q^{|v||c|+|a * u|(|b|+|c|)} t^{|b| c \mid}(b c)(a * u \uparrow v \uparrow w)\right]+ \\
& {\left[q^{|b * v||c|} a *(u \uparrow c(b * v \uparrow w))+q^{(|u|+|b * v|)|c|} t^{|a||c|}(a c)(u \uparrow b * v \uparrow w)+\right.} \\
& \left.q^{(|a * u|+|b * v|)|c|} c *(a * u \uparrow b * v \uparrow w)\right] \tag{33}
\end{align*}
$$

in the second expression, one gathers the three terms which we find first in the square brackets and we get

$$
\begin{align*}
& a *(u \uparrow b *(v \uparrow c w))+q^{|v||c|} t^{|b| c \mid} a *(u \uparrow(b c) *(v \uparrow w))+ \\
& q^{|b * v||c|} a *(u \uparrow c *(b * v \uparrow w))=a *(u \uparrow b * v \uparrow c * w) \tag{34}
\end{align*}
$$

in the first expression, one gathers the three terms which we find last in the square brackets and we get

$$
\begin{align*}
& q^{(|a * u|+|b * v|)|c|} c *(a *(u \uparrow b * v) \uparrow w)+ \\
& q^{|u||b|+(|a * u|+|b * v|)|c|} t^{|a||b|} c *(((a b) *(u \uparrow v)) \uparrow w)+ \\
& q^{|a * u||b|+(|a * u|+|b * v|)|c|} c *(b *(a * u \uparrow v) \uparrow w)= \\
& q^{(|a u|+|b v|)|c|} c *(a * u \uparrow b * v \uparrow w) \tag{35}
\end{align*}
$$

and one finds the 7 -term expression

$$
\begin{align*}
& a *(u \uparrow b * v \uparrow c * w)+q^{|a * u|} b *(a * u \uparrow v \uparrow c * w)+ \\
& q^{|a * u|+|b * v|} c *(a * u \uparrow b * v \uparrow w)+q^{|u|| | b \mid} t^{|a||b|}(a b) *(u \uparrow v \uparrow c * w)+ \\
& q^{(|u|+|b * v|)|c|} t^{|a||c|}(a c) *(u \uparrow b * v \uparrow w)+ \\
& q^{|v||c|(|b|+|c|)|a u|} t^{|b||c|}(b c) *(a * u \uparrow v \uparrow w) \\
& +q^{|v||c|+|u|| | c|+|b|)} t^{|b||c|+|a|(|b|+|c|)}(a b c) *(u \uparrow v \uparrow w) \tag{36}
\end{align*}
$$

The framework with diagrams will need another proposition on shifted laws.

- Shifting

We begin by the "shifting lemma".
Lemma 5.2 Let \mathcal{A} be an associative algebra (whose law will be denoted by \star) and $\mathcal{A}=\oplus_{n \in \mathbb{N}} \mathcal{A}_{n}$ a decomposition of \mathcal{A} in direct sum. Let $T \in \operatorname{End}(\mathcal{A})$ be an endomorphim of the algebra \mathcal{A}. We will denote by $T^{n}=T \circ T \circ \cdots \circ T$ the n-th compositional power of T. We suppose that the shifted law

$$
\begin{equation*}
a 天 b=a \star T^{\alpha}(b) \tag{37}
\end{equation*}
$$

for $a \in \mathcal{A}_{\alpha}$ is graded for the decomposition $\mathcal{A}=\oplus_{n \in \mathbb{N}} \mathcal{A}_{n}$.
Then, if the law \star is associative so is the law \star.
Remark 5.3 The hypothesis that the shifted law given by eq.(37) be graded is automatically satisfied if $\mathcal{A}=\oplus_{n \in \mathbb{N}} \mathcal{A}_{n}$ is a graded algebra and if all the morphisms T_{n} are of degree 0 .

This lemma will be applied to the decomposition given by $n=\sup (\operatorname{Alph}(w))$ (the highest index of variables appearing in w) and the morphism given by $T\left(x_{i}\right)=x_{i+1}$.

What do these statements mean for us ?
Here the graded semigroup is $\mathfrak{M O N}^{+}(X)$ and we do not forget the coding arrow $\varphi_{l m}$: ldiag $\rightarrow\left(\mathfrak{M O N}^{+}(X)\right)^{*}$. The image of $\varphi_{l m}$ is exactly the set of lists of monomials $w=\left[m_{1}, m_{2}, \cdots, m_{k}\right]$ such that the set of variables involved $\operatorname{Alph}(w)$ is of the form $x_{1} \cdots x_{l}$ (the labelling of the white spots is without hole). By abuse of language we will say that a list of monomials "is in ldiag" in this case. It is not difficult to see, from formulas $(31,37)$ that if $w_{i}, i=1,2$ are in ldiag so are all the factors of $w_{1} \bar{\uparrow} w_{2}$, this defines a new law on $K[\operatorname{ldiag}]$ and this algebra will be called LDIAG $\left(q_{c}, q_{s}\right)$. The properties of this algebra will be made precise in the following proposition.

Proposition 5.4 Let $\mathcal{C}_{\text {ldiag }}$ be the subspace of $\left(K<\mathfrak{M O N}^{+}(\mathbb{X})>, \bar{\uparrow}\right)$ generated by the codes of the diagrams (i.e. the lists $w \in \mathfrak{M O N}^{+}(\mathbb{X})$ such that Alph (w) is without hole). Then
i) $\left(\mathcal{C}_{\text {ldiag }}, \bar{\uparrow}\right)$ is a unital subalgebra of $\left(K<\mathfrak{M O N}^{+}(\mathbb{X})>, \bar{\uparrow}\right)$
ii) $\left(\mathcal{C}_{\text {ldiag }}, \bar{\uparrow}\right)$ is a free algebra. More precisely, for any diagram decomposed in irreducibles $d=d_{1} \cdot d_{2} \cdots d_{k}$ let

$$
\begin{equation*}
B(d):=\varphi_{l m}\left(d_{1}\right) \uparrow \varphi_{l m}\left(d_{2}\right) \cdots \bar{\uparrow} \varphi_{l m}\left(d_{k}\right) \tag{38}
\end{equation*}
$$

then
人) $(B(d))_{d \in \text { ldiag }}$ is a basis of $\mathcal{C}_{\text {ldiag }}$
β) $B\left(d_{1} \cdot d_{2}\right)=B\left(d_{1}\right) \bar{\uparrow} B\left(d_{2}\right)$
As $k[$ ldiag $]$ is isomorphic to $\mathcal{C}_{\text {ldiag }}$ as a linear space, we denote $\operatorname{LDIAG}\left(q_{c}, q_{s}\right)$ the new algebra structure of $k[\mathbf{l d i a g}]$ inherited from $\mathcal{C}_{\text {ldiag }}$. one has

$$
\begin{equation*}
\operatorname{LDIAG}(0,0) \simeq \operatorname{LDIAG} ; \operatorname{LDIAG}(1,1) \simeq \operatorname{MQSym} \tag{39}
\end{equation*}
$$

6. Coproducts

We must now define a parametrized (say, by q_{t}) coproduct such that
(LDIAG $\left.\left(q_{c}, q_{s}\right), \bar{\uparrow}, 1_{\text {ldiag }}, \Delta_{q_{t}}, \varepsilon\right)$ is a graded bialgebra (as in the non-deformed Hopf algebra of [13], the counit ε is just the "constant term" linear form).
We will take advantage of the freeness of $\operatorname{LDIAG}\left(q_{c}, q_{s}\right)$ through the following lemma.
Lemma 6.1 Let \mathbb{Y} be an alphabet, k a ring and
$k<\mathbb{Y}>=k\left[\mathbb{Y}^{*}\right]$ be the free algebra constructed on \mathbb{Y}. For every mapping
$\Delta: A \rightarrow k<\mathbb{Y}>\otimes k<\mathbb{Y}>$, we denote $\bar{\Delta}: k<\mathbb{Y}>\mapsto k<\mathbb{Y}>\otimes k<\mathbb{Y}>$ its extension as a morphism of algebras ($k<\mathbb{Y}>\otimes k<\mathbb{Y}>$ being endowed with its non-twisted structure of tensor product of algebras). Then, in order to be coassociative, it is necessary and sufficient that

$$
\begin{equation*}
(\bar{\Delta} \otimes I) \circ \Delta \text { and }(I \otimes \bar{\Delta}) \circ \Delta \tag{40}
\end{equation*}
$$

coincide on \mathbb{Y}.

The preceding lemma expresses the fact that, for a free algebra, the variety of the possible coproducts is a linear subspace. This will be transparent in formula (43).

We now consider the structure constants of the coproduct of MQSym [16] expressed with respect to the family of free generators

$$
\left\{M S_{P}\right\}_{P \in \mathcal{P} \mathcal{M}^{c}}
$$

where $\mathcal{P} \mathcal{M}^{c}$ is the set of connex packed matrices (similarly, $\mathcal{P M}$ is the set of packed matrices).

$$
\begin{equation*}
\Delta_{\mathrm{MQSym}}\left(M S_{P}\right)=\sum_{Q, R \in \mathcal{P} \mathcal{M}} \alpha_{P}^{Q, R} M S_{Q} \otimes M S_{R} \tag{41}
\end{equation*}
$$

For the irreducible diagram d, we set

$$
\begin{equation*}
\Delta_{1}(d)=\sum_{d_{1}, d_{2} \in \operatorname{irr}(\mathbf{l d i a g})} \alpha_{\varphi_{l m}(d)}^{\varphi_{l_{m}\left(d_{1}\right), \varphi_{l m}\left(d_{2}\right)}} d_{1} \otimes d_{2} \tag{42}
\end{equation*}
$$

and $\Delta_{0}(d)=\Delta_{W S}(d)$. Then proposition (6.1) proves that, for $q_{t} \in\{0,1\}$

$$
\begin{equation*}
\Delta_{t}=\overline{\left(1-q_{t}\right) \Delta_{0}+q_{t} \Delta_{1}} \tag{43}
\end{equation*}
$$

is a coproduct of graded bialgebra for (LDIAG $\left.\left(q_{c}, q_{s}\right), \uparrow, 1_{\text {ldiag }}\right)$.
We sum up the results
Proposition 6.2 i) With the operations defined above, q_{c}, q_{s} complex or formal and q_{t} boolean $\left(q_{t} \in\{0,1\}\right)$,

$$
\operatorname{LDIAG}\left(q_{c}, q_{s}, q_{t}\right):=\left(\operatorname{LDIAG}\left(q_{c}, q_{s}\right), \bar{\uparrow}, 1_{\text {ldiag }}, \Delta_{q_{t}}, \varepsilon\right)
$$

is a Hopf algebra.
ii) At parameters $(0,0,0)$, one has $\operatorname{LDIAG}(0,0,0) \simeq$ LDIAG
iii) At parameters $(1,1,1)$, one has $\operatorname{LDIAG}(1,1,1) \simeq$ MQSym

7. More on LDIAG $\left(q_{c}, q_{s}, q_{t}\right)$: structure, images and the link with Euler-Zagier sums

a reprendre
It has been proved recently that LDIAG $\left(q_{c}, q_{s}, q_{t}\right)$ is a tridendriform Hopf Algebra [22] and that $\operatorname{LDIAG}\left(1, q_{s}, q_{t}\right)$ is a homomorphic image of the algebra of planar decorated trees of Foissy [20, 21]. Bidendriformity of the algebra LDIAG $\left(q_{c}, q_{s}\right)$ can also be established through a bi-word realization providing yet another (statistical) interpretation of the $\left(q_{c}, q_{s}\right)$ deformation [18].
We will now make clear the relations between the $\left(q_{c}, q_{s}\right)$ deformation and Euler-Zagier sums.
According the notation of [26], one has

$$
\begin{equation*}
\zeta\left(s_{1}, \cdots, s_{n} ; \sigma_{1}, \cdots, \sigma_{n}\right)=\sum_{0<i_{1}<\cdots<i_{n}} \frac{\sigma_{1}^{i_{1}} \cdots \sigma_{n}^{i_{n}}}{i_{1}^{s_{1}} \cdots i_{n}^{s_{n}}} \tag{44}
\end{equation*}
$$

$$
\begin{equation*}
\zeta\left(s_{1}, \cdots, s_{n}\right)=\sum_{0<i_{1}<\cdots<i_{n}} \frac{1}{i_{1}^{s_{1}} \cdots i_{n}^{s_{n}}} \tag{45}
\end{equation*}
$$

with $\sigma_{i} \in\{-1,1\}$ and $s_{1}>1$ if $\sigma_{1}=1$. Here we are more interested in the multiplication mechanism, so we extend the notation to formal variables and use, for indices, the biword notation. Hence

$$
\zeta_{F P}\left(\begin{array}{ccc}
z_{1} & \cdots & z_{n} \tag{46}\\
s_{1} & \cdots & s_{n}
\end{array}\right)=\sum_{0<i_{1}<\cdots<i_{n}} \frac{z_{1}^{i_{1}} \cdots z_{n}^{i_{n}}}{i_{1}^{s_{1}} \cdots i_{n}^{s_{n}}} .
$$

We remark that the indices are taken as words (i.e. lists) with variables located in the semigroup $\mathfrak{M O N}(Z) \times \mathbb{N}^{+}$with $Z=\left\{z_{i}\right\}_{i \geq 1}$. The set of these functions is closed under multplication and will be called below $F P(Z)$, formal polyzeta functions in the variables Z. Hence, the multiplication of these sums fits in the hypotheses of Proposition (5.1) with $q_{c}=q_{s}=1$ (quasi-shuffle in [11]). From this, we deduce an arrow

$$
\begin{equation*}
\operatorname{LDIAG}(1,1) \rightarrow F P(Z) \tag{47}
\end{equation*}
$$

More precisely, if d is a diagram with code $\left[m_{1}, m_{2} \cdots, m_{p}\right.$] we make correspond

$$
\zeta_{F P}\left(\begin{array}{ccc}
m_{1} & \cdots & m_{n} \tag{48}\\
\operatorname{deg}\left(m_{1}\right) & \cdots & \operatorname{deg}\left(m_{n}\right)
\end{array}\right)
$$

where $\operatorname{deg}\left(m_{i}\right)$ is the total degree of m_{i}. We will denote $\zeta_{D 2 F P}(d)$ this value (48). One has

$$
\begin{equation*}
\zeta_{D 2 F P}\left(d_{1}\right) \zeta_{D 2 F P}\left(d_{2}\right)=\zeta_{D 2 F P}\left(d_{1} \uparrow_{11} d_{2}\right) \tag{49}
\end{equation*}
$$

the law \uparrow_{11} being unshifted and specialized to $\left(q_{c}, q_{s}\right)=(1,1)$.
When restricted to "convergent" diagrams (i.e. diagrams with $\operatorname{deg}\left(m_{1}\right) \geq 2$ which form a subalgebra of $\left.\operatorname{LDIAG}_{u}\left(q_{c}, q_{s}\right)\right)$ and specializing all the variables to 1 , we recover the "usual" Euler-Zagier sums by just counting the outgoing degrees of the black spots and the arrow of (47) becomes

$$
\begin{equation*}
d \rightarrow \zeta\left(\operatorname{deg}\left(m_{1}\right), \cdots, \operatorname{deg}\left(m_{n}\right)\right) \tag{50}
\end{equation*}
$$

(usual Euler-Zagier sums). Denoting the last (50) value $\zeta_{D 2 E Z}(d)$, one has

$$
\begin{equation*}
\zeta_{D 2 E Z}\left(d_{1}\right) \zeta_{D 2 E Z}\left(d_{2}\right)=\zeta_{D 2 E Z}\left(d_{1} \uparrow_{11} d_{2}\right) \tag{51}
\end{equation*}
$$

8. Concluding remarks

For a diagram d with r black spots, the code $\left[m_{1}, m_{2}, \cdots, m_{r}\right]$ can be temporarily seen as a "vector of coordinates" for the given diagram, but we prefer to stick to the structure of lists as, firstly, the dimension of the vector varies with the diagram and secondly, we have to concatenate the codes. The coordinate functions of the diagram d are therefore the family $\left(a_{i}\right)_{i>0}$ defined by $a_{i}(d)=m_{i}$ for $i \leq r$ and $a_{i}(d)=0$ for $i>r$. From this perspective the " q_{t} " of our three parameter deformation is a quantization in the sense
of Moyal's deformed products [1] on the algebra of coordinate functions (but without the first order condition; see the introduction of [12]), by the formula

$$
\begin{equation*}
a_{i_{1}} * a_{i_{1}} \cdots * a_{i_{k}}(d)=\mu\left(a_{i_{1}} \otimes a_{i_{1}} \otimes \cdots \otimes a_{i_{k}}\left(\Delta_{q_{t}}^{[k]}(d)\right)\right) \tag{52}
\end{equation*}
$$

where μ is the ordinary multiplication of polynomials.
The crossing parameter q_{c} is also a quantization parameter as, for $q_{s}=0$, one has

$$
\begin{equation*}
\operatorname{code}\left(d_{1} * d_{2}\right)=\operatorname{code}\left(d_{1}\right) \sqcup_{q_{c}} T\left(\operatorname{code}\left(d_{2}\right)\right) \tag{53}
\end{equation*}
$$

where T is a suitable translation of the variables and $\sqcup_{q_{c}}$ is the quantum shuffle [29] for the braiding on $V=\mathbb{C}\left[x_{i} ; i \geq 1\right]$ defined by

$$
\begin{equation*}
B\left(x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{k}}^{\alpha_{k}} \otimes y_{j_{1}}^{\beta_{1}} y_{j_{2}}^{\beta_{2}} \cdots y_{j_{l}}^{\beta_{l}}\right)=q_{c}^{\left(\sum \alpha_{i}\right)\left(\sum \beta_{j}\right)} y_{j_{1}}^{\beta_{1}} y_{j_{2}}^{\beta_{2}} \cdots y_{j_{l}}^{\beta_{l}} \otimes x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{k}}^{\alpha_{k}} \tag{54}
\end{equation*}
$$

Let us add that q_{s} and q_{c} are of different nature as q_{s} is the coefficient of a perturbation of the shuffle product (better seen on the coproduct). This kind of perturbation occurs in various domains as : computer science by means of the infiltration product introduced by Ochsenschläger [27] (see also [15] and [14]), algebra of the EulerZagier sums [24] and noncommutative symmetric functions [16]. The mathematics of this dual aspect is of geometrical nature and will be developed in [17].

References

[1] Bayen (F.), Flato (M.), Fronsdal (C.), Lichnerowicz (A.) and Sternheimer (D.), Deformation and Quantization, Ann. of Phys. 111 (1978), pp. 61-151.
[2] J. Berstel, C. Reutenauer, Rational series and their languages EATCS Monographs on Theoretical Computer Science, Springer (1988).
[3] C. M. Bender, D. C. Brody, and B. K. Meister, Quantum field theory of partitions, J. Math. Phys. Vol 40 (1999)
[4] P. Blasiak, A. Horzela, K. A. Penson, G. H. E. Duchamp, A.I. Solomon, Boson normal ordering via substitutions and Sheffer-Type Polynomials, Phys. Lett. A 338 (2005) 108
[5] P. Blasiak, K. A. Penson, A.I. Solomon, A. Horzela, G. H. E. Duchamp, Some useful formula for bosonic operators, Jour. Math. Phys. 46052110 (2005).
[6] Bourbaki N., Algebra, chapter III, Springer
[7] Bourbaki N., Algebra, chapter VI, Springer
[8] Bourbaki N., Theory of sets, Springer
[9] Cartier P., Séminaire "Sophus Lie", 2ème année, Faculté des Sciences de Paris (1955-56)
[10] P. Cartier, Fonctions polylogarithmes, nombres polyzeta et groupes pro-unipotents, Séminaire Bourbaki, Asterisque n. 282 (2002)
[11] P. Cartier, A primer of Hopf algebras, Septembre (2006), IHES preprint IHES/M/06/40.
[12] V. Chari, A. Pressley, A guide to quantum groups. Cambridge (1994).
[13] G. H. E. Duchamp, P. Blasiak, A. Horzela, K. A. Penson, A. I. Solomon, Feynman graphs and related Hopf algebras, Journal of Physics: Conference Series, SSPCM’05, Myczkowce, Poland. arXiv : cs.SC/0510041
[14] Duchamp G., Flouret M., Laugerotte E., Luque J-G., Direct and dual laws for automata with multiplicities
arXiv: math.CO0607412
[15] Duchamp G., Luque J-G., Congruences Compatible with the Shuffle Product arXiv : math.CO0607419
[16] G. Duchamp, F. Hivert, J. Y. Thibon, Non commutative functions VI: Free quasisymmetric functions and related algebras, International Journal of Algebra and Computation Vol 12, No 5 (2002).
[17] G. H. E. Duchamp, G. Koshevoy, K. A. Penson, C. Tollu, F. Toumazet, Geometric combinatorial twisting and shifting, Séminaire Lotharingien (in preparation).
[18] G. H. E. Duchamp, J. -G. Luque, J. -C. Novelli, C. Tollu, F. Toumazet, Hopf algebras of diagrams, FPSAC07.
[19] G. Duchamp, A.I. Solomon, K.A. Penson, A. Horzela and P. B lasiak, One-parameter groups and combinatorial physics, Proceedings of the Symposium Third International Workshop on Contemporary Problems in Mathematical Physics (COPROMAPH3) (PortoNovo, Benin, Nov. 2003), J. Govaerts, M. N. Hounkonnou and A. Z. Msezane (eds.), p. 436 (World Scientific Publishing 2004) arXiv: quant-ph/04011262
[20] L. Foissy, Isomorphisme entre l'algèbre des fonctions quasi-symétriques libres et une algèbre de Hopf des arbres enracinés décorés plans, personal communication.
[21] L. Foissy, Les algèbres de Hopf des arbres enracinés decorés, PhD Memoir, Reims University (2002)
[22] L. Foissy, Personal Communication.
[23] M. Hazewinkel, Hopf algebras of endomorphisms of Hopf algebras, (Oct 2004) ArXiv : math.QA/0410364
[24] M. E. Hoffman, Quasi-shuffle products, J. Algebraic Combin. (2000), 49-68
[25] A. Horzela, P. Blasiak, G. Duchamp, K. A. Penson and A.I. Solomon, A product formula and combinatorial field theory, Proceedings of the XI International Conference on Symmetry Methods in Physics (SYMPHYS-11) (Prague, Czech Republic, June 2004), C. Burdik, O. Navratil, and S. Posta (eds.) (JINR Publishers, Dubna) arXiv:quant-ph/0409152
[26] D. Kreimer, Knots and Feynman Diagrams, Cambridge Lecture Notes in Physics (2000).
[27] P. Ochsenschläger, Binomialkoeffitzenten und Shuffle-Zahlen, Technischer Bericht, Fachbereich Informatik, T. H. Darmstadt,1981.
[28] Reutenauer C., Free Lie algebras, Oxford University Press (1993).
[29] M. Rosso, Quantum groups and quantum shuffles, Inventiones Math. 133 (1998).
[30] A.I. Solomon, P. Blasiak, G. Duchamp, A. Horzela and K.A. Penson, Combinatorial Physics, Normal Order and Model Feynman Graphs, Proceedings of the Symposium 'Symmetries in Science XIII', Bregenz, Austria, 2003, B. Gruber, G. Marmo and N. Yoshinaga (eds.), p. 527 (Kluwer Academic Publishers 2004) arXiv: quant-ph/0310174
[31] A.I. Solomon, G. Duchamp, P. Blasiak, A. Horzela and K.A. Penson, Normal Order: Combinatorial Graphs Quantum Theory and Symmetries, Proceedings of the 3rd International Symposium P.C. Argyres, T.J. Hodges, F. Mansouri, J.J. Scanio, P. Suranyi, and L.C.R. Wijewardhana (eds.), p. 398 (World Scientific Publishing 2004) arXiv:quant-ph/0402082
[32] A.I. Solomon, G. Duchamp, P. Blasiak, A. Horzela and K. A. Penson, Partition functions and graphs: A combinatorial approach, Proceedings of the XI International Conference on Symmetry Methods in Physics (SYMPHYS-11) (Prague, Czech Republic, June 2004), C. Burdik, O. Navratil, and S. Posta (eds.) (JINR Publishers, Dubna, 2004) arXiv:quant-ph/0409082
[33] A. I. Solomon, G. Duchamp, P. Blasiak, A. Horzela and K. A. Penson, Hopf algebra structure of a model quantum field theory, Proceedings of the 26th International Colloquium on Group Theoretical Methods in Physics, New York 2006, Editor: S. Catto (2007).
[34] G. Duchamp, A. I. Solomon, P. Blasiak, A. Horzela and K. A. Penson, A multipurpose Hopf deformation of the algebra of Feynman-like diagrams, Proceedings of the

26th International Colloquium on Group Theoretical Methods in Physics, New York 2006, Editor: S. Catto (2007).

[^0]: \S The set of subsets of X is denoted by $\mathfrak{P}(X)$ (this notation [8] is that of the former German school).

