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Abstract. We construct a three-parameter deformation of the Hopf algebra LDIAG.
This is the algebra that appears in an expansion in terms of Feynman-like diagrams

of the product formula in a simplified version of Quantum Field Theory. This new

algebra is a true Hopf deformation which reduces to LDIAG for some parameter
values and to the algebra of Matrix Quasi-Symmetric Functions (M QSym) for others,
and thus relates LDIAG to other Hopf algebras of contemporary physics. Moreover,
there is an onto linear mapping preserving products from our algebra to the algebra

of Euler-Zagier sums.
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1. Introduction

We briefly describe the passage from the product formula, as described by by Bender
et al. [3], and the related Feynman-like diagrams, to the description of Hopf algebra
structures [13] on the diagrams themselves compatible with their evaluations.
First, C. M. Bender, D. C. Brody, and B. K. Meister [3] introduced a special field theory
which proved to be particularly rich in combinatorial links and by-products.
Second, the Feynman-like diagrams produced by this theory label monomials; these
monomials combine in a manner compatible with the monomial multiplication and co-
additionm. This is the Hopf algebra DIAG.
Third, the natural noncommutative pull-back of this algebra, LDIAG, has a basis
(the labeled diagrams) which is in one-to-one correspondence with that of the Matrix
Quasi-Symmetric Functions (the packed matrices of MQSym), but their algebra
and co-algebra structures are completely different. In particular, in this basis, the
multiplication of MQSym implies a sort of shifted shuffle with overlappings reminiscent
of Hoffmann’s shuffle used in the theory of of polyzeta functions[10]. The superpositions
and overlappings involved there are not present in the (non-deformed) LDIAG and,
moreover, the coproduct of LDIAG is co-commutative while that of MQSym is not.
B8The aim of this paper is to introduce a “parametric algebra” which mediates be-
tween the two Hopf algebras LDIAG and MQSym. The striking result is that when
we introduce parameters which count the crossings and overlappings of the shifted shuf-
fle, one notes that the resulting law is associative (graded with unit). We also show
how to interpolate with a coproduct which makes, at each stage, our algebra a Hopf
algebra. The result is thus a three-parameter Hopf algebra deformation which reduces
to LDIAG at (0,0,0) and to MQSym at (1,1,1). Moreover it appears that, for one
set of parameters, the multiplication rule of LDIAG recovers that of Euler-Zagier sums.

ACKNOWLEDGEMENTS : The authors are pleased to acknowledge the hospitality
of institutions in Paris, Cracow and New York. Special thanks are due to Catherine
Borgen for having created a fertile atmosphere in Exeter (UK) where the first and last
parts of this manuscript were prepared. We take advantage of these lines to acknowledge
support from the Polish Ministry of Science and Higher Education under Grant N° 202
107 32/2832. Also, we are grateful to Loic Foissy and Jim Stasheff for their thorough
reading.

2. How and why these Feynman-like Diagrams arise

The beginning of the story was fully explained in [30, 31, 32, 25, 4, 5], and the Hopf
algebra structure was made precise in [I3] B4]. In this note we shall emphasize the
latter part of the analysis, where the algebraic structure constructed on the diagrams

1 i.e. the commultiplication obtained by replacing each variable by the sum of two (independent)
copies of it.
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themselves arise.

BOur starting point is the formula (product formula) of Bender and al. [3], which can
be considered as an expression of the Hadamard product for an exponential generating
series. That is, using

FE) =Y a6 = Y biy, HIEG) = Zanbn'% (1)

n>0 ’ n>0 n>0

one can check that

H(F.G) = F (z%) G(x) @)

When F(0) and G(0) are not zero one can normalize the functions in this bilinear
product so that F'(0) = G(0) = 1. We wish to obtain compact and generic formulas. If
we write the functions as

F(z) = exp (Z L"%) , G(z) = exp (Z Vn%T) . (3)

that is, as free exponentials, then by using Bell polynomials in the sets of variables L, V
(see [13] [19] for details), we obtain

n

H<F7 G) = Z % Z LTyPe(P1)VType(P2) (4)
n>0 ) P1,PoeUPy,

where U P, is the set of unordered partitions of [1---n]. An unordered partition P of a
set X is a subset of P C P(X) — {@}@ (that is an unordered collection of blocks, i. e.
non-empty subsets of X) such that

e the union (Jy.p Y = X (P is a covering)
e P consists of disjoint subsets, i. e.
Yi,Yoe Pand Y1NY, 40 =Y, =Y,.

The type of P € UP, (denoted above by T'ype(P)) is the multi-index (a;);en+ such
that a4 is the number of k-blocks, that is the number of members of P with cardinality
k.

B8At this point the formula entangles and the diagrams of the theory arise.

Note particularly that

e the monomial LT¥Pe(P)yTure(P2) needs much less information than that which is
contained in the individual partitions Py, P, (for example, one can relabel the
elements without changing the monomial),

§ The set of subsets of X is denoted by P(X) (this notation [§] is that of the former German school).
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e two partitions have an incidence matrix from which it is still possible to recover the
types of the partitions.

B8The construction now proceeds as follows.
(i) Take two unordered partitions of [1---n], say Py, P»
(ii) Write down their incidence matrix (card(Y' N Z))y z)cp, xp,

(iii) Construct the diagram representing the multiplicities of the incidence matrix : for
each block of P, draw a black spot (resp. for each block of P, draw a white spot)

(iv) Draw lines between the black spot Y € P; and the white spot Z € Py; there are
card(Y N Z) such.

(v) Remove the information of the blocks Y, Z, - - -.

In so doing, one obtains a bipartite graph with p (= card(P;)) black spots, ¢
(= card(F,)) white spots, no isolated vertex and integer multiplicities. We denote the
set of such diagrams by diag.

{1} {2,3,4}{5,6,7,8,9}{10,11}

{2,3,5}{1,4,6,7,8}9,10,11}

Fig 1. — Diagram from Py, P, (set partitions of [1---11]).
P = {{2,3,5},{1,4,6,7,8},{9,10,11}} and P, = {{1},{2,3,4},{5,6,7,8,9},{10,11}}
(respectively black spots for Pi and white spots for Ps).

The incidence matriz corresponding to the diagram (as drawn) or these partitions is
0 2 10
1 1 3 0. But, due to the fact that the defining partitions are unordered, one can

0 0 1 2
permute the spots (black and white, between themselves) and, so, the lines and columns of this

0 0 1 2
matriz can be permuted. the diagram could be represented by the matriz (0 2 1 0) as
1 0 3 1

well.

The product formula now reads

HEG) =Y =0 S mult(d)L @V (5)
n>0 n d\fl\d—iag

where a(d) (resp. [(d)) is the “white spots type” (resp. the “black spots type”) i.e.
the multi-index (o );en+ (resp. (Bi)ien+) such that «; (resp. ;) is the number of white
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spots (resp. black spots) of degree i (i lines connected to the spot) and mult(d) is the
number of pairs of unordered partitions of [1---|d|] (here |d| = |a(d)| = |3(d)] is the
number of lines of d) with associated diagram d.

BNow one may naturally ask
Q1) “Is there a (graphically) natural multiplicative structure on diag such that the arrow

d — Fe@yhd) (6)

be a morphism ¢”

8The answer is “yes”. The desired product just consists in concatenating the
diagrams (the result, i.e. the diagram obtained in placing dy at the right of d;, will
be denoted by [di|ds]p). One must check that this product is compatible with the
equivalence of the permutation of white and black spots among themselves, which is
rather straightforward (see [13]). We have

Proposition 2.1 Let diag be the set of diagrams (including the empty one).

i) The law (dy,dy) — [di|d2]p endows diag with the structure of a commutative monoid
with the empty diagram as neutral element(this diagram will, therefore, be denoted by
1diag)'

ii) The arrow d — LDYP@ s o morphism of monoids, the codomain of this arrow
being the monoid of (commutative) monomials in the alphabet LUV i.e.

Sﬁgm(f/ U V) _ {Lavﬁ}a,ﬁe(l\ﬁ)(m _ U {Lfln ng .. Lgnvl& ‘/—262 . Vﬁm}ai,ﬁjeN‘

n,m>1
iii) The monoid (diag, [—|—]|p, ldiag) s @ free commutative monoid. Its letters are the
connected (non-empty) diagrams.

Remark 2.2 The reader who is not familiar with the algebraic structure of MON(X)
can find rigorous definitions in paragraph (31) where this structure is needed for the
proofs relating to deformations.

3. Non-commutative lifting (classical case)

The “classical” construction of the Hopf algebra LDIAG was given in [13]. We give
the proofs below, using a coding through “lists of monomials” needed for the deformed
(quantum) case. The entries of a list can be considered as “coordinate functions” for
the diagrams (see introduction of section {@)).

3.1. Free monoids

We recall here the construction of the free and free-commutative monoids generated by
a given set of variables (i.e. an alphabet) [2].

Let X, be a set. We denote by X* the set of lists of elements of X, including the empty
one. In many works, and in the sequel, the list [zq,x9, -, x,] will be considered as a
word z125 - - - x, so that the concatanation of two lists [z1, o, -, @], [Y1, Y2, Ym] 1S
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just the word x5 - - Zpy1Y2 - - - Ym. For this (associative) law, the empty list [ | is the
neutral element and will therefore be denoted by 1x-

BSimilarly, we denote by N®) [6] the set of multisubsets of X (i.e. the set of -
multiplicity - mappings with finite support X + N). Every element a of N*) can be
written multiplicatively, following the classical multi-index notation

X = H @) (7)

zEX
and the set MON(X) = {X*} cnex) is exactly the set of (commutative) monomials with
variables in X. It is a monoid, indeed a (multiplicative) copy of N*¥) as XoXF = Xo+5,

The subset of its non-unit elements is a semigroup which will be denoted by IO (X)
(= MON(X) — {X°}).

3.2. Labeling the nodes

There are (at least) two good reasons to look for non-commutative structures which
may serve as a noncommutative pullback for diag.

e Rows and Columns of matrices are usually (linearly) ordered and we have seen that
a diagram is not represented by a matrix but by a class of matrices

e The complexity of diag and its algebra is not sufficient to relate it to other (non-
commutative or non-cocommutative) algebras relevant to contemporary physics

The solution (of the non-deformed problem [I13]) is simple and consists in labeling
the nodes from left to right and from “1” to the desired number as follows.

Fig 2. — Labelled diagram of format 3 x 4 corresponding to the one of Fig 1.

The set of these graphs (i.e. bipartite graphs on some product [1..p] x [1..q] with
no isolated vertex) will be denoted by ldiag. The composition law is, as previously,
concatenation in the obvious sense. Explicitly, if d;, ¢+ = 1,2 are two diagrams of
dimension [1..p;] x [1..¢;], one relabels the black (resp. white) spots of dy from p; + 1 to
p1+ p2 (resp. from ¢ + 1 to ¢ + ¢2) the result will be noted [d;|ds]. One has
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Proposition 3.1 Let 1diag be the set of labeled diagrams (including the empty one).
i) The law (dyi,ds) — [d1|ds];, endows 1diag with the structure of a noncommutative
monoid with the empty diagram (p = q = 0) as neutral element(which will, therefore, be
denoted by lidiag)-

i1) The arrow from ldiag to diag, which implies “forgetting the labels of the vertices”
s a morphism of monoids.

iii) The monoid (1diag, [—|—|L, Lidiag) s @ free (noncommutative) monoid. Its letters
are the irreducible diagrams (denoted from now on by irr(ldiag)).

Remark 3.2 i) In a general monoid (M,*,1y), the irreducible elements are the
elements x # 1y such that x = yx z = 1)y € {y, z}.
i1) It can happen that an irreducible of ldiag has an image in diag which splits, as

1
shown by the simple example of the cross defined by the incidence matriz <(1) 0).

3.3. Coding ldiag with “lists of monomials”

One can code every labelled diagram by a “list of (commutative) monomials” in the
following way:.

e Let X = {z;};>1 be an infinite set of indeterminates and d € ldiag,,, a diagram
(ldiag,,, is the set of diagrams with p black spots and ¢ white spots).

e Associate with d the multiplicity function [1..p] x [1..q] — N such that d(i, j) is the
number of lines from the black spot 7 to the white spot j.

e The code associated with d is ¢y, (d) = [my, ma, - - -, my] such that m; = 3:1 x;n(i’j)

Fig 3. — Coding the diagram of fig 2 by a word of monomials. The code here is

2 3 2
[x5x3 , T1T273 , T3]

As a data structure, the lists of monomials are elements of (IO (X))*, the free
monoid whose letters are MONT (X) = MON(X) — {X°}, the semigroup of non-unit

monomials over X.
BIt is not difficult to see that, through this coding, concatenation is reflected in the

following formula

Gim([d1]da]r) = Vim(dr) * Tnaw(indaiph(on, (1)) (Pim(d2)) (8)
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where T}, is the translation operator which changes the variables according to

Ty(z;) = w4, (which corresponds to the relabelling of the white spots) and p; is the
number of black spots of d;.

For example, one has

To([w3ms, 112273, 2323)) = (2325, B3mad, wsag) 3 To([x1, 23)) = [z7, 28] (9)

4. The Hopf algebra LDIAG (non-deformed case)

In [13], we defined a Hopf algebra structure on the space of diagrams LDIAG. The
aim of this section is to give complete proofs and details for this construction through
the use of the special space of coordinates constructed above (the complete vector of
coordinates of a diagram being its code).

4.1. The monoid (IMONT(X))* and the submonoid of codes of diagrams

Formula @) can be written using lists as

l1>T<Z2 = ll * Tmax(lndAlph(ll))(l2) (10)

which defines a monoid structure on (IMMOM*(X))* (the set of lists of non-unit
monomials) with the empty list as neutral (i.e. [ ] which will, therefore, be denoted by
“Linom+ (x))~ or simply “1”7 when the context is clear).
We will return to this construction (called shifting [18]) later.
The alphabet of a list is the set of variables occurring in the list. Formally

Alph([my,ma,---m,]) = | ] Alph(m;) (11)
1<i<k

where, classically, for a monomial m = X%, Alph(m) = {x; }a@)0-
Now, we can define the “compacting operator” on k(9MONT (X)) by its action on the
lists. This operator actually removes the holes in the alphabet of a list by pushing to
the left the indices which are at the right of a hole. For example (we denote by cpt the
operator)

ept([x5210, T32475, T325]) = (2525, Tow3TY, Do) (12)

The alphabet of the list on the LHS is Alph(l) = Alph([x3z10, v3x423, T323]) =
{9, x5, x4, w8, 10}, its indices are IndAlph(l) = {2,3,4,8,10} and the re-indexing
function is the unique strictly increasing mapping from {2,3,4,8,10} to [[5]]. Here
the compacting operator is just the substitution

Ty < Xg; Lo < XT3, T3 < Ty4; Ty < Tg; Ty < T10

The formal definitions are the following

o IndAlph(l) = {i | =; € Alph(l)}
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e [ being given, let ¢; be the unique increasing mapping from IndAlph(l) to
[[card(IndAlph(l))]] (in fact, card(IndAlph(l)) = card(Alph(l)))
e let s; be the substitution z; < 4,;) in the monomials.

e Then, if [ = [mq, ma, - -my,)], cpt(l) = [s;(m1), si(ma), - - - s;(my,)].

Définition 4.1 The compacting operator cpt : k{(IMONT (X)) — EIMONT (X)) is
the extension by linearity of the mapping cpt defined above.

It can be checked easily that, for [ € (IMONT(X))*, the following are equivalent

(i) ept(l) =1
(ii) IndAlph(l) = [[card(IndAlph(l))]]
(iii) there is no hole in Alph(l); that is, there exists no i > 1 s.t. x; ¢ Alph(l) and
ziy1 € Alph(l))

(iv) [ is the code of some (then unique) diagram d.

BIt follows from the preceding properties that cpt is a projector with range the
subspace Cigiag of k(MMOMNT (X)) generated by the codes of the diagrams. Formula (8)
proves that Cygiqg is closed under the shifted concatenation defined by ([0). More precisely

Proposition 4.2 The algebra Cygiqq s a free algebra on the set of the codes of irreducible
diagrams.

These codes are also the non-empty lists [ which are compact (i.e. ¢pt(l) = 1) and
cannot be factorized into a product of two non-empty lists i.e. | = 1; xly; I; # [ ] (one
can check easily that, if {; % [y is compact, so are [ and [y).

4.2. The Hopf algebras Cigiay and LDIAG

The algebra LDIAG is endowed with the structure of a bi-algebra by the
comultiplication

Aps(d) = dlI]@dl]] (13)

I+J=[1..p]

where p is the number of black spots and d[[] is the “restriction” of d to the black spots
selected by the I C [1..p].

On the other hand, we have a standard Hopf algebra structure on the free algebra,
expressed in terms of concatenation and subwords [23],28]. Let A be an alphabet (a set of
letters) and w € A* a word, if we write w a a sequence of letters w = ajas - - - a,; a; € A,
the length |w| of wis n and if I = {4, 49, - -ix} C [1..n], the subword w[I] is a;, a;, - - - a;,
(this notation is slightly different from that of [28] where it is w|;). Then, the free algebra
k(A) is a Hopf algebra with comultiplication [28| 23].

Apiciopr(w) = Y wlI]@wl[J]. (14)

I+J=[1..n]
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One has the following relation between restrictions of diagrams and subwords

Pim(d[I]) = cpt(pun(d)[1]) (15)

this suggests that the coproduct
Nua(l) = Y ept(I[T]) @ ept(I[J) (16)

I+J=[1..n]

could be a Hopf algebra comultiplication for the shifted algebra (k(OMONT (X)), *,[]).
Unfortunately, this fails due to the lack of counit (i and ii of the following Theorem),
but the “ground subalgebra” Cjg;q, is a genuine Hopf algebra (which is exactly what we
do need here).

Theorem 4.3 Let A = (K(IMONT (X)), %,[]) be the algebra of lists of (non-unit) mono-
mials endowed with the shifted concatenation of formula ({@d). Then

i) A is a free algebra.

ii) The coproduct Ayg (recalled below) is co-associative and a morphism of algebras
A— AR A (i.e. Ais a bi-algebra without counit).

Apa(l) = > ept(l[I]) ® ept(I]J) (17)

I+J=[1..n]

iwi) The algebra Cigiag is a sub-algebra and coalgebra of A which is a Hopf algebra
for the following co-unit and antipode.

e COUNIT
e(l) =dip (Kronecker delta) (18)

e ANTIPODE

s=Y Y (Vall)atlh) - ailn) (9

>0 Iy +Ta+...Ir=[1..p]

1,70

Proof — 1) Throughout the proof, we will denote by * the concatenation between lists
and * the shifted concatenation defined by the formula ([@@). We first remark that,
if [ = l1*ly, then max(IndAlph(ly)) < min(IndAlph(ly)). This leads us to define,
for a (non-shifted) factorization | = I3 xly = I[1..t] x [t + 1..p] (p = |l|), a gauge
of the degree of overlapping of the intervals (of integers) [l..maxz(IndAlph(l1))] and

[min(IndAlph(12))..00[, thus the function

wi(t) = card([1..max([ndAlph(l[1..t])] A [min(Ind Alph(i]t + 1..p])..oo[) -
(max([ndAlph(l[l..t])) — min(IndAlph(I[t + 1..p])) + 1)+. (20)

(We recall that, for a real number z, 2 is its positive part 2™ = maz(z,0) = (|2 + )
[7]). It can be easily checked that the points ¢t where w;(t) = 0 determine the (unique)
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factorisation of [ in irreducibles. It follows that the monoid ((IMMOMH(X))*, %, []) is free
and so is its algebra (kK(OMONT (X)), *, [ ]).

Bii) If we denote A : A — A® A the standard coproduct given, for a list [ of length
p, by formula (I4), one can remark that

(i) ept(ly)*ept(ly) = ept(lixls)
(il) Apst = (ept @ ept) o A
(iii) Aist 0 cpt = At
(iv) (Vn € N)(ept(Tn(1)) = cpt(l))
v) (WneN)(AoT, = (T,,®T,) 0 A).

COASSOCIATIVITY OF Ajgt. —

One has

(Apist @ Id) o Ajist = (Apist @ Id) o (ept @ cpt) o A =

((Ayist o cpt) @ ept) o A = (Apgy @ cpt) o A =

(((ept @ ept) o A) @ ept) o A =

(ept @ ept @ ept) o (AR Id) o A = (ept @ ept @ cpt) o (Id @ A) o A

(cpt @ ((ept @ ept) 0 A)) o A = (cpt @ Ayise) 0 A =

(ept @ (Apsi o cpt)) o A =

(Id ® Ayist) o (ept @ ept) o A = (Id @ Ayigt) © Ny (21)

Ajist 1S A MORPHISM. —

For two lists u,v €, let us compute Ajq(ukv). With p = max(IndAlph(u)), one
has

Apist(uxv) = (cpt ® cpt) o A(ly x Ty(v)) =
(ept @ ept)(A(u) +** A(Tp(v))) =
(cpt @ ept) (A(u) +72 (T, ®T> (v) =
(ept @ cpt (Zu ® ugz) ** (T, ®T)(ZU(3)®U(4)):
(1)(2 (3)(4)
(cpt @ cept)( ) * Ty (Tp—py (V3))) ® uz) * Ty (Tppy (V) (22)
1)(2)(3)(4

~

with, for each term in the sum
p1 = max(IndAlph(uny)) < p; p2 = max(IndAlph(uwy)) < p

so, the quantity in @2) is

(ept@ept)( Y un*(Tmp, (13) @ uey*(Tppy (v))) =
H@)3)4)
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Z Cpt Ty (v(3)))) ® cpt(ugy*(Tp—p, (V) =

Z (cpt( () )*ept(Tp—p, (v(3>))) ® (cpt(u(z)):kcpt(Tp_pz (U(4)))> —
Z (Cpt( uq) )¥ept(vs >)) ® <Cpt(u(2))>7<cpt(v(4))) =

Z ) ® CPt(u@))) ®2( > eptlv) @ cpt(v(4))) _

)(2) (3)(4)
Alzst( ) Alzst( ) (23)

iii) As Cigiqg is generated by the image of cpt it is clear that this space is a sub-
coalgebra of A. Moreover, cpt is a (multiplicative) morphism A — A and thus its image
Cidgiag is a subalgebra of A. We now supply the missing ingredients to complete the proof
of the Hopf algebra structure.

g IS A COUNIT. —
BLet | = cpt(l) be a compact list. We remark that, for any list u, one has
cpt(u) =[] <= u=1]. Then, with y; : k® A+ A the scaling operator

(e @ Id)Aug(D) = > e(ept(UI))ept(I[J]) =

I+J=[1..n]
> elept(QUD))ept(LI) + > elept(UD))ept(I[J]) = ept(l) +0 =1 (24)
1%]:_[5.41] 1%];[5.41]

the proof of the fact that ¢ is a left counit is similar.

S IS THE ANTIPODE. —

B80ne has Ciging = k.1 ® ker(e), let us denote Id* the projection Ciieg — ker(e)
according to this decomposition.
Then, for every list [,

Yoo > (FWeptn]ept(Ls]) - - ept([L])

r>0 I1+Ig+...Ir=[1..p]

1;#0

is well defined as the first sum is locally finite. Thus, the operator

YooY (—h){dtsldt s x1dY)

r>0 I +Io+...Ir=[1..p] e
= r times
I;#0

is well defined and is the convolutional inverse of Id.
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4.3. Subalgebras of LDIAG

4.8.1. Graphic primitive elements The problem of Graphic Primitive Elements (GPE)
is the following.

Let ‘H be a Hopf algebra with (linear) basis G, a set of graphs. The GPE are the
primitive elements I' € G which are primitive i.e.

lNsaGPE<=TeGand Al =T®1+1xT. (25)

It is not difficult to check that, in any case, the subalgebra H°"® generated by these
elements is also a sub-coalgebra.
We make an extra hypothesis (which is often fulfilled)

lyeGand (I'e G— {1y} = ¢(') =0). (26)
Then (if @) is fulfilled) HY"® is a sub-Hopf algebra as the antipode of the product
I'Iy---T) of (GPE) is

S(IhIy---Ty) =(-1)P Ll ---T. (27)
The following proposition helps to determine LDIAG®™.

Proposition 4.4 In LDIAG (with basis G = 1diag), the following are equivalent
i) d is a GPE
i) d has only one black spot.

Then, the Hopf algebra LDIAG“"" is generated by the product of “one-black-spot”
diagrams.

Fig 4. — Graphic Primitive Elements of LDIAG have only one black spot and therefore
are coded by the sequence of the ingoing degrees of their white spots (a composition). The
first one here has code [1,2,3,1]. The picture shows an element of the monoid generated by
Graphic Primitive Elements (a linear basis of LDIAG®"?) which is then coded by a list of
compositions, here |[1,2,3,1],[2,3,1],[2,1, 4]] )

4.3.2. Level subalgebras

One can also impose limitations on the incoming degrees of the white spots in a way
compatible with the coproduct. In this case, one defines an infinity of Hopf-subalgebras
of LDIAG which we will call “level subalgebras”.

More precisely, given an integer [ > 0, one can ask for spaces generated by the diagrams
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d for which every white spot has an incoming degree < [. This amounts to say that the
“white spot type” of every diagram d is of the form

a(d) = (ag, a9, -, 0,0---0,--+) ; (all the oy <1 fori <k and a; =0 for i > k)

We denote by LDIAG=! the subspace generated by these diagrams. One has a chain
of Hopf algebras

LDIAGS!' ¢ LDIAG=? C ---LDIAGS ¢ LDIAG="" c ... c LDIAG (28)

In the next paragraph, we will specially be interested in

LBELL = LDIAGS! N LDIAGS®™®,

4.3.3. BELL and LBELL

The algebras BELL and LBELL were defined in [33].

The algebra LBELL is the intersection LDIAGS' N LDIAG®"® and since they
are subspaces generated by subsets of ldiag, LBELL is generated by diagrams that
e are concatenations of one-black-spot-diagrams
e such that the incoming degree of every white spot is one.
Let dj be the diagram with code [xy, 2, - - - 2]. LBELL is generated by concatenations

of these diagrams. Indeed, the diagrams dj, are a subalphabet of the free monoid ldiag
so that they generate a free submonoid which we will denote here Ibell.

Fig 5. — An element of 1bell, concatenation dydsds.

The algebras LDIAG and LBELL are both enveloping algebras. They are
generated by their primitive elements which are in general linear combinations of
diagrams and not pure diagrams. For an analysis of “graphic primitive elements” see

section (£.37).
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5. The algebra LDIAG(q., ¢s,q:) (deformed case)

5.1. Counting crossings (q.) and superpositions (qs)

The preceding coding is particularly well adapted to the the deformation we want to
construct here. The philosophy of the deformed product is expressed by the descriptive

formul
_ § ncxweight weight X weight
[dl‘d2]L(qc,qs) - q. qs cs([dl‘dQ]l)(Qg)
cs(?) all crossing and
superpositions of black spots
where

® ¢.,qs € Corq.,qs formal. These and other cases may be unified by considering the
set of coefficients as belonging to a ring K.

e the exponent of ¢"®*%¢9" is the number of crossings of “what crosses” times its
weight
e the exponent of gwe9htxweight i the product of the weights of “what is overlapped”

e ¢s() are the diagrams obtained from [d;|dy];, by the process of crossing and
superposing the black spots of ds on to those of d;, the order and distinguishability
of the black spots of d; (i.e. dy) being preserved.

What is striking is that this law is associative. This result will be established after

I MY/
B

Fig 5. — Counting crossings and superposings produces an associative law.

the following paragraph.

| Exact definition of the coefficient glcxweightgqweightxweight jg the result of crossing and shifting
processes which will be detailed in paragraph (&.2)).
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Fig 6. — Detail of the fourth monomial (with coefficient q2q%), crossings (circles) and

superposings (black squares) are counted the same way but with a different variable.

5.2. Modified laws
o Twisting

Proposition 5.1 Let A = (A, )nen a graded semigroup and A* the set of lists (denoted
by [a1,as, - - - ay|) with letters in A.
For convenience we define the operator x (left append) A x A* — A* by

a*[blvb27”'bn] = [ayblab%”'bn] (30)
Let q.,qs € k be two elements in a ring k. We define on k < A >= k[A*] a new
law T by
wllgys =1 Tw=w

axulbsv=ax(ulbsxv)+gd*Pbs(axutv)+ ¢ PgdPap« (uw1v) (31)

[

where the weights (|z| =n if x € A,) are extended additively to lists by

k
ar, a2, axl| = D fai
=1

Then the new law T s graded, associative with 14+ as unit.

Proof — 1t suffices to prove the identity z T (y T 2) = (x Ty) T 2z ; x,y, z being lists (as
the two members are trilinear). It is obviously true when one of the factors is the empty
list. We show it when the three factors are non-empty (throughout the computation,
the law * will have priority over other operators).
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(axulb*xv)lecxw=
(a* (u 1 bxv)+ g Pl gb)y(u 1 v) + ¢™Pb(axu T o) Texw=

ax ((ulbxv) T exw)+ glurbobledaled ey (w1 bxv) T w)
fqlexeltbeDlele s (g5 (u T bxwv) 1 w)] +

gl ot bsolellall o (aby (u T v)) 1 w)} +
-q|a*qu\b((a U T U) T C % U)) + q‘a*“||b|+(|a*“‘+|v|)Mt‘b"C|(bc)(au T v T ’UJ) +

gl Qo 1bwvDlel g 5 40 1 0) 1 U’)}

axul (bxv]cxw)=
axul (bx(vTcxw)+ g"lelelllel (be) (v 1 w) 4 ¢ ele(bx v T w)) =

ghllellasul (D gl () (g 40 1 0 1 w)} n
_q|b*”HC|a x (ul c(bxv T w)) + gltbediellalel ey (w1 bx v T w) +

gleasulFoeDle ey (g s u 1 bxv 1 w)]

in the second expression, one gathers the three terms which we find first in the square
brackets and we get

ax(ulbx (1] cw))+ ¢ldtlg (w1 (be) * (v T w)) +
¢ o s (uTex(bxsvTw))=ax(ulbxv]cxw) (34)

in the first expression, one gathers the three terms which we find last in the square
brackets and we get

gllaultibsollel o (ax(ulTb*xv)Tw)+

q\u||b|+(|a*u\+|b*v\)lc\t|a\\b\c * (((ab) * (u Tv)) Tw)+

glorullbl+ (jaxul +oxol)lel (bx(axulwv)w)=

gl DIl g (% 1 b v T w) (35)

and one finds the 7-term expression

ax(wlbxvlexw)+ ¢ b (axulvlexw)+
¢ le s (axu T bxv T w) 4 ¢l (ab) « (u T v T ex w) +

I (GB) (T v T e w) + gDl laliblgal+0Dle (gpe (4 T v T w) +

ax(ulbx @7l exw)+ g Pl @h)y (w1 vl exw)+ ¢ Po(asut vl exw)| +
[ PIblelg s (47 (be)(v T w)) -+ gllleHHueE+HEDgblle+lalGb+1eD  gbey (3 1 o 1 ) +
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gUul+oseDlelglallel (g0 % (4 1 b % v T w) +
gVl HeDlaul bl () 4 (q % w T v 1 w)
L gPlletHul(el+HoD bl +Hal (BHeD (e 5 (w1 o T w) (36)

The framework with diagrams will need another proposition on shifted laws.

e Shifting
We begin by the “shifting lemma”.

Lemma 5.2 Let A be an associative algebra (whose law will be denoted by ) and

A = ®penA, a decomposition of A in direct sum. Let T € End(A) be an endomorphim
of the algebra A. We will denote by T™ =T oT o---0oT the n-th compositional power
of T. We suppose that the shifted law

a % b=axTb) (37)

for a € A, is graded for the decomposition A = ®penAn.
Then, if the law * is associative so is the law *.

Remark 5.3 The hypothesis that the shifted law given by eq.(34) be graded 1is
automatically satisfied if A = ®penAn s a graded algebra and if all the morphisms
T, are of degree 0.

This lemma will be applied to the decomposition given by n = sup(Alph(w)) (the
highest index of variables appearing in w) and the morphism given by T'(x;) = ;1.

What do these statements mean for us ?
Here the graded semigroup is MONT(X) and we do not forget the coding arrow
O ¢ ldiag — (MONT(X))*. The image of y,, is exactly the set of lists of monomials
w = [my,ma,- -, my] such that the set of variables involved Alph(w) is of the form
x1---x; (the labelling of the white spots is without hole). By abuse of language we
will say that a list of monomials “is in ldiag” in this case. It is not difficult to see,
from formulas (BIB7) that if w;, i = 1,2 are in ldiag so are all the factors of w; Tws,
this defines a new law on K[ldiag] and this algebra will be called LDIAG(q,, ¢s). The
properties of this algebra will be made precise in the following proposition.

Proposition 5.4 Let Cigiay be the subspace of (K < MONT(X) >, 1) generated by the
codes of the diagrams (i.e. the lists w € MONT(X) such that Alph(w) is without hole).
Then

i) (Cidiag, 1) 48 a unital subalgebra of (K < MONT(X) >, T)

i1) (Cidiag 1) is a free algebra. More precisely, for any diagram decomposed in irreducibles
d=d.dy---dy let
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then
Oé) (B(d))deldiag 15 a basis Of Cldiag

B) B(dy.dy) = B(dy)1B(d>)

As k[ldiag] is isomorphic to Cigiag as a linear space, we denote LDIAG(g,, ¢5) the
new algebra structure of k[ldiag] inherited from C4jqy. one has

LDIAG(0,0) ~ LDIAG; LDIAG(1,1) ~ MQSym (39)

6. Coproducts

We must now define a parametrized (say, by ¢;) coproduct such that
(LDIAG(qc, qs), T, Lidiag; Ag, €) is a graded bialgebra (as in the non-deformed Hopf
algebra of [I3], the counit ¢ is just the “constant term” linear form).
We will take advantage of the freeness of LDIAG(q,, ¢s) through the following lemma.

Lemma 6.1 Let Y be an alphabet, k a ring and

k <Y >= Ek[Y*] be the free algebra constructed on Y. For every mapping

A A—=kE<Y>®k<Y > wedenote A : k <Y > k<Y >®k<Y >
its extension as a morphism of algebras (k <Y > ®k < Y > being endowed with its
non-twisted structure of tensor product of algebras). Then, in order to be coassociative,
it is necessary and sufficient that

(A®I)oA and (I ® A)o A (40)
cotncide on Y.

The preceding lemma expresses the fact that, for a free algebra, the variety of the
possible coproducts is a linear subspace. This will be transparent in formula (@3)).

B8We now consider the structure constants of the coproduct of MQSym [16]
expressed with respect to the family of free generators

{MSp}pepe

where PM°€ is the set of connex packed matrices (similarly, P.M is the set of packed
matrices).

AMQSym MSP Z Oé MSQ &® MSR (41)
Q,ReEPM
For the irreducible diagram d, we set
Ady= Y afmigem®g g d, (42)
di,dz€irr(ldiag)
and Ag(d) = Aws(d). Then proposition @I proves that, for ¢, € {0,1}
Ay = (1= q)A + ¢ (43)

is a coproduct of graded bialgebra for (LDIAG(q., ¢s), T, Lidiag)-
BWe sum up the results
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Proposition 6.2 i) With the operations defined above, q.,qs complex or formal and g
boolean (q; € {0,1}),

LDIAG(QC, ds, Qt) = (LDIAG(qC7 qs)7 Tv 1ldiag7 Aqtu 6)

1s a Hopf algebra.
i1) At parameters (0,0,0), one has LDIAG(0,0,0) ~ LDIAG
iii) At parameters (1,1,1), one has LDIAG(1,1,1) ~ MQSym

7. More on LDIAG(q,, ¢s,q;) : structure, images and the link with
Euler-Zagier sums

It has been proved recently that LDIAG(q., ¢s,q:) is a tridendriform Hopf Algebra
[22] and that LDIAG(1,¢s,¢q;) is a homomorphic image of the algebra of planar
decorated trees of Foissy [20, 2I]. Bidendriformity of the algebra LDIAG(q,, ¢s) can
also be established through a bi-word realization providing yet another (statistical)
interpretation of the (q., ¢s) deformation [18].

We will now make clear the relations between the (g, ¢s) deformation and Euler-Zagier
sums.

According the notation of [26], one has

C(S1,+, Sn; 01y, 0p) = Z M (44)
I 0<i1 <-<in 'y
with o; € {—1,1} and s; > 1if 0; = 1. Here we are more interested in the multiplication
mechanism, so we extend the notation to formal variables and use, for indices, the bi-
word notation. Hence
my - My, m’llm’n"
CFP( s e s, ) —0<i;<in FINT (45)
We remark that the indices are taken as words (i.e.  lists) with variables
located in the semigroup IMON(Z) x Nt with Z = {z}i>1. The set
of these functions is closed under multplication and will be called below
FP(Z), formal polyzeta functions in the variables Z. Hence, the multiplication of these
sums fits in the hypotheses of Proposition (51 with ¢. = ¢; = 1 (quasi-shuffle in [I1]).
From this, we deduce an arrow

LDIAG(1,1) — FP(Z). (46)
More precisely, if d is a diagram with code [my, ms - - -, m,] we make correspond
my oo my,
4
e ( deg(my) -+ deg(mn) ) )

where deg(m;) is the total degree of m;. We will denote (popp(d) this value @T7).
One has

CDZFP(d1)€D2FP(d2) = €D2FP(d1 Tll d2) (48)
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the law Tq; being unshifted and specialized to (q., ¢s) = (1, 1).

When restricted to “convergent” diagrams (i.e. diagrams with deg(m;) > 2 which form
a subalgebra of LDIAG,(q., ¢s)) and specializing all the variables to 1, we recover the
“usual” Euler-Zagier sums by just counting the outgoing degrees of the black spots and
the arrow of @g) becomes

d — ((deg(mq), - - -, deg(my,)) (49)
(usual Euler-Zagier sums). Denoting the last @) value (p2rz(d), one has

CD2EZ(d1)CD2EZ(d2) = €D2EZ(dl Tll d2) (50)

8. Concluding remarks

For a diagram d with r black spots, the code [my, ma,-- -, m,] can be temporarily seen
as a “vector of coordinates” for the given diagram, but we prefer to stick to the structure
of lists as, firstly, the dimension of the vector varies with the diagram and secondly, we
have to concatenate the codes. The coordinate functions of the diagram d are therefore
the family (a;);~o defined by a;(d) = m; for i < r and a;(d) = 0 for ¢ > r. From this
perspective the “q,” of our three parameter deformation is a quantization in the sense
of Moyal’s deformed products [I] on the algebra of coordinate functions (but without

the first order condition; see the introduction of [12]), by the formula
iy % gy -k g, (d) = play, ® a;, ® - @ ay, (A(d))) (51)

where p is the ordinary multiplication of polynomials.
The crossing parameter ¢. is also a quantization parameter as, for ¢, = 0, one has

code(dy * dy) = code(dy) U, T(code(dy)) (52)

where 7" is a suitable translation of the variables and L, is the quantum shuffle [29] for
the braiding on V' = C|x;; @ > 1] defined by

B(x?llx?f .. I'Zakk ® y]ﬁlly]ﬁ; .. .y";‘ll) — qézal)(ZBJ) y"]ally]ﬁ; .. .y"jBll ® l’iallx?; .. I'Zakk (53)

Let us add that ¢, and ¢. are of different nature as ¢, is the coefficient of a
perturbation of the shuffle product (better seen on the coproduct). This kind of
perturbation occurs in various domains as : computer science by means of the infiltration
product introduced by Ochsenschléger [27] (see also [15] and [14]), algebra of the Euler-
Zagier sums [24] and noncommutative symmetric functions [16]. The mathematics of
this dual aspect is of geometrical nature and will be developed in [17].
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