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About the LDIAG Hopf algebra 

In a relatively recent paper Bender, Brody and 
Meister (*) introduce a special Field Theory described 
by a product formula (a kind of Hadamard product for 
two exponential generating functions - EGF) in the 
purpose of proving that any sequence of numbers 
could be described by a suitable set of rules applied to 
some type of Feynman graphs (see third Part of this 
talk). 
These graphs label monomials and are obtained in the 
case of special interest when the two EGF have a 
constant term equal to unity.

Bender, C.M, Brody, D.C. and Meister, 
Quantum field theory of partitions, J. Math. Phys. Vol 40 (1999)
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 If we write these functions as exponentials, we are led 
to witness a surprising interplay between the following 
aspects: algebra (of normal forms or of the 
exponential formula, Hopf structure), geometry (of 
one-parameter groups of transformations and their 
conjugates) and analysis (parametric Stieltjes 
moment problem and convolution of kernels).
Today, we will first focus on the algebra. If time 
permits, we will touch on the other aspects.  

Some 5-line diagrams
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Construction of the Hopf algebra LDIAG  
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Let F, G be two EGFs. 

How these diagrams arise and which 
data structures are around them

 Called « product formula » in the QFTP of 
Bender, Brody and Meister. 
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In case F(0)=G(0)=1, one can set 

and then, 

with α, β∈(*) multiindices
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We will adopt the notation 

for the type of a (set) partition which means that 
there are a1 singletons a2 pairs a3 3-blocks a4 4-blocks 
and so on.

The number of set partitions of type α as above is
well known (see Comtet for example)

  

Then, with
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 Now, one can count in another way the term
numpart(α)numpart(β). Remarking that this is the 
number of pairs of set partitions (P1,P2) with 
type(P1)=α, type(P2)=β. But every pair of 
partitions (P1,P2) has an intersection matrix ...

one has
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{1,5}  {2}  {3,4,6}

{1,2}         1       1        0

{3,4}         0       0        2

{5,6}         1       0        1

{1,5} {1,2}

{2} {3,4}

{3,4,6} {5,6}

Feynman-type diagram 
(Bender & al.)

Classes of
packed matrices
see NCSF VI
(GD, Hivert, 
and Thibon)
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Now the product formula for EGFs reads

The main interest of these new forms is that we can 
impose rules on the counted graphs and we can call 
these (and their relatives) graphs : Feynman-Bender 
Diagrams of this theory (here, the simplified model of 
Quantum Field Theory of Partitions). 
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One has now 3 types of diagrams :

 the diagrams with labelled edges (from 1 to |d|).
Their set is denoted (see above) FB-diagrams.

 the unlabelled diagrams (where permutations of black 
and white spots are allowed). Their set is denoted (see 
above) diag.

 the diagrams, as drawn, with black (resp. white) spots 
ordered i.e. labelled. Their set is denoted ldiag.
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Weight 4
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Diagrams of (total) weight 5
Weight=number of lines
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Hopf algebra structure 

(H,µ,∆,1H,ε,α)
Satisfying the following axioms 
 (H,µ,1H) is an associative k-algebra with unit (here k 
will be a – commutative - field)
 (H,∆,ε) is a coassociative k-coalgebra with counit 
 ∆ : H -> H⊗H is a morphism of algebras
 α : H -> H is an anti-automorphism (the antipode) 
which is the inverse of Id for convolution.

Convolution is defined on End(H) by 

ϕ•ψ= µ (ϕ ⊗ ψ) ∆

with this law End(H) is endowed with a structure of 
associative algebra with unit 1Hε.
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First step: Defining the spaces 
 Diag=⊕d ∈ diagrams C d  LDiag=⊕d ∈ labelled diagrams C d

(functions with finite supports on the set of 
diagrams). At this stage, we have a natural arrow 
LDiag  Diag.

Second step: The product on Ldiag is just the  
concatenation of diagrams 

d1 d2 =d1 d2 

And, setting m(d,L,V,z)=Lα(d)Vβ(d) z|d|

one gets 
m(d1*d2,L,V,z)= m(d1,L,V,z)m(d2,L,V,z)
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This product is associative with unit (the empty 
diagram). It is compatible with the arrow 
LDiag  Diag and so defines the product on Diag 
which, in turn, is compatible with the product of 
monomials.

LDiag x LDiag Mon x Mon

LDiag Diag

Diag x Diag

Mon
m(d,?,?,?)
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The coproduct needs to be compatible with 
m(d,?,?,?). One has two symmetric possibilities 
(black spots and white spots). The « black spots co-
product » reads 

∆BS (d)=Σ dI ⊗ dJ

the sum being taken over all the decompositions, (I,J) 
of the Black Spots of d into two subsets.
For example, with the following diagrams d, d1 and d2 

one has ∆BS(d)=d⊗∅ + ∅⊗d + d1⊗d2 + d2⊗d1
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If we concentrate on the multiplicative structure of 
Ldiag, we remark that the objects are in one-to-one 
correspondence with the so-called packed matrices of 
NCSFVI (Hopf algebra MQSym), but the product of 
MQSym is given (w.r.t.  a certain basis MS) according 
to the following example
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It is possible to (re)connect these Hopf algebras to 
MQSym and others of interest for physicists, by 
deforming the product with two parameters. 
The double deformation goes as follows

 Concatenate the diagrams

 Develop according to the rules :
 Every crossing “pays” a q

c

 Every node-stacking “pays” a q
s
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In the expansion, the weights are given by the 
intersection numbers. 

q
c
2q

s
6 +q

c
8
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We could check that this law is associative (now three 
independent proofs). For example, direct computation 
reads
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This amounts to use  a monoidal action with two 
parameters. Associativity provides an identity in an 
algebra which acts on a diagram as the algebra of the 
sum of symmetric semigroups. Here, it is the 
symmetric semigroup which acts on the black spots 

Diagram



27

The labelled diagrams are in one to one correspondence 
with the packed matrices of MQSym and we can see 
easily that the product of the latter is obtained for 

q
c 
=1=q

s
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Hopf interpolation : One can see that the more 
intertwined the diagrams are the fewer connected 
components they have. This is the main argument to 
prove that LDIAG(q

c, 
q

s
) is free on indecomposable 

diagrams. Therefore one can define a coproduct on 
these generators by 

∆
t
=(1-t)∆

BS
+t ∆

MQSym

this is LDIAG(q
c, 

q
s
,t). 
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(0,0,0)

Planar decorated Trees

Connes-Kreimer 
MQSymLDIAG

FQSymDIAG

LDIAG

Notes : 
i) The arrow Planar Dec. Trees → LDIAG(1,q

s
,t) is due to L. Foissy

ii) LDIAG, through a noncommutative alphabetic realization shows 
to be a bidendriform algebra (FPSAC07 paper by ParisXIII & Monge).

Planar decorated Trees

Connes-Kreimer 
MQSymLDIAG

FQSymDIAG

LDIAG

Planar decorated Trees

Connes-Kreimer 
MQSymLDIAG

FQSymDIAG

LDIAG

LDIAG(q
c,
q

s
,t)

(1,1,1)

LDIAG(1
,
q

s
,t)

Sym=D
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(A part of) The legacy of Schützenberger or how to compute 
efficiently in Sweedler's duals using 

Automata Theory

Sweedler's dual of a Hopf algebra
 i) Multiplication

Ä  
ii) By dualization one gets

( )* (Ä)*

but not a “stable calculus” as 

(strict in general). We ask for elements x∈ such that 

µ

tµ

()* Ä( )*     (Ä)*

tµ(x)∈()* Ä( )* 
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These elements are easily characterized as the 
“representative linear forms” (see also the Group-
Theoretical formulation in the last talk of Pierre 
Cartier) 

Proposition : TFAE (the notations being as above)
i)  tµ(c)∈()* Ä( )* 

ii) There are functions f
i 
,g

i 
i=1,2..n such that

c(xy)=∑
i
n
=1 

f
i 
(x) g

i
(y)   

forall x,y in  .
iii) There is a morphism of algebras μ:   --> kn x n  

(square matrices of size n x n), a line λ in k 1 x n  and 
a column ξ in k n x 1  such that, for all z in ,  

c(z)=λμ(z)ξ 
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In many “Combinatorial” cases, we are concerned with 
the case =kk<A> (non-commutative polynomials 
with coefficients in a field k).

Indeed, one has the following theorem (the beginning 
can be found in [ABE : Hopf algebras]) and the end is 
one of the starting points of Schützenberger's school of 
automata and language theory.
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Theorem A: TFAE (the notations being as above)
i)  tµ(c)∈()* Ä( )* 

ii) There are functions f
i 
,g

i 
i=1,2..n such that

c(uv)=∑
i
n
=1 

f
i 
(u) g

i
(v)   

u,v words in A* (the free monoid of alphabet A).
iii) There is a morphism of monoids μ: A* --> kn x n  

(square matrices of size n x n), a row λ in k 1 x n  

and a column ξ in k n x 1  such that, for all word w in 
A* 

c(w)=λμ(w)ξ 

iv) (Schützenberger) (If A is finite) c lies in the 
rational closure of A within the algebra k<<A>>.
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We can safely apply the first three conditions of 
Theorem A to Ldiag. The monoid of labelled diagrams is 
free, but with an infinite alphabet, so we cannot keep  
Schützenberger's equivalence at its full strength and 
have to take more “basic” functions. The modification 
reads

 iv) (A is infinite) c is in the rational closure of the 
weighted sums of letters 

∑
a  A 

p(a) a

within the algebra k<<A>>.
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iii) Schützenberger's theorem (known as the theorem of 
Kleene-Schützenberger) could be rephrased in saying 
that functions in a Sweedler's dual are behaviours of 
finite (state and alphabet) automata.  

In our case, we are obliged to 
allow infinitely many edges. 



36

Computations in Krat<<A>>, Sweedler's dual 
of K<A> 

Summability : We say that a family (f
i
)

i∈I 
(I finite or not, f

i 

in Krat<<A>>) is summable if, for each w∈A*, the family 
(<f

i
|w>)

i∈I 
is finitely supported and we set 

(∑
i∈I 

f
i
)

 
: w →  (∑

i∈I 
<f

i
|w>)

Identifying each word with the Dirac linear form located at the 
word, one has then, for each f∈K<<A>>

f=
 
∑

w∈A*  
f(w)w
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If f∈Κrat<<Α>>, it exists a morphism of monoids 
μ: A* --> Kn x n  (square matrices of size n x n), a row λ in 
k 1 x n  and a column ξ in k n x 1  such that, for all word w in 
A*, f(w)=λμ(w)ξ. Then

f=
 
∑

w∈A*  
f(w)w=∑

w∈A*  
λμ(w)ξ w=λ(∑

w∈A*  
μ(w)w)ξ=

 λ(∑
w∈A*  

μ(w)w)ξ=λ(∑
m≥0  

∑
|w|=m  

μ(w)w)ξ

But, as words and scalars commute (it is so by 
construction of the convolution algebra Kn x n <<A>>), one 
has 

∑
m≥0  

∑
|w|=m  

μ(w)w=∑ 
m≥0  

(∑
a∈A  

μ(a)a)m=(∑
a∈A  

μ(a)a)*

hence
f=λ(∑

a∈A  
μ(a)a)*ξ

where the “star” stands for the sum of the geometric 
series.
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A (short) word on automata theory.

 The formulas (for the star* of a matrix) above are sufficiently 
“expressive” to be the crucial fact in the resolution of a 
conjecture in Noncommutative Geometry. 

 For applications, automata theory had to cope with 
spaces of coefficients much more general than that of a 
field ... even the “minus” operation of the rings had to 
disappear to be able to cope with problems like shortest 
path or the Noncommutative problem or the shortest path 
with list of minimal arcs .
 
 The emerging structure is that of a semiring. Think of a 
ring without the “minus” operation, nevertheless 
“transfer” matrix computations can be performed.  
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As (useful) examples, one 
has ([0,+∞], min, +), 
([0,+∞[, max, +) or its 
(commutative or not) 
variants. 
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What remains for K<A> ? (free algebra)

  K semiring : 

- Universal properties (comprising – little known - tensor 
products)

- Complete semiring K<<A>>, summability is defined by 
pointwise convergence (see computation above).

- Rational closures and Kleene-Schützenberger Thm

- Rational expressions, Brzozowski theorem

- Automata theory, theory of codes

- Lazard's monoidal elimination  
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Concluding remarks and future

i) The diagrams of diag are well suited to EGFs. 
What are the good data structures for other ones ? 

ii) One can change the constants Vk=1 to a
condition with level (i.e. Vk=1 for k≤N and Vk= 0
for k>N). We obtain then sub-Hopf algebras of the
one constructed above. These can apply to the
manipulation of partition functions of physical 
models including Free Boson Gas, Kerr model and 
Superfluidity.
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Concluding remarks and future (cont'd)

iii) The deformation above is likely to be decomposed 
in two deformation processes ; twisting (already 
investigated in NCSFIII) and shifting (ongoing work 
with JGL and al.). Also, it could have a connection 
with other well known associators.

iv) The identity on the symmetric semigroup can be 
lifted to a more general monoid which takes into 
account the operations of concatenation and 
stacking which are so familiar to Computer 
Scientists (ongoing work in LIPN).
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Thank You


