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Warning : 

What follows is a rather descriptive account of what has been done on 
the following subjects :
 
- Normal order of boson strings, substitutions, one-parameter groups 
(one exponential)

- Product formula and diagrams

- Hopf algebras of these diagrams and deformations

- Sweedlers duals and automata theory

for details (necessarily missing here)  do not hesitate to contact me 
(lunch, coffee-pause, email etc)



About the LDIAG Hopf algebra 

In a relatively recent paper Bender, Brody and 
Meister (*) introduce a special Field Theory described 
by a product formula (a kind of Hadamard product for 
two exponential generating functions - EGF) in the 
purpose of proving that any sequence of numbers 
could be described by a suitable set of rules applied to 
some type of Feynman graphs (see third Part of this 
talk). 
These graphs label monomials and are obtained in the 
case of special interest when the two EGF have a 
constant term equal to unity.

Bender, C.M, Brody, D.C. and Meister, 
Quantum field theory of partitions, J. Math. Phys. Vol 40 (1999)
 



 If we write these functions as exponentials, we are led 
to witness a surprising interplay between the following 
aspects: algebra (of normal forms or of the 
exponential formula), geometry (of one-parameter 
groups of transformations and their conjugates) and 
analysis (parametric Stieltjes moment problem and 
convolution of kernels).

Some 5-line diagrams



    A single exponential

The normal ordering problem goes as follows.

• Weyl (two-dimensional) algebra defined as

< a+, a ; [a , a+ ]=1 > | aa+ ---> a+a +1

• Known to have no (faithful) representation by 
bounded operators in a Banach space.

There are many « combinatorial » (faithful) 
representations by operators. The most famous one 
is the Bargmann-Fock representation 

a ---> d/dx ; a+ ---> x
where a has degree -1 and a+ has degree  1.



A typical element in the Weyl algebra is of the form 
 (normal form).

, 0
( , )( )k l

k l
c k l a a+

≥
Ω = ∑

When Ω  is a single monomial, a word i.e. a product 
of generators a+, a, there is solution to the normal 
ordering problem (and thus, by linearity to the general 
problem) using rook numbers.

Today, we will be interested with the use of matrix 
coefficients in two instances :

normal ordering --> infinite matrices (--> moments)

finite representations --> Sweedler's dual and automata 
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( , )( )k l
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Ω = ∑

A word (boson string) and more generally an 
homogeneous operator (for the grading where a has 
degree -1 and a+ has degree  1) of degree e reads

Due to the symmetry of the Weyl algebra, we can 
suppose, with no loss of generality that e≥0. For 
homogeneous operators one can define generalized  
Stirling numbers (GSN) by

0
( ) ( , )( )  (Eq1)n ne k k

k
a S n k a a+ +

Ω
≥

Ω = ∑



The case of a pure string is of special interest for physics
and can be solved combinatorally. The recipe, for a string
W is the following:

 associate a path with north east steps for every a+ 
 and a south east step for every a.
 
 construct the Ferrers diagram B over this path

The normal form of  W is 

0
( , )( )r k s k

k
W R B k a a+ − −

≥
= ∑

where R(B,k) is the k-th rook number of the board B. 
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Example with Ω = a+ a a+ a a+ 

    a+               a          a+              a              a+ 



 11    a+               a          a+              a              a+ 



 12    a+               a          a+              a              a+ 
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    a+               a          a+              a              a+

a+aa+aa+= 1 a+a+a+aa + 3 a+a+a + 1 a+



In particular, the boson string w=[(a+)ras ] was 
considered by Penson, Solomon, Blasiak and al. In this 
case the GSN will be denoted by S

r,s
(n,k) and, due to the 

particular form of W, one has  

( )
,( ) ( )  ( , )( )

nsnr s n r s k k
r s

k s
a a a S n k a a+ + − +

=

  =  ∑





for the generating polynomials of the lines of the 
generalized Stirling matrix, one has the formulas 

 ... and, when s=1, the EGF of these polynomials is 
an exponential which gives an additive formula in the
variable y (see the paper One-parameter Groups or 
below) 

Setting 



For which, we have Dobiŉski-type relations
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The matrices of coefficients for expressions with 
only a single « a » turn to be matrices of substitutions 
with prefunction factor. This is, in fact, due to a 
conjugacy phenomenon.
Conjugacy trick: The one-parameter groups associated 
with the operators of type  Ω=q(x)d/dx+v(x) are 
conjugate to vector fields on the line. 
Let u2=exp(∫(v/q)) and u1=q/u2 then 

u1u2=q; u1u’2=v and the operator q(a+)a+v(a+)

reads, via the Bargmann-Fock correspondence 

(u2u1)d/dx+ u1u’2=u1(u’2 + u2d/dx)= u1d/dx u2 =

1/u2 (u1 u2 d/dx ) u2

Which is conjugate to a vector field and integrates as a 
substitution with prefunction factor.
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Example: The expression Ω = a+2a a+ + a+a a+2 above 
corresponds to the operator 
(the line below ω is in form q(x)d/dx+v(x))

3 3 3 3
2 2 2 2

2 2

3 2 32 3 (2 ) ( )

d dx x x x
dx dx

d dx x x x x x x
dx dx

ω

φ− −

= + =

+ = =

Now, φ is a vector field and its one-parameter group 
acts by a one parameter group of substitutions. We can 
compute the action by another conjugacy trick which 
amounts to straightening φ to a constant field.
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Thus set 
exp(λ φ)[f(x)]=f(u-1(u(x)+λ)) for some u … 

By differentiation w.r.t. λ at (λ=0) one gets

u’=1/(2x3) ; u=-1/(4x2) ; u-1(y)=(-4y)-1/2
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In view of the conjugacy established previously we 
have that exp(λ ω)[f(x)] acts as  

3 3
2 2

2

4 22 3

1
1 4(1 4 )

( ) ( ( )).( ( ))

 ( )  x
xx

U f x f s x s x

f

λ λ λ

λλ

−

−−

=

=

which explains the prefactor. Again we can check by 
computation that the composition (U

µ
Uλ ) amounts to 

simple addition of parameters !! 
Now suppose that exp(λ ω) is in normal form. 
In view of  Eq1 (slide 24) we must have

  
0 0 0

exp( )  ( , ) ( )
! !

nen n n
ne k k

n n k

dx S n k x
n n dxω

λ ω λλ ω
≥ ≥ =

= =∑ ∑ ∑
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Hence, introducing the eigenfunctions of the derivative
(a method which is equivalent to the computation with 
coherent states) one can recover the mixed generating 
series of Sω(n,k) from the knowledge of the 

one-parameter group of transformations.  

0 0
exp( ) (  ( , ) )

!

nen
yx ne k k yx

n k
e x S n k x y e

n ω
λλ ω

≥ =

  =  ∑ ∑

Thus, one can state
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Proposition (*): With the definitions introduced, the 
following conditions are equivalent (where f  Uλ[f] is 
the one-parameter group exp(λω)).

( )

, 0
1. ( ,  )    ( )

!

2.  [ ]( )  ( ) (  (1  ( )))

n
k y x

n k
e e

xS n k y g x e
n

U f x g x f x x

φ
ω

λ λ φ λ

≥
=

= +

∑

Remark : Condition 1 is known as saying that 

S(n,k) is of « Sheffer » type.
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Example : With Ω = a+2a a+ + a+a a+2 (Slide 11), we 
had  e=2 and 

2

24
2 3 2

1
(1 4 ) 1 4

[ ]( ) =  ( ) x
x x

U f x fλ λ λ− −
Then, applying the preceding correspondence one gets

4
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−
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∑

Where   are the central binomial coefficients.
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Autre exemple : transformation idempotente.
 
I(n,k)=nombre d’endofonctions de [1..n] 
idempotentes avec k points fixes.

ceci est un cas particulier de la 
« formule exponentielle » 
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For these one-parameter groups and conjugates of vector fields 

G. H. E. Duchamp, K.A. Penson, A.I. Solomon, A. Horzela and P. 
Blasiak,  

One-parameter groups and combinatorial physics, 

Third International Workshop on Contemporary Problems in 
Mathematical Physics (COPROMAPH3), Porto-Novo (Benin), 
November 2003. arXiv : quant-ph/0401126.

For the Sheffer-type sequences and coherent states

P Blasiak, A Horzela , K A Penson, G H E Duchamp and A I Solomon, 

Boson Normal Ordering via Substitutions and Sheffer-type 
Polynomials,

(Published in Physics Letters A)
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For these one-parameter groups and conjugates of vector fields 

G. H. E. Duchamp, K.A. Penson, A.I. Solomon, A. Horzela and P. Blasiak,  

One-parameter groups and combinatorial physics, 

Third International Workshop on Contemporary Problems in Mathematical 
Physics (COPROMAPH3), November 2003. arXiv : quant-ph/0401126.

For the Sheffer-type sequences and coherent states

P Blasiak, A Horzela , K A Penson, G H E Duchamp and A I Solomon, 

Boson Normal Ordering via Substitutions and Sheffer-type Polynomials,

(To be published in Physics Letters A)
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Substitutions and the 
« connected graph theorem»

« exponential formula»

 A great, powerful and celebrated result:
(For certain classes of graphs)
If C(x) is the EGF of CONNECTED graphs, then
exp(C(x)) is the EGF of ALL (non void) graphs. 
(Touchard, Uhlenbeck, Mayer,…)

This implies that the matrix 
M(n,k)=number of graphs with n vertices and 

having k connected components 
is the matrix of a substitution (like SΩ(n,k) previously 
but without prefactor). 
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One can prove, using a Zariski-like argument, that, if 
M is such a matrix (with identity diagonal) then, all its 
powers (positive, negative and fractional) are 
substitution matrices and form a one-parameter group 
of substitutions, thus coming from a vector field on the 
line which could (in theory) be computed. 

For example, to begin with the Stirling substitution 
z ez-1. We know that there is a unique one-parameter 
group of substitutions sλ(z) such that, for λ integer, one 
has the value (s2(z)  partition of partitions)

But we have no nice description of this group nor of 
the vector field generating it.
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The Hadamard product of two sequences 

is given by the pointwise product 

We can at once transfer this law on EGFs by

but, here, as 

we get  

Product formula



 36

• Writing F and G as free exponentials we shall see 
that these diagrams are in fact labelling monomials. 
We are then in position of imposing two types of rule:

• On the diagrams (Selection rules) : on the 
outgoing, ingoing degrees, total or partial weights.  
• On the set of diagrams (Composition and 
Decomposition rules) : product and coproduct of 
diagram(s) 

• This leads to structures of Hopf algebras for spaces 
freely generated by the two sorts of diagrams 

(labelled and unlabelled). 
Labelled diagrams generate the space of Matrix 
QuasiSymmetric Functions, we thus obtain a new Hopf 
algebra structure on this space.
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Construction of the Hopf algebra LDIAG  



Let F, G be two EGFs. 

How these diagrams arise and which 
data structures are around them

 Called « product formula » in the QFTP of 
Bender, Brody and Meister. 



In case F(0)=G(0)=1, one can set 

and then, 

with α, β∈(*) multiindices



We will adopt the notation 

for the type of a (set) partition which means that 
there are a1 singletons a2 pairs a3 3-blocks a4 4-blocks 
and so on.

The number of set partitions of type α as above is
well known (see Comtet for example)

  

Then, with



 Now, one can count in another way the term
numpart(α)numpart(β). Remarking that this is the 
number of pairs of set partitions (P1,P2) with 
type(P1)=α, type(P2)=β. But every pair of 
partitions (P1,P2) has an intersection matrix ...

one has



{1,5}  {2}  {3,4,6}

{1,2}         1       1        0

{3,4}         0       0        2

{5,6}         1       0        1

{1,5} {1,2}

{2} {3,4}

{3,4,6} {5,6}

Feynman-type diagram 
(Bender & al.)

Classes of
packed matrices
see NCSF VI
(GD, Hivert, 
and Thibon)



Now the product formula for EGFs reads

The main interest of these new forms is that we can 
impose rules on the counted graphs and we can call 
these (and their relatives) graphs : Feynman Diagrams
of this theory (here, the simplified model of 
Quantum Field Theory of Partitions). 



Weight 4



Diagrams of (total) weight 5
Weight=number of lines



One has now 3 types of diagrams :

 the diagrams with labelled edges (from 1 to |d|).
Their set is denoted (see above) FB-diagrams.

 the unlabelled diagrams (where permutation of black 
and white spots). Their set is denoted (see above) diag.

 the diagrams, as drawn, with black (resp. white) spots 
ordered i.e. labelled. Their set is denoted ldiag.
    



Hopf algebra structure 

(H,µ,∆,1H,ε,α)
Satisfying the following axioms 
 (H,µ,1H) is an associative k-algebra with unit (here k 
will be a – commutative - field)
 (H,∆,ε) is a coassociative k-coalgebra with counit 
 ∆ : H -> H⊗H is a morphism of algebras
 α : H -> H is an anti-automorphism (the antipode) 
which is the inverse of Id for convolution.

Convolution is defined on End(H) by 

ϕ•ψ= µ (ϕ ⊗ ψ) ∆

with this law End(H) is endowed with a structure of 
associative algebra with unit 1Hε.



First step: Defining the spaces 
 Diag=⊕d ∈ diagrams C d  LDiag=⊕d ∈ labelled diagrams C d

(functions with finite supports on the set of 
diagrams). At this stage, we have a natural arrow 
LDiag  Diag.

Second step: The product on Ldiag is just the  
concatenation of diagrams 

d1 d2 =d1 d2 

And, setting m(d,L,V,z)=Lα(d)Vβ(d) z|d|

one gets 
m(d1*d2,L,V,z)= m(d1,L,V,z)m(d2,L,V,z)



This product is associative with unit (the empty 
diagram). It is compatible with the arrow 
LDiag  Diag and so defines the product on Diag 
which, in turn, is compatible with the product of 
monomials.

LDiag x LDiag Mon x Mon

LDiag Diag

Diag x Diag

Mon
m(d,?,?,?)



The coproduct needs to be compatible with 
m(d,?,?,?). One has two symmetric possibilities. The 
« black spots coproduct » reads 

∆BS (d)=Σ dI ⊗ dJ

the sum being taken over all the decompositions, (I,J) 
of the Black Spots of d into two subsets.
For example, with the following diagrams d, d1 and d2 

one has ∆BS(d)=d⊗∅ + ∅⊗d + d1⊗d2 + d2⊗d1



If we concentrate on the multiplicative structure of 
Ldiag, we remark that the objects are in one-to-one 
correspondence with the so-called packed matrices of 
NCSFVI (Hopf algebra MQSym), but the product of 
MQSym is given (w.r.t.  a certain basis MS) according 
to the following example



It is possible to (re)connect these Hopf algebras to 
MQSym and others of interest for physicists, by 
deforming the product with two parameters. 
The double deformation goes as follows

 Concatenate the diagrams

 Develop according to the rules :
 Every crossing “pays” a q

c

 Every node-stacking “pays” a q
s



In the expansion, the weights are given by the 
intersection numbers. 

q
c
2q

s
6 +q

c
8



By an unexpected “stroke of luck”, we could check 
that this law is associative (now three independent 
proofs + many verifications). 



For example, by direct computation





This amounts to use  a monoidal action with two 
parameters. Associativity provides an identity in an 
algebra which acts on a diagram as the algebra of the 
symmetric semigroup. Here, it is the symmetric 
semigroup which acts on the black spots 

Diagram



The labelled diagrams are in one to one correspondence 
with the packed matrices of MQSym and we can see 
easily that the product of the latter is obtained for 

q
c 
=1=q

s



Hopf interpolation : One can see that the more 
intertwined the diagrams are the less connected 
components they have. This is the main argument to 
prove that LDIAG(q

c, 
q

s
) is free on indecomposable 

diagrams. Therefore one can define a coproduct on 
these generators by 

∆
t
=(1-t)∆

BS
+t ∆

MQSym

this is LDIAG(q
c, 

q
s
,t). 



  

(0,0,0)

Planar decorated Trees

Connes-Kreimer 
MQSymLDIAG

FQSymDIAG

LDIAG

Notes : 
i) The arrow Planar Dec. Trees → LDIAG(1,q

s
,t) is due to L. Foissy

ii) LDIAG(q
c,
q

s
,t), through a noncommutative alphabetic realization 

shows to be a bidendriform algebra (FPSAC07 paper with ...).

Planar decorated Trees

Connes-Kreimer 
MQSymLDIAG

FQSymDIAG

LDIAG

Planar decorated Trees

Connes-Kreimer 
MQSymLDIAG

FQSymDIAG

LDIAG

LDIAG(q
c,
q

s
,t)

(1,1,1)

LDIAG(1
,
q

s
,t)

Sym=D



The legacy of Schützenberger or how to harness 
Sweedler's duals using Automata Theory

Sweedler's dual of a Hopf algebra

 i) Multiplication
Ä  

ii) By dualization one gets
( )* (Ä)*

but not a “stable calculus” as 

(strict in general). We ask for elements x∈ such that 

µ

tµ

()* Ä( )*     (Ä)*

tµ(x)∈()* Ä( )* 



Here, we will be concerned with the case =kk<A> 
(non-commutative polynomials with coefficients in 
a field k).

Indeed, we have the following theorem (the beginning 
can be found in [ABE : Hopf algebras]) and the end is 
the starting point of Schützenberger's school of 
automata and language theory.



Theorem A: TFAE (the notations being as above)
i)  tµ(c)∈()* Ä( )* 

ii) There are functions f
i 
,g

i 
i=1,2..n such that

c(uv)=∑
i
n
=1 

f
i 
(u) g

i
(v)   

u,v words in A* (the free monoid of alphabet A).
iii) There is a morphism of monoids μ: A* --> kn x n  

(square matrices of size n x n), a line λ in k 1 x n  and 
a column ξ in k n x 1  such that, for all word w in A* 

c(w)=λμ(w)ξ 

iv) (Schützenberger) (If A is finite) c lies in the 
rational closure of A within the algebra k<<A>>.



We can safely apply the first three conditions of 
Theorem A to Ldiag. The monoid of labelled diagrams is 
free, but with an infinite alphabet, so we cannot keep  
Schützenberger's equivalence at its full strength and 
have to take more “basic” functions. The modification 
reads

 iv) (A is infinite) c is in the rational closure of the 
weighted sums of letters 

∑
a  A 

p(a) a

within the algebra k<<A>>.



iii) Schützenberger's theorem could be rephrased in 
saying that functions in Sweedler's dual are 
behaviours of finite (state and alphabet) automata.  

In our case, we are obliged to 
allow infinitely many edges. 



Rational expressions To Be Done 



Concluding remarks and future

i) The diagrams of diag are well suited to n! 
Denominators (i.e. EGF). What are the good data 
structures for other ones ? 

ii) One can change the constants Vk=1 to a
condition with level (i.e. Vk=1 for k≤N and Vk= 0
for k>N). We obtain then sub-Hopf algebras of the
one constructed above. These can apply to the
manipulation of partition functions of physical 
models including Free Boson Gas, Kerr model and 
Superfluidity.
 



Concluding remarks and future (cont'd)

iii) The deformation above is likely to be decomposed 
in two deformation processes ; twisting (already 
investigated in NCSFIII) and shifting (ongoing work 
with JGL and al.). Also, it could have a connection 
with other well known associators.

iv) The identity on the symmetric semigroup can be 
lifted to a more general monoid which takes into 
account the operations of concatenation and 
stacking which are so familiar to Computer 
Scientists (ongiong work in LIPN).







End of the talk

Merci
Thank you

Dziękuję



Consider a sequence of real numbers B(n). The 
classical Stieltjes moment problem consists in 
finding a positive measure W(x)dx on the half-line 
]0,+∞[ such that 

    Classical Stieltjes moment problem
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Consider a sequence of real functions B(n,y). The 
parametric Stieltjes moment problem consists in 
finding a family of positive measures W(x,y)dx on the 
half-line ]0,+∞[ such that 

    Parametric Stieltjes moment problem



Using the first Dobinski relation of slide (10), one can
 solve the parametric Stieltjes moment problem 
for the classical Stirling numbers as 

with 

which is a Poisson distribution on the half-line 
]0,+∞[.



Using an inverse Mellin transform, one can solve 
the second parameric moment problem, which 
gives, this time, a continuous measure  

with 





Ongoing work
Realizations of the product 

for some types of infinite matrices
Convolution of kernels: We first suppose given two 

 infinite matrices F(n,k), G(n,k) (n,k integers) admitting 
solutions for the parametric moment problem (PMP) 
which means that there are two (parametric) measures 
W

F  
, W

G 
such that 



Then one can check easily that, if the two kernels W
F  

 
and W

G 
 are convolable, then FG admits a solution 

for the PMP and 

Questions: Q1) What are the types of matrices 
for which there is a PMP solution ?

Q2) Which are the ones for which the kernel is 
discrete ? Continuous ?

Q3) Are there general laws for convolution of these 
types of kernels. 



Link with grafting:  Certain classes of graphs (i.e. 
closed by relabelling and extraction of connected 
components) provide lower triangular matrices via
 
M(n,k)=number of graphs with labels {1, 2,..n} and k 
connected components

the product of the matrices associated with two classes 
corresponds to the grafting obtained by considering the 
connected components of a graph of the first kind as 
vertices of a graph of the second kind. 

Question: What are the legal types of grafting when 
we change denominators ? Link with renormalisation ?



Substitutions: An infinite matrice F(n,k) with finite 
rows can be seen as defining a transformation between 
EGF. The transformation is of the form f --> u(x)f(v(x)) 
with u(x)=1+... and v(x)=λx+... if the sequence of 
polynomials B

F
(n,y) is of Extended Sheffer Type (EST). 

There is a « calculus » using vector fields on the half-
line and their conjugates. (see SLC Viennot - Lucelle - 
and Myczcowce talks) 

Questions: Q1) Combinatorial fields ? What is the 
«Stirling field » for instance ?

Q2) Make precise the dictionnaries (formal or analytic) 
vector fields  ↔ combinatorial matrices

Q3) What are the matrices coming from classes of graphs


