# On the use of rational expressions in Combinatorial Physics: an example. 

Gérard H. E. Duchamp and Christophe Tollu.*


#### Abstract

In a joint work with J. Katriel, one of us gave the solution of the problem of matrix coefficients in the Fock space of carriers between two levels. We give here a complete proof of these continued fractions-type formulas and possible extensions of the method. ${ }^{0}$


## 1 Introduction

## 2 Brief review of some known formulas

In [1] was considered, as Fock space, a general vector space $V$ over a field $k$ with basis $\left|e_{n}\right\rangle n=0,1, \cdots$, equipped with its natural grading

$$
\begin{equation*}
V=\oplus_{n \in \mathbf{Z}} V_{n} \text { with } V_{n}:=k e_{n} ; V_{-n-1}:=(0) \text { for } n \geq 0 \tag{1}
\end{equation*}
$$

and scalar product defined by $\left\langle e_{n} \mid e_{m}\right\rangle=\delta_{n, m}$. and $f, g$ two linear operators in $V$ of degrees $-1,+1$, respectively. Generically, they read

$$
\begin{equation*}
\text { for } n \geq 0 ; f\left|e_{0}\right\rangle:=0 ; f\left|e_{k+1}\right\rangle=\alpha_{k+1}\left|e_{k}\right\rangle ; g\left|e_{k}\right\rangle:=\beta_{k+1}\left|e_{k+1}\right\rangle \tag{2}
\end{equation*}
$$

We consider the words in $f, g$ :

$$
\begin{equation*}
w(f, g):=f^{p_{1}} g^{q_{1}} f^{p_{2}} g^{q_{2}} \cdots f^{p_{n}} g^{q_{n}} \tag{3}
\end{equation*}
$$

the degree (excess) of which is $\sum_{k=1}^{n}\left(q_{k}-p_{k}\right)$ (this is, for algebraists, the degree of the graded operator $\left.f^{p_{1}} g^{q_{1}} f^{p_{2}} g^{q_{2}} \cdots f^{p_{n}} g^{q_{n}}\right)$. This provides a representation $\mu$ of a two letters free monoid $\left\{b_{-}, b_{+}\right\}^{*}$ on $V$ by $\mu\left(b_{-}\right)=f ; \mu\left(b_{+}\right)=g$, which is graded for the weight on $\left\{b_{-}, b_{+}\right\}^{*}$. In order to keep the reading of a word from left to right, one performs the the action on the right. Thus $V$ becomes a $\left\{b_{-}, b_{+}\right\}^{*}$ right module by

$$
\begin{equation*}
e_{0} \cdot b_{-}=0 ; e_{n+1} \cdot b_{-}=\alpha_{n+1} e_{n} ; e_{n} \cdot b_{+}=\beta_{n+1} e_{n+1} \tag{4}
\end{equation*}
$$

one is interested by the matrix elements

$$
\begin{equation*}
\left\langle e_{n} \cdot\left\{b_{-}, b_{+}\right\}^{i} \mid e_{m}\right\rangle=\omega_{n \rightarrow m}^{(i)} . \tag{5}
\end{equation*}
$$

The following propsition gives the support i. e. the set of words $w$ of length $i$ such that $\left\langle e_{n} . w \mid e_{m}\right\rangle \neq 0$.

[^0]Proposition 2.1 Define $W_{n \rightarrow m}^{(i)}$ as follows

$$
\begin{equation*}
W_{n \rightarrow m}^{(i)}=\left\{w \in\left\{b_{-}, b_{+}\right\}^{i} \mid\left(\pi_{e}(w)=m-n\right) \text { and }\left(w=u v \Longrightarrow \pi_{e}(w) \geq-n\right)\right\} \tag{6}
\end{equation*}
$$

then
i) If the all the weights $\alpha_{n} ; n \geq 1, \beta_{n}, n \geq 0$ are not zero $W_{n \rightarrow m}^{(i)}$ is exactly the set of words of length $i$ such that $\left\langle e_{n} \cdot w \mid e_{m}\right\rangle \neq 0$.
ii) In all cases the latter is a subset of $W_{n \rightarrow m}^{(i)}$ i. e.

$$
\begin{equation*}
\left\{w \in\left\{b_{-}, b_{+}\right\}^{i} \mid\left\langle e_{n} \cdot w \mid e_{m}\right\rangle \neq 0\right\} \subset W_{n \rightarrow m}^{(i)} \tag{7}
\end{equation*}
$$

As a result,

$$
\begin{equation*}
\mu\left(W_{m-n}^{(i)}\right)|n\rangle=\omega_{n \rightarrow m}^{(i)}|m\rangle ; T_{n \rightarrow n+k}:=\sum_{i \geq 0} t^{i} \omega_{n \rightarrow n+k}^{(i)} \tag{8}
\end{equation*}
$$

One can expand $T_{n \rightarrow n+k}$ as a product of continued fractions. Let

$$
\begin{gather*}
F_{n}^{+}=\frac{1}{1-\frac{t^{2} \alpha_{n+1} \beta_{n+1}}{1-\frac{t^{2} \alpha_{n+2} \beta_{n+2}}{1-\frac{t^{2} \alpha_{n+3} \beta_{n+3}}{1-\cdots}}}=\frac{1}{1-E_{n}^{+}}} \begin{array}{c}
F_{n}^{-}=\frac{1}{1-\frac{t^{2} \alpha_{n} \beta_{n}}{1-\frac{t^{2} \alpha_{n-1} \beta_{n-1}}{1-\frac{t^{2} \alpha_{n-2} \beta_{n-2}}{1-\cdots}}}}=\frac{1}{1-E_{n}^{-}}
\end{array} .
\end{gather*}
$$

and

$$
\begin{equation*}
F_{n}=\frac{1}{1-E_{n}^{+}-E_{n}^{-}} . \tag{10}
\end{equation*}
$$

Then, if $k \geq 0$, we have

$$
\begin{equation*}
T_{n \rightarrow n+k}=t^{k} F_{n+k} \prod_{i=0}^{k-1} F_{n+i}^{-}=t^{k} F_{n} \prod_{i=1}^{k} F_{n+i}^{+} \tag{11}
\end{equation*}
$$

And, if $k \leq 0$

$$
\begin{equation*}
T_{n \rightarrow n+k}=t^{-k} F_{n+k} \prod_{i=0}^{-k-1} F_{n-i}^{+}=t^{-k} F_{n} \prod_{i=1}^{-k} F_{n-i}^{-} \tag{12}
\end{equation*}
$$

## References

## References

[1] Katriel J., Duchamp G., Ordering relations for $q$-boson operators, continued fractions techniques, and the $q$-CBH enigma. Journal of Physics A 28 7209-7225 (1995).


[^0]:    *LIPN - UMR 7030 CNRS - Université Paris 13 F-93430 Villetaneuse, France
    ${ }^{0}$ Version compilée le 27-04-2008 23:04

