On the use of rational expressions in Combinatorial Physics: an example.

Gérard H. E. DUCHAMP AND CHRISTOPHE TOLLU.*

Abstract

In a joint work with J. Katriel, one of us gave the solution of the problem of matrix coefficients in the Fock space of carriers between two levels. We give here a complete proof of these continued fractions-type formulas and possible extensions of the method. 0

1 Introduction

2 Brief review of some known formulas

In [1] was considered, as Fock space, a general vector space V over a field k with basis $|e_n\rangle$ $n = 0, 1, \dots$, equipped with its natural grading

$$V = \bigoplus_{n \in \mathbf{Z}} V_n \text{ with } V_n := ke_n; \ V_{-n-1} := (0) \text{ for } n \ge 0$$

$$\tag{1}$$

and scalar product defined by $\langle e_n | e_m \rangle = \delta_{n,m}$. and f, g two linear operators in V of degrees -1, +1, respectively. Generically, they read

for
$$n \ge 0$$
; $f|e_0\rangle := 0$; $f|e_{k+1}\rangle = \alpha_{k+1}|e_k\rangle$; $g|e_k\rangle := \beta_{k+1}|e_{k+1}\rangle$ (2)

We consider the words in f, g:

$$w(f,g) := f^{p_1}g^{q_1}f^{p_2}g^{q_2}\cdots f^{p_n}g^{q_n}$$
(3)

the degree (excess) of which is $\sum_{k=1}^{n} (q_k - p_k)$ (this is, for algebraists, the degree of the graded operator $f^{p_1}g^{q_1}f^{p_2}g^{q_2}\cdots f^{p_n}g^{q_n}$). This provides a representation μ of a two letters free monoid $\{b_-, b_+\}^*$ on V by $\mu(b_-) = f$; $\mu(b_+) = g$, which is graded for the weight on $\{b_-, b_+\}^*$. In order to keep the reading of a word from left to right, one performs the the action on the right. Thus V becomes a $\{b_-, b_+\}^*$ right module by

$$e_0.b_- = 0$$
; $e_{n+1}.b_- = \alpha_{n+1}e_n$; $e_n.b_+ = \beta_{n+1}e_{n+1}$ (4)

one is interested by the matrix elements

$$\langle e_n.\{b_-,b_+\}^i | e_m \rangle = \omega_{n \to m}^{(i)} .$$
⁽⁵⁾

The following propsition gives the support i. e. the set of words w of length i such that $\langle e_n . w | e_m \rangle \neq 0$.

^{*}LIPN - UMR 7030 CNRS - Université Paris 13 F-93430 Villetaneuse, France

⁰Version compilée le 27-04-2008 23:04

Proposition 2.1 Define $W_{n \to m}^{(i)}$ as follows

$$W_{n \to m}^{(i)} = \{ w \in \{b_{-}, b_{+}\}^{i} \mid (\pi_{e}(w) = m - n) \text{ and } (w = uv \Longrightarrow \pi_{e}(w) \ge -n) \}$$
(6)

then

i) If the all the weights α_n ; $n \ge 1$, $\beta_n, n \ge 0$ are not zero $W_{n \to m}^{(i)}$ is exactly the set of words of length *i* such that $\langle e_n . w | e_m \rangle \neq 0$.

ii) In all cases the latter is a subset of $W_{n \to m}^{(i)}$ i. e.

$$\{w \in \{b_{-}, b_{+}\}^{i} \mid \langle e_{n}.w | e_{m} \rangle \neq 0\} \subset W_{n \to m}^{(i)}$$

$$\tag{7}$$

As a result,

$$\mu(W_{m-n}^{(i)})|n\rangle = \omega_{n \to m}^{(i)}|m\rangle \; ; \; T_{n \to n+k} := \sum_{i \ge 0} t^i \omega_{n \to n+k}^{(i)} \; . \tag{8}$$

One can expand $T_{n \to n+k}$ as a product of continued fractions. Let

$$F_n^+ = \frac{1}{1 - \frac{t^2 \alpha_{n+1} \beta_{n+1}}{1 - \frac{t^2 \alpha_{n+2} \beta_{n+2}}{1 - \frac{t^2 \alpha_{n+3} \beta_{n+3}}{1 - \cdots}}} = \frac{1}{1 - E_n^+}$$

$$F_n^- = \frac{1}{1 - \frac{t^2 \alpha_n \beta_n}{1 - \frac{t^2 \alpha_{n-1} \beta_{n-1}}{1 - \frac{t^2 \alpha_{n-2} \beta_{n-2}}{1 - \cdots}}} = \frac{1}{1 - E_n^-}$$
(9)

and

$$F_n = \frac{1}{1 - E_n^+ - E_n^-} \ . \tag{10}$$

Then, if $k \ge 0$, we have

$$T_{n \to n+k} = t^k F_{n+k} \prod_{i=0}^{k-1} F_{n+i}^- = t^k F_n \prod_{i=1}^k F_{n+i}^+$$
(11)

And, if $k \leq 0$

$$T_{n \to n+k} = t^{-k} F_{n+k} \prod_{i=0}^{-k-1} F_{n-i}^+ = t^{-k} F_n \prod_{i=1}^{-k} F_{n-i}^-$$
(12)

References

References

 KATRIEL J., DUCHAMP G., Ordering relations for q-boson operators, continued fractions techniques, and the q-CBH enigma. Journal of Physics A 28 7209-7225 (1995).