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Content of talk
 A simple formula giving the Hadamard product of two EGFs 
(Exponential Generating Fonctions )
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 Discussion of the first part
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Expansion with Feynman-type diagrams
 Link with packed matrices
 Hopf algebra structures
Discussion of the second part
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A simple formula giving the Hadamard product of two EGFs

In a relatively recent paper Bender, Brody and 
Meister (*) introduce a special Field Theory described 
by the product formula in the purpose of proving that 
any sequence of numbers could be described by a 
suitable set of rules applied to some type of Feynman 
graphs (see Second Part of this talk). These graphs 
label monomials and are obtained in the case of special 
interest when the functions have 1 as constant term. 

Bender, C.M, Brody, D.C. and Meister, 
Quantum field theory of partitions, J. Math. Phys. Vol 40 (1999)
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The Hadamard product of two sequences 

is given by the pointwise product 

We can at once transfer this law on EGFs by

but, here, as 

we get  

Product formula
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• If we write these functions as exponentials, we are 
led to witness a surprising interplay between the 
following aspects: algebra (of normal forms or of the 
exponential formula), geometry (of one-parameter 
groups of transformations and their conjugates) and 
analysis (parametric Stieltjes moment problem and 
convolution of kernels).

This will be the first part of this talk
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• Writing F and G as free exponentials we shall see that 
the expansion can be indexed by specific diagrams 
(which are bicoloured graphs).

Some 5-line diagrams



  

•These diagrams are in fact labelling monomials. We 
are then in position of imposing two types of rules 
• On the diagrams (Selection rules) : on the outgoing, 
ingoing degrees, total or partial weights.  

• On the set of diagrams (Composition and 
Decomposition rules) : product and coproduct of 
diagram(s) 

• This leads to structures of Hopf algebras for spaces 
freely generated by the two sorts of diagrams 
(labelled and unlabelled). Labelled diagrams generate 
the space of Matrix Quasisymmetric Functions, we thus 
obtain a new Hopf algebra structure on this space 

This will be the second part of this talk

We conclude with some remarks…
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A single exponential

In the previous talks (Penson, Blasiak), the normal 
ordering problem was studied.

• Weyl (one-dimensional) algebra defined as

( a+, a ; [a , a+ ]=1 )C-AAU

• Known to have no (faithful) representation by 
bounded operators in any Banach space.
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There are many « combinatorial » (faithful) 
representations by operators. The most famous one is 
the Bargmann-Fock representation 

a  d/dx ; a+  x

Where, when seen as acting on polynomials, a has 
degree -1 and a+ has degree  1.
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A typical element in the Weyl algebra is of the form  

, 0
( , )( )k l

k l
c k l a a+

≥
Ω = ∑

(normal form). 

As can be seen from the Bargmann-Fock representation 
Ω is homogeneous of degree e (excess) iff one has

, 0
( , )( )k l

k l
k l e

c k l a a+

≥
− =

Ω = ∑
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Due to the symmetry of the Weyl algebra, we can 
suppose, with no loss of generality that e≥0. For 
homogeneous operators one has generalized  
Stirling numbers defined by

Example: Ω1 = a+2a a+4a + a+3a a+2 (e=4)
Ω2 = a+2a a+ + a+a a+2 (e=2)

If there is only one « a » in each monomial as in Ω2, 

one can use the integration techniques of the 
Frascati(*) school (even for inhomogeneous) 
operators of the type Ω=q(a+)a + v(a+)

0
( ) ( , )( )n ne k k

k
a S n k a a+ +

Ω
≥

Ω = ∑

(*) G. Dattoli, P.L. Ottaviani, A. Torre and L. Vàsquez, Evolution operator 
equations: integration with algebraic and finite difference methods, La Rivista del 
Nuovo Cimento 20 1 (1997).
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It can be proved that the matrices of coefficients for 
expressions with only a single « a » are 
matrices of special type : that of substitutions with 
prefunction factor. 



  



  

Where (x)=x+higher terms and g(x)=1+higher terms. 
The fact that, in the case of a single “a”, the matrices of 
generalized Stirling numbers are matrices of substitutions 
with prefunctions is due to the fact that the one-
parameter groups associated with the operators of 
type  Ω=q(x)d/dx+v(x) are conjugate to vector fields on 
the line. 
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Conjugacy trick :

Let u2=exp(∫(v/q)) and u1=q/u2 then 

u1u2=q; u1u’2=v and the operator q(a+)a+v(a+)

reads, via the Bargmann-Fock correspondence 

(u2u1)d/dx+ u1u’2=u1(u’2 + u2d/dx)= u1d/dx u2 =

1/u2 (u1 u2 d/dx ) u2

Which is conjugate to a vector field and integrates as a 
substitution with prefunction factor.
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Example: The expression Ω = a+2a a+ + a+a a+2 above 
corresponds to the operator 
(the line below ω is in form q(x)d/dx+v(x))

3 3 3 3
2 2 2 2

2 2

3 2 32 3 (2 ) ( )

d dx x x x
dx dx

d dx x x x x x x
dx dx

ω

φ− −

= + =

+ = =

Now, φ is a vector field and its one-parameter group 
acts by a one parameter group of substitutions. We can 
compute the action by another conjugacy trick which 
amounts to straightening φ to a constant field.
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Thus set 
exp(λ φ)[f(x)]=f(u-1(u(x)+λ)) for some u … 

By differentiation w.r.t. λ at (λ=0) one gets

u’=1/(2x3) ; u=-1/(4x2) ; u-1(y)=(-4y)-1/2
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In view of the conjugacy established previously we 
have that exp(λ ω)[f(x)] acts as  

3 3
2 2

2

4 22 3

1
1 4(1 4 )

( ) ( ( , )).( ( , ))

 ( )  x
xx

U f x f T x T x

f

λ

λλ

λ λ−

−−

=

=

which explains the prefactor. Again we can check by 
computation that the composition of (Uλ )s amounts to 
simple addition of parameters !! 
Now suppose that exp(λ ω) is in normal form. 
In view of  Eq1 (slide 9) we must have

  
0 0 0

exp( )  ( , ) ( )
! !

nen n n
ne k k

n n k

dx S n k x
n n dxω

λ ω λλ ω
≥ ≥ =

= =∑ ∑ ∑
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Hence, introducing the eigenfunctions of the derivative
(a method which is equivalent to the computation with 
coherent states) one can recover the mixed generating 
series of Sω(n,k) from the knowledge of the 

one-parameter group of transformations.  

0 0
exp( ) (  ( , ) )

!

nen
yx ne k k yx

n k
e x S n k x y e

n ω
λλ ω

≥ =

  =  ∑ ∑

Thus, one can state
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Proposition (*): With the definitions introduced, the 
following conditions are equivalent (where f  Uλ[f] is 
the one-parameter group exp(λω)).

( )

, 0
1. ( ,  )    ( )

!

2.  [ ]( )  ( ) (  (1  ( )))

n
k y x

n k
e e

xS n k y g x e
n

U f x g x f x x

φ
ω

λ λ φ λ

≥
=

= +

∑

Remark : Condition 1 is known as saying that 
S(n,k) is of « Sheffer » type.

G. Duchamp, A.I. Solomon, K.A. Penson, A. Horzela and P. Blasiak, 
One-parameter groups and combinatorial physics, 
World Scientific Publishing. arXiv: quant-ph/04011262}
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Example : With Ω = a+2a a+ + a+a a+2 (previous slide), 
we had  e=2 and 

2

24
2 3 2

1
(1 4 ) 1 4

[ ]( ) =  ( ) x
x x

U f x fλ λ λ− −
Then, applying the preceding correspondence one gets

4
3

14
3

1( 1)1 1 4
(1 4 )

, 0
( )1

(1 4 )

( ,  )   =  e =
!

 e  
n

n
n

n yk x
x

n k
y c x

x

xS n k y
nω

≥

−
−

−
≥

−

∑

∑

Where   are the central binomial coefficients.
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Proposition (*): With the definitions introduced, the 
following conditions are equivalent (where f  Uλ[f] is 
the one-parameter group exp(λω)).

( )

, 0
1. ( ,  )    ( )

!

2.  [ ]( )  ( ) (  (1  ( )))

n
k y x

n k
e e

xS n k y g x e
n

U f x g x f x x

φ
ω

λ λ φ λ

≥
=

= +

∑

Remark : Condition 1 is known as saying that 
S(n,k) is of « Sheffer » type.

G. Duchamp, A.I. Solomon, K.A. Penson, A. Horzela and P. Blasiak, 
One-parameter groups and combinatorial physics, 
World Scientific Publishing. arXiv: quant-ph/04011262}
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Remarks on the proof of the proposition :
  
2)  1) Can be proved by direct computation.
1)  2) Firstly the operator exp(λω) is continuous  
for the Treves topology on the EGF. Secondly, the 
equality in (2) is linear and continous in f (both sides). 
Thirdly the set of exp(yx) for y complex is total in the 
spaces of EGF endowed with this topology and the 
equality is satisfied on this set.
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Substitutions and the « connected graph 
theorem (*)»

 A great, powerful and celebrated result:
(For certain classes of graphs)

If C(x) is the EGF of CONNECTED graphs, then
exp(C(x)) is the EGF of ALL graphs. 
(Uhlenbeck, Mayer, Touchard,…)

This implies that the matrix 
M(n,k)=number of graphs with n vertices and 

having k connected components 
is the matrix of a substitution (like SΩ(n,k) previously

but without prefactor). 

(*) i.e. the « exponential formula  » of combinatorialists.
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One can prove, using a Zariski-like argument, that, if 
M is such a matrix (with identity diagonal) then, all its 
powers (positive, negative and fractional) are 
substitution matrices and form a one-parameter group 
of substitutions, thus coming from a vector field on the 
line which could (in theory) be computed. 
But no nice combinatorial principle seems to emerge.
For example, to begin with the Stirling substitution 
z ez-1. We know that there is a unique one-parameter 
group of substitutions sλ(z) such that, for λ integer, one 
has the value (s2(z)  partition of partitions)

But we have no nice description of this group nor of 
the vector field generating it.
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The Hadamard product of two sequences 

is given by the pointwise product 

We can at once transfer this law on EGFs by

but, here, as 

we get  

Two exponentials
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When the constant terms are 1, i. e. 
we can write

and
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Nice combinatorial interpretation: if  the Ln are (non-
negative) integers, F(y) is the EGF of set-partitions for 
which 
1-blocks can be coloured with L1 different colours.
2-blocks can be coloured with L2 different colours
………………………………………
k-blocks can be coloured with Lk different colours.

As an example, let us take L1, L2 > 0 and 
Ln=0 for n>2. Then the objects of size n are the set-
partitions of a n-set in singletons and pairs having 
respectively L1 and L2 colours allowed
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Without colour, for n=3, we have two types of 
set-partition: the type (three possibilities, on 
the left) and the type      (one possibility, on the 
right). 

With colours,  we have

 
possibilities. This agrees with the computation.

A

C

B A

C

BA

C

B
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In general, we adopt the notation 

for the type of a (set) partition which means that 
there are a1 singletons a2 pairs a3 3-blocks a4 4-blocks 
and so on.

The number of set partitions of type α as above is
well known (see Comtet for example)

  

Thus, using what has been said in the beginning, with
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Now, one can count in another way the expression
numpart(α)numpart(β), remarking that this is the 
number of pair of set partitions (P1,P2) with 
type(P1)=α, type(P2)=β. But every couple of 
partitions (P1,P2) has an intersection matrix ...

one has
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{1,5}  {2}  {3,4,6}

{1,2}         1       1        0

{3,4}         0       0        2

{5,6}         1       0        1

{1,5} {1,2}

{2} {3,4}

{3,4,6} {5,6}

Feynman-type diagram 
(Bender & al.)

Packed matrix
see NCSF 6
(GD, Hivert, 
and Thibon)
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Now the product formula for EGFs reads

The main interest of this new form is that 
we can impose rules on the counted graphs !

and 
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Weight 4
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Diagrams of (total) weight 5
Weight=number of lines
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Hopf algebra structures on the diagrams
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Hopf algebra structures on the diagrams

From our product formula expansion

one gets the diagrams as multiplicities for 
monomials in the (Ln) and (Vm).
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         1       0        1

         1       0        0

         0       2        1

V2 V2 V2

L2

L1

L3

For example, the diagram below corresponds to the
monomial  (L1 L2 L3) (V2)3 

We get here a correspondence 
diagram  monomial in (Ln) and (Vm). 

Set 

m(d,L,V,z)=Lα(d) Vβ(d) z|d|



 46

Question Can we define a (Hopf algebra) structure on 
the space spanned by the diagrams which represents 
the operations on the monomials (multiplication and 
doubling of variables) ?

Answer : Yes

First step: Define the space
Second step: Define a product  
Third step: Define a coproduct
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First step: Define the spaces 
 Diag=⊕d∈diagrams C d  LDiag=⊕d∈labelled diagrams C d

at this stage, we have an arrow LDiag  Diag 
(finite support functionals on the set of diagrams).

Second step: The product on Ldiag is just the 
concatenation of diagrams (we draw diagrams with 
their black spots downwards) 

d1 d2 = d1d2 

So that m(d1*d2,L,V,z)= m(d1,L,V,z)m(d2,L,V,z)
Remark: Concatenation of diagrams amounts to do the 
blockdiagonal product of the corresponding matrices. 
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This product is associative with unit (the empty 
diagram). It is compatible with the arrow 
LDiag  Diag and so defines the product on Diag 
which, in turn is compatible with the product of 
monomials.

LDiag x LDiag Mon x Mon

LDiag Diag

Diag x Diag

Mon



 51

Third step: For the coproduct on Ldiag, we have 
several possibilities :

a) Split wrt to the white spots (two ways) 
b) Split wrt the black spots (two ways) 
c) Split wrt the edges

Comments : (c) does not give a nice identity with the 
monomials (when applying d  m(d,?,?,?)) nor do 
(b) and (c) by intervals. 

 (b) and (c) are essentially the same (because of the 
WS  BS symmetry) 
In fact (b) and (c) by subsets give a good 

representation and, moreover, they are appropriate  
for several physical models. 

Let us choose (b) by subsets, for instance…
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This coproduct is compatible with the usual 
coproduct on the monomials. 

If ∆bs(d)=Σ d(1) ⊗ d(2)  

then 

Σ m(d(1) ,1,V’,z) m(d(2) ,1,V’’,z) =  m(d,1,V’+V’’,z)

It can be shown that, with this structure (product with 
unit, coproduct and the counit d  δd,∅), Ldiag is a 
Hopf algebra and that the arrow LdiagDiag endows 
Diag with a structure of Hopf algebra. 
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Remark: The labelled diagram are in one-to-one 
correspondence with the packed matrices as 
explained above. The product defined on diagrams is 
the product of the functions (φSP)p packed of NCSF VI p 
709 (*).



  

In order to connect these Hopf algebras to others of 
interest for physicists, we have to deform the product. 
The most popular technic is to use  a monoidal action 
with many parameters (as braiding etc.). 
Here, it is an analogue of the symmetric semigroup 
(the stacking-concatenation monoid) which acts on 
the black spots 
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Concluding remarks
i) We have many informations on the structures 

of Ldiag and Diag and the deformed version.

ii) One can change the constant Lk=1 to a
condition with level (i.e. Lk=1 for k≤N and Lk= 0
for k>N). We obtain then sub-Hopf algebras of the
one constructed above. These can apply to the
manipulation of partition functions of many
physical models including Free Boson Gas, 
Kerr model and Superfluidity.
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iii) We possess deep explanations of the 
associativity of the deformation in terms of dual 
laws which also explains the link with the 
polyzeta functions. 

iv) It seems that the parameter “t” (which is 
boolean) can be made continuous.

v) Many Hopf algebras of Combinatorial Physics 
and Combinatorial Hopf algebras being free as 
algebras, one can master their Sweedler’s duals 
by automata theory. 

G H E Duchamp, P Blasiak, A Horzela, K A Penson, A I Solomon
A Three-Parameter Hopf Deformation of the Algebra of Feynman-like
Diagrams. arXiv:0704.2522



  

End of the talk

Merci

Thank you

Dziękuję


