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A simple formula giving the Hadamard product of two EGFs
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Product formula
The Hadamard product of two sequences

(an)nzﬁ (bn)nzO
IS given by the pointwise product
(anbn)nzﬂ

We can at once transfer this law on EGFs by

T

F = Zan G = me : ):Za.nb.ni—_!

n=0 m=0 n=0

?’ﬂ LT

but, here, as (Jm) ! —5 Y
n!  m!lz=0 - T

d
we get H(F.G) = F(ya)G’(I)\m:o



o If we write these functions as exponentials, we are
led to witness a surprising interplay between the
following aspects: algebra (of normal forms or of the
exponential formula), geometry (of one-parameter
groups of transformations and their conjugates) and
analysis (parametric Stieltjes moment problem and
convolution of kernels).

This will be the first part of this talk



e Writing F and G as free exponentials we shall see that
the expansion can be indexed by specific diagrams
(which are bicoloured graphs).
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eThese diagrams are in fact labelling monomials. We
are then in position of imposing two types of rules
e On the diagrams (Selection rules) : on the outgoing,
ingoing degrees, total or partial weights.
e On the set of diagrams (Composition and
Decomposition rules) : product and coproduct of
diagram(s)

e This leads to structures of Hopf algebras for spaces
freely generated by the two sorts of diagrams
(labelled and unlabelled). Labelled diagrams generate
the space of Matrix Quasisymmetric Functions, we thus
obtain a new Hopf algebra structure on this space

This will be the second part of this talk

We conclude with some remarks...



A single exponential

In the previous talks (Penson, Blasiak), the normal
ordering problem was studied.

e Weyl (one-dimensional) algebra defined as

(at,a;[a,a"]=1 ).

e Known to have no (faithful) representation by
bounded operators in any Banach space.



There are many « combinatorial » (faithful)
representations by operators. The most famous one is
the Bargmann-Fock representation

a—>d/dx ; at—> X

Where, when seen as acting on polynomials, a has
degree -1 and a* has degree 1.



A typical element in the Weyl algebra is of the form
.|.
0 = z c(k,1)(a" Yrd
k,[20
(normal form).

As can be seen from the Bargmann-Fock representation
QQ is homogeneous of degree e (excess) iff one has

0=y c(k,D)(a )< d
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Due to the symmetry of the Weyl algebra, we can
suppose, with no loss of generality that e=0. For
homogeneous operators one has generalized
Stirling numbers defined by

0" = (@)Y So (ni)a ) a
k20
Example: Q, = a*2a a*‘a + at*3a a+?(e=4)
Q, = a*+?a a* + a*a a*?(e=2)

If there is only one « a » in each monomial as in Q,
one can use theintegration techniques of the

Frascati(*) school (even for inhomogeneous)
operators of the type Q=qg(a*)a + v(at)

(*) G. Dattoli, P.L. Ottaviani, A. Torre and L. Vasquez, Evolution operator
equations: integration with algebraic and finite difference methods, La Rivzisita del
Nuovo Cimento 20 1 (1997).



For w = ata, one gets the usual matrix of Stirling numbers of the
second kind.

10 0 0 0 00-

01 0 0 0 00-

01 1 00 00-

01 3 1 0 00---

01 76 1 00--- (3)
01152510 10

01319065151




For w = ataa™, we have

1 0
11
2 A4
6 18
2496
120 600
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For w =a"aaa™a™, one gets
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It can be proved that the matrices of coefficients for
expressions with only a single « a » are

matrices of special type : that of substitutions with
prefunction factor.
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2. The algebra £(CN) of sequence transformations

Let CMN he the vector space of all complex sequences, endowed with the
Frechet product topology [**]. It is easy to check that the algebra £(CM)
of all continuous operators C™N — CM is the space of row-finite matrices
with complex coeflicients. Such a matrix M is indexed by IN x IN and has
the property that, for every fixed row index n, the sequence (M{n,k)) .4
has finite support. For a sequence 4 = (a,, )n>0, the transformed sequence

B = MA is given by B = (by}n>0 with
bn = Y _ M(n,k)ax (6)

Remark that the combinatorial coefhicients S, defined above are indeed

row-hnite matrices.



2.1. Substitutrons with prefunctions

Let (dy,)n=0 bet a fixed set of denominators. We consider, for a generating
function f, the transformation

b, s [f(x) = g(x) f(o(x)). (9)

Where ¢(X)=ax+higher terms and g(x)=1+higher terms.
The fact that, in the case of a single “a”, the matrices of
generalized Stirling numbers are matrices of substitutions
with prefunctions is due to the fact that the one-
parameter groups associated with the operators of

type Q=q(x)d/dx+v(x) are conjugate to vector fields on
the line.



Conjugacy trick :
Let u,=exp(J(v/q)) and u,=qg/u, then
u,u,=q; u,u’,=v and the operator g(a*)a+v(a+)
reads, via the Bargmann-Fock correspondence
(u,u,)d/dx+ u,u’,=u,(u’, + u,d/dx)= u,d/dx u, =
1/u, (u,u,d/dx ) u,
Which is conjugate to a vector field and integrates as a

substitution with prefunction factor.

17



Example: The expression Q = a*2a a+ + a+a a+t2above
corresponds to the operator
(the line below wis in form g(x)d/dx+v(X))

W = xzix+ xix2
dx dx
2x° d 2 43x% = x /(Zx )x% = x'%((p)x%
dx dx

Now, ¢ is a vector field and its one-parameter group
acts by a one parameter group of substitutions. We can
compute the action by another conjugacy trick which
amounts to straightening ¢ to a constant field.

18



Thus set
exp(A @)[f(x)]=f(ut(u(x)+A)) for some u ...

By differentiation w.r.t. A at (A=0) one gets
u'=1/(2x3) ; u=-1/(4x2) ; u(y)=(-4y)>

19



t21 Maple 9 - [fc_sem_algo.mws - [Server 1]] |:||E”g|
=

@ File Edit Wiew Insert Format Window Help =& x
eRES [ = B EE EE R E FER

| =[] (W] L[]

(> expand (x* (-3/2) *2*x*3*diff (£ (x)*x*(3/2) ,X)); ﬂ

(s
2x7 | —flx)|+3x f(x)
_ dx
The one-parameter group given by f(v(u(x)+X\); v being the (compositional) inverse of u,
reads

> T1l:=(lambda,x)->x* (1-4*lambda*x"2)* (-1/2) ;
X

T1=(hx)—>
A1 =450

_ Checking the tangent vector at the origin
> subs (lambda=0,diff (Tl (lambda,x) ,lambda)) ;

2x°
_ ... and the one-parameter group property
> simplify (Tl (lambdal, Tl (lambdaZ2,x))*2-T1l (lambdal+lambdaZ2,x) *2) ;

0




In view of the conjugacy established previously we
have that exp(A w)[f(x)] acts as

Uy (f)= x 7T, x)(T( ,x)?
- 1 x>
] i/(l‘ 4) x*) f(\/l- 4) x° )

which explains the prefactor. Again we can check by
computation that the composition of (U, )samounts to

simple addition of parameters !!
Now suppose that exp(A w) is in normal form.
In view of EqQ1l (slide 9) we must have
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Hence, introducing the eigenfunctions of the derivative
(a method which is equivalent to the computation with
coherent states) one can recover the mixed generating
series of S _(n,k) from the knowledge of the

one-parameter group of transformations.

n ne
exp(/ a))Eeyx% = (z — x"¢ z S, (n,k)x* )™
20 " k=0

Thus, one can state

22



Proposition (*): With the definitions introduced, the
following conditions are equivalent (where f - U,[f] is

the one-parameter group exp(Aw)).

n
X

LY Sy b= = g(x)e?™
n,k20 n:

2. Uy [f1x) = g@x") f(x (1 + p(Ax%))

Remark : Condition 1 is known as saying that
S(n,k) is of « Sheffer » type.

G. Duchamp, A.I. Solomon, K.A. Penson, A. Horzela and P. Blasiak,
One-parameter groups and combinatorial physics,

World Scientific Publishing. arXiv: quant-ph/04011262 23



Example : With Q = a*2a a+ + ata a*2(previous slide),
we had e=2 and

Uy 10 = o A )

(1- 41 x° 1- 4} x°
Then, applying the preceding correspondence one gets

e T M)
z Sw(n,k);y :i/ e VA=

1- 4x)’
n,k20 (1= 4x)

1 Y(nzzl c,x")
i/(l- 4x)’ ©

2n

Where o= (n) are the central binomial coefficients.



> E1:=(1/((1-4%x)*3))"(1/4) *exp (y* (1/ (1-4*x) * (1/2)-1)) ;

I

(1/4) |1,I L)
1 Ulfi-ax )
EE:Z[ J e
(1-4x)°

> Tl:=taylor (El,x=0,6) ;

21 4 77 3
TI=1+2y+3)x+|12y+2y° +? x4+ 59y +18y° +3} +? +

2 , 1155) , (4389 4767 4 s
2?0}—%115} %—16} +—3} + X+ . + 1 _}%—63?} %—126} %—10} %—Ig} X~

- O(x%)
> seq([sort(coeff(Tl,x,n)*n!)],n=1..5);

[2v+3].[4y°+24y+21].[8y° +108 y* +354 3 +231],
[16 y" + 384 1 + 2760 y* + 6480 y + 3465],
© [323° +1200 3" + 15120 y° + 76440 3 + 143010 y + 65835 ]

25



:}.Ml::matrix{S,S,{n,k)—}cceff{cceff{Tl,x,n)*n!,y,k));

2 0 0 0 0

24 4 0 0 0

MI = 354 108 8 0 0
6480 2760 334 16 0

143010 76440 15120 1200 32

26



Proposition (*): With the definitions introduced, the
following conditions are equivalent (where f - U,[f] is

the one-parameter group exp(Aw)).

n
X

LY Sy b= = g(x)e?™
n,k20 n:

2. Uy [f1x) = g@x") f(x (1 + p(Ax%))

Remark : Condition 1 is known as saying that
S(n,k) is of « Sheffer » type.

G. Duchamp, A.I. Solomon, K.A. Penson, A. Horzela and P. Blasiak,
One-parameter groups and combinatorial physics,

World Scientific Publishing. arXiv: quant-ph/04011262 27



Remarks on the proof of the proposition :

2) 2 1) Can be proved by direct computation.

1) = 2) Firstly the operator exp(Aw) is continuous
for the Treves topology on the EGF. Secondly, the
equality in (2) is linear and continous in f (both sides).
Thirdly the set of exp(yx) for y complex is total in the
spaces of EGF endowed with this topology and the
equality is satisfied on this set.

28



Substitutions and the « connected graph
theorem (*)»

A great, powerful and celebrated result:
(For certain classes of graphs)

If C(x) is the EGF of CONNECTED graphs, then
exp(C(x)) is the EGF of ALL graphs.
(Uhlenbeck, Mayer, Touchard,...)

This implies that the matrix
M(n,k)=number of graphs with n vertices and
having k connected components
is the matrix of a substitution (like S(n,k) previously

but without prefactor).

29
(*) i.e. the « exponential formula » of combinatorialists.



One can prove, using a Zariski-like argument, that, if
M is such a matrix (with identity diagonal) then, all its
powers (positive, negative and fractional) are
substitution matrices and form a one-parameter group
of substitutions, thus coming from a vector field on the
line which could (in theory) be computed.

But no nice combinatorial principle seems to emerge.

For example, to begin with the Stirling substitution
z 2ez-1. We know that there is a unique one-parameter
group of substitutions s,(z) such that, for A integer, one

has the value (s,(z) <—> partition of partitions)
so(2) = el —1; s4(2) = e 1 s_1(2) = log(1 + =)

But we have no nice description of this group nor of

the vector field generating it. N



Two exponentials
The Hadamard product of two sequences

(an)nzﬁ (bn)nzO
IS given by the pointwise product
(anbn)nzﬂ

We can at once transfer this law on EGFs by

T

F = Zan G = me : ):Za.nb.ni—_!

n=0 m=0 n=0

?’ﬂ LT

but, here, as (Jm) ! —5 Y
n!  m!lz=0 - T

d
we get H(F.G) = F(ya)G’(I)\m:o
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When the constant terms are 1, i. e. F(0) =G(0) =1
we can write

F(y) =exp ZL n' G(xr) = exp Zlm m‘

n=1 n=1

and

32



Nice combinatorial interpretation: if the L. are (non-
negative) integers, F(y) is the EGF of set-partitions for

which

1-blocks can be coloured with L1 different colours.
2-blocks can be coloured with L2 different colours

k-blocks can be coloured with Lk different colours.

As an example, let us take L1, L2 > 0 and

Ln=0 for n>2. Then the objects of size n are the set-
partitions of a n-set in singletons and pairs having
respectively L1 and L2 colours allowed

33



Without colour, for n=3, we have two types of
set-partition: the type 1°2' (three possibilities, on
the left) and the type 1° (one possibility, on the
right).

9 8

©

With colours, we have

3L Ly +1L7

possibilities. This agrees with the computation. N



> fl:=exp (L1l*z+L2*z"2/2) ;

(L1z+1/2127%)

| f1 =e
> taylor (f1,z=0,5) ;

L2 L1*), (1 1
1+ L1z+ + 2+ | T LIL2+— L1

2 2 2 6

1 1 1
(L22 +—L2LI° + Lﬁ) 2+ 0(2)
8 4 24

35



> f2:=exp (L1*z+1/2*L2*z*2+1/6*L3*z~3+1/24*L4*z"4) ;

[ L222 L323 L424J
Ll z+ - -
2 6 24

| 2 =e

> tl:=taylor(f2,z=0,5);
L2 L1*}, (1 1 1),

tl =1+L1z+ — zZZ+ |\~ L3+ LIL2+—LI1l |z +
2 2 6 2 6

+ + +
24 6 8 4 24

> seq([coeff(tl,z,n)*n!],n=1..4);
[(L1,[L2+LI*],[L3+3L1L2+LI"],

[L4+4L1L3+31L2°+6L2L1°+L1")

L4 LIL3 L2° L2L1° LI'), X
+ z +0(z7)

36



In general, we adopt the notation

= 14122 ...

for the type of a (set) partition which means that
there are a1 singletons a2 pairs as 3-blocks a4 4-blocks
and so on.

The number of set partitions of type a as above is
well known (see Comtet for example)

numpart(o) =

(1o (22 - (1o (ag) (@)L - - - (ay)]

Thus, using what has been said in the beginning, with

37



F(y) = exp ZL n‘ G(x) = exp Zlmm,

n=1 n=1

one has

H(F.G) = F(yj)G( )| zmo =

Zy Z numpart(a)numpart(3)LYV?

n=>0 ! la|=|3|=n

Now, one can count in another way the expression
numpart(a)numpart(), remarking that this is the
number of pair of set partitions (P1,P2) with
type(P1)=aqa, type(P2)=[(. But every couple of
partitions (P1,P2) has an intersection matrix ...

38



Packed matrix

/I— see NCSF 6
(GD, Hivert,

] and Thibon)

{1,5% {2} {3,4,6}
{1,2} 1 | 1| o
3,4} 0| 0| 2
{5,6} 1 | 0 1

Feynman-type diagram
(Bender & al.)

s

39



Now the product formula for EGFs reads

H(F.G) = Fly-o)G(r)] o =

(d)yyp(d yl
> mult(d)LY OV )W
d diagram |
and Y mult(d) = B(n)?
d

The main interest of this new form is that
we can impose rules on the counted graphs !

40
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Hopf algebra structures on the diagrams

43



Hopf algebra structures on the diagrams

From our product formula expansion

H(F.G) = F(y di)c( VNazo =

d
> mult(d)L V”*(dﬁf‘iﬂ
d diagram |

one gets the diagrams as multiplicities for
monomials in the (L) and (V_).

44



For example, the diagram below corresponds to the
monomial (L, L, L) (V,)3

We get here a correspondence
diagram - monomial in (L) and (V.).

Set

m(d,L,V,z)zLa(d) V/B(d) Z(d| 45



Question Can we define a (Hopf algebra) structure on
the space spanned by the diagrams which represents
the operations on the monomials (multiplication and

doubling of variables) ?

Answer : Yes

First step: Define the space
Second step: Define a product
Third step: Define a coproduct

46



11 12,3,4}145,6,7,8,9410, 11}

{12,3,541,4,6,7,849,10,11}

Fig 1. — Diagram from Py. Ps (set partitions of [1---11]).
Po= {{2.3,5}.{1,4,6,7,8},{9,10,11}} and P, = {{1},{2,3,4},{5,6,7,8,9},{10,11}}
(respectively black spots for Py and white spots for Fy).

The ineidence matriz corresponding to the diagram {as drawn) or these partitions is
0 2 1 0

1 1 3 0 ). But, due to the fact that the defining partitions are unordered, one can
0 0 1 2

permute the spots (black and white, between themselves) and, so, the lines and columns of thas

o o 1 2
matriz can be permuted. the diagram could be represented by the matriz |0 2 1 0| as
1 0 3 1

well.



[ i

ed diagram of format 3 x 4 corresponding to the one of Fig 1.

[l

Labe

=T
s ]



First step: Define the spaces
Diag=U Cd LDiag=U,.pelieq diagrams Cd

ddOdiagrams

at this stage, we have an arrow LDiag - Diag
(finite support functionals on the set of diagrams).

Second step: The product on Ldiag is just the
concatenation of diagrams (we draw diagrams with
their black spots downwards)

d*d =d,.d,

So that m(d,*d,,L,V,z)= m(d,,L,V,z)m(d,,L,V,z)

Remark: Concatenation of diagrams amounts to do the

blockdiagonal product of the corresponding matrices. 1



This product is associative with unit (the empty
diagram). It is compatible with the arrow
LDiag - Diag and so defines the product on Diag

which, in turn is compatible with the product of
monomials.

LDiag x LDiag —— Diag x Diag —— Mon X Mon

LD)'ag : Diag > Mon

50



Third step: For the coproduct on Ldiag, we have
several possibilities :

a) Split wrt to the white spots (two ways)
b) Split wrt the black spots (two ways)
c) Split wrt the edges

Comments : (c) does not give a nice identity with the
monomials (when applying d > m(d,?,?,?)) nor do
(b) and (c) by intervals.

(b) and (c) are essentially the same (because of the

WS - BS symmetry)

In fact (b) and (c) by subsets give a good
representation and, moreover, they are appropriate
for several physical models.

Let us choose (b) by subsets, for instance... )



de1+dy @ (doUds ) +dac (dyUds )+dseo(dy Uds )+Hlips of those



This coproduct is compatible with the usual
coproduct on the monomials.

If A (d)=2d,,0d,,
then

2 m(d,,,1,V",z) m(dy ,1,V",2) = m(d,1,V'+V",2)

It can be shown that, with this structure (product with
unit, coproduct and the counitd = 9§, ), Ldiag is a

Hopf algebra and that the arrow Ldiag->Diag endows
Diag with a structure of Hopf algebra.

53



Remark: The labelled diagram are in one-to-one
correspondence with the packed matrices as
explained above. The product defined on diagrams is
the product of the functions (¢S;), ,.ceq OF NCSF VI p
709 (*).

103 103 021
a(ms[gg;]) — 1o Ms|83E] + Mg e MS[31] + MS[387] o Ms[52]
102 102
103
+MS[o21] & MSpiy + Iﬂ&[gg;] 51
003 102
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In order to connect these Hopf algebras to others of
interest for physicists, we have to deform the product.
The most popular technic is to use a monoidal action
with many parameters (as braiding etc.).

Here, it is an analogue of the symmetric semigroup
(the stacking-concatenation monoid) which acts on

the black spots

Diagram




We tried the shuffle with superpositions. The weights
being given by the intersection numbers.

2~ 6

q.°q.




What is striking is that this law is associative.




(au T bv) | cw = (afu ] bv) + g 1ellelll [z] (u 1 v) +¢"“"b(au v)) 1 ew

[“((H Tt pam) f gt initiepal H (w1 bv) Tw) + g+ Me(a(u 1 bu) | tt’)}

[

[ b m (w1 v ] cw) -+ gulH(ulHeDlel alibly(al+ b e [5 Gt

a

Gl gl m (Wl w)}

g M b((au 1 v) T cw) + glaulib(aulHeDlel bl H (au v T w) + golelHleHeoblel o 1 v) 1w



au T (bv | cw) =au | (b(v | cw) + gl gl [ ] (v 1 w) +¢"Me(bo | w)) =

[a.(-u. 1 b(v ] cw)) 4 ¢/l [i] (ulv]ew)+q®Pblau 1 v CIL-‘)]—I—

l'_':-
[q|v||c|t|b||c|a(u¢ H (0 1 w)) + bl ek gblleblal G HeD 1| (4, 1 4 1 )+
ﬂ’

ol laul (541 [ ] il ]+
[qlbvllf-‘-lamc(bu 1 w)) 4 gDl ol H 1 b 1 )+ gl gy 1 o Tu)] )

dans la deuxieme expression, on regroupe les trois termes de téte des crochets et on trouve

a(u ] b(v | cw)) + ¢l gy 1 H (v 1 w))+¢*™a(u | cbv Tw)) =alu v cw)
(4)

dans la premiére expression, on regroupe les trois termes de queue des crochets et on trouve

1=kl (a0 1 bo) T w) + q|u||b|+|:|au|+|m-mc|t|a||b|C((m (w1 0) T w)+

gl BDlel g 1 0) 1 ) = gIe Tl oy, 1 by 1 a0) 5)



The labelled diagrams are in one to one correspondence
with the packed matrices of MQSym and we can see
easily that the product of the latter is obtained for

q.=1=q,




Hopf interpolation : One can see that the more
intertwined the diagrams are the less connected
components they have. This is the main argument to
prove that LDIAG(q_q,) is free. Therefore one can define

a coproduct on the generators by

A=(1-H)A_ +t A

MQSym

this is LDIAG(qCI q..t).




[—lplanar decorated Trees\
LDIAG(qg_q_,t)

:

LDIAG(1qt)

LDIAG MQSym
'\"\l ‘Connes-Kreimer \

e [D1AG|4 |FQSym

BELL —

The arrow Planar Dec. Trees — LDIAG(1,q,1) is due to L. Foissy




Concluding remarks

i) We have many informations on the structures
of Ldiag and Diag and the deformed version.

ii) One can change the constant L =1 to a
condition with level (i.e. L, =1 for ksN and L .= 0
for k>N). We obtain then sub-Hopf algebras of the
one constructed above. These can apply to the
manipulation of partition functions of many

physical models including Free Boson Gas,
Kerr model and Superfluidity.
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iii) We possess deep explanations of the
associativity of the deformation in terms of dual
laws which also explains the link with the
polyzeta functions.

iv) It seems that the parameter “t” (which is
boolean) can be made continuous.

v) Many Hopf algebras of Combinatorial Physics
and Combinatorial Hopf algebras being free as
algebras, one can master their Sweedler’s duals
by automata theory.

G H E Duchamp, P Blasiak, A Horzela, K A Penson, A I Solomon
A Three-Parameter Hopf Deformation of the Algebra of Feynman-like
Diagrams. arXiv:0704.2522
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End of the talk

Merci

Thank you

Dzickuje



