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ABSTRACT

Complex systems LeMoigne (1999) are models to de-
scribe dynamic organizations or systems where the inter-
nal interaction network between their components does
not allow the control of individual components with ef-
ficience. In a lot of case, the individual control leads
to break the whole structure itself. In other way, some
complex systems exhibit resilience properties which lead
them to recover their initial state after small perturba-
tions or individual controls. Controlling complex sys-
tems need to not trying to manage the individual con-
trols but to manage the global control, guiding the whole
system without directly act on individual themselves.
The study presented in this paper explains how control
a high level system property, the diffusive behavior, by
spectral analysis over genetic automata. First experi-
ments are presented using MuPad implementation.

COMPLEX SYSTEMS AND FEED-BACKS

FOR ECONOMY

We describe the systemic approach of economical system
modelling, especially the feed-back concept which can be
consider as a global control over the system components.

Complexity in Economy

We can classify the economical systems in two main
classes Marshall (1920):

• The classical approach based on rational choice of
sets of equations representing the state of the econ-
omy. The restrictions from this approach are: the
unrealistic assumption of rational choice and per-
fect information; assumptions on homogeneity and
lack of distinction between the agent and the aggre-
gate level; inability to account for the emergence of
new kinds of entities, patterns, structures, etc.

• Complexity perspective approach. This approach is

more recent to view economy. It focusses on view-
ing the economy as an evolving complex system, us-
ing Holland’s complex adaptive systems paradigm
Holland (1975).

With the complexity approach, the aim is to under-
stand how global economic phenomena arise purely
from the local interactions and local knowledge of
the agents. This stems from the recognition that
there is no central or global control in an economy
and that the global regularities which arise are purely
due to the local interactions of adaptive autonomous
agents. The agents within an economic network may be
individuals or institutions. We can consider an institu-
tion agent as being composed of many individual agents.

Feed-Backs Modelling

W. Brian Arthur Arthur (1999), and other economic
theorists have been interested to a view of the economy
based on feedbacks, more precisely, positive feedback
mechanisms. We can say that the modern economies
can be divided into two interrelated branches :

• Diminishing Returns and Negative Feedback.

Diminishing returns refers to the notion that the
return that a company receives for additional
effort decreases as the number of units (outputs)
increases. Diminishing returns explains why
industrial companies become more inefficient once
they grow over a certain size.

Negative feedback is the process of feeding back
to the input a part of a system’s output, so as
to reverse the direction of change of the output.
This tends to keep the output from changing, so
it is stabilizing and attempts to maintain constant
conditions.

Diminishing returns assumptions are the basis of
the conventional economic theory. The actions of



the economy induce a negative feedback which lead
to predictable equilibrium for prices and market
share. Negative feedback stabilize the economy
because any major changes will be cancel out by
the reaction they generate. Diminishing returns
imply a unique equilibrium point for the economy.

Alfred Marshall Marshall (1920) believed that we
can not applied the increasing returns everywhere
in the economy. His remark leads W. Brian Arthur
to observe that the part of the economy that
are resource-based (the traditional part) are still
subject to diminishing returns, on one hand. And
the part of the economy that are knowledge-based
(the newer part) are still subject to increasing re-
turns, on the other hand as defined in the following.

• Increasing Returns and Positive Feedback

Increasing returns refers to the notion that the
greater the size of the network, the greater the
advantage of each participant of the network
(network effects). Each participant of the network
brings value to the overall network. This is in
contrast to diminishing returns which refers to
the greater the size (number of users) the less
each participant can benefit from participation.
Increasing returns generate instability.

We call a feedback mechanism positive if the
resulting action goes in the same direction as the
condition that triggers it. Positive feedback is an
open system contain many types of regulatory
systems, among which are systems that involve
positive feedback and its relative negative feedback.

Increasing returns make for multiple solutions (mul-
tiple equilibrium points), and it generate instability
or criticality stability following Per Bak Bak (1996).

After describing the scientific environment of complex-
ity, we give in the next section formal tools allowing to
model some auto-regulation processes leading to imple-
ment the feed-back mechanisms.

AUTOMATA-BASED SYSTEM MODELLING

We focus our attention on a special kind of automata
with outputs which are efficient in operational way
Hopcroft et al. (2001). This automata with output are
called automata with multiplicities and they are defined
in the following.

Automata with multiplicites

An automaton with multiplicities is based on the fact
that the output data of the automata with output be-
long to a specific algebraic structure, a semi-ring. In
that way, we will be able to build effective operations on
such automata, using the power of the algebraic struc-
tures of the output data. And we are also able to de-
scribe this automata in matrix representation with all
the power of the linear algebra.

Definition 0.1 An automaton with multiplicities

over an alphabet
∑

and a semi-ring K is the 5-uple

Σ, Q, I, T, δ where

• Q = {S1, S2, ..., Sn} is the finite set of state

• I : Q → K is a function over the set of initial

states, which associates to each initial state a value

of K, called entry cost, and to non-initial state a

null value

• T : Q → K is a function over the set of the final

states, which is associated to each final state a value

of K, called final cost, and to non-final state a null

value

• δ is the transition function, that is δ : Q×Σ×Q →
K which from a state S1 , a letter a and a state S2

go to a value z of K if it exist a transition labeled

with a from the state S1 to the state S2 and with

the output z.

We remark that

• automata with multiplicities is a generalization of
finite automata. In fact, finite automata can be
considered as automata with multiplicities with for
the semi-ring K, the boolean set B = {0, 1}. To
each transition we affect 1 if it exists and 0 if not.

• We have not yet, on purpose, defined what a semi-
ring is. Roughly it is the least structure (K, +, x)
that allows matrix computation with units (one can
think of a ring without the minus operation)

Linear Representation

The previous automata with multiplicities can be ex-
pressed by a linear representation which is a triplet

p = (λ, µ, γ)

with λ ∈ K1×n is a row-vector which coefficients are
λi = I(Si), γ ∈ Kn×1 is a row-vector which coefficients
are γi = T (Si), and µ : Σ → Kn×n is a morphism of
monoids such that ∀a ∈ Σ, the coefficient on the i-th
row and j-th column of all transitions labeled with a is
µ(a)ij = δ(Si, A, Sj).



In the following, we describe the linear representation of
the automata with multiplicities which corresponds to
the the following figure.
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Figure 1: Automata with multiplicities

In this figure, the input states are characterized with
input arrows from nothing and the output states are
characterized with output arrow to nothing. On each
transition, we indicate before the semi-column, the
input data and after the semi-column, the output
associated for each input data.

The linear representation is the following

λ =
(

3 0 0
)

γt =
(

0 2 1
)

µ(a) =





0 0 4
0 0 −1
0 0 −3





µ(b) =





0 3 0
0 0 0
0 0 0





GENETIC AUTOMATA

Genetic algorithms play an important role in the stud-
ies of complex adaptive systems, ranging from adaptive
agents in economic theory to the use of machine learn-
ing techniques. We describe the principles of these algo-
rithms and then their application to genetic automata.

Genetic Algorithms and Operations

The major aspect of genetic algorithms is the adapta-
tion property. This property can be considered as the

search of the optimum of a specific function. Genetic
algorithms work on a population of individuals. The
individuals are represented with chromosomes which
are composed with primitive information called alleles.
In term of computable formalization, chromosomes are
generally strings or sequences of information over a
finite alphabet. To begin the algorithm, we generate a
population of chromosomes.

The algorithm is based on a variation-selection process:

• The variation step concerns the basic genetic oper-
ators on the individual level and so this step acts on
the chromosomes. These basic operators are com-
posed of reproduction/duplication, crossing-over
and mutation and we describe how implement them
for genetic automata in the following section. The
result gives another population with a greater num-
ber of chromosomes than the initial one

• The selection step concerns the population level in-
side which a selection function modifies the whole
population constitution. This step leads to keep
only some of the chromosomes that have been gen-
erated during the variation step and which satisfy
to specific constraints

Automata Chromosome Coding and Genetic Op-

erators

We define the chromosome for each automata with mul-
tiplicities as the sequence of all the matrices associated
to each letter from the (linearly ordered) alphabet. The
chromosomes are composed with alleles which are here
the lines of the matrices.
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Chromosome Code

Figure 2: Chromosome code

In the processus, genetic algorithms generate new au-
tomata containing possibly new transitions from the



ones included in the initial automata. The genetic op-
erators are applied as described in the following:

• Reproduction/duplication: this operator simply
copy the automaton chromosome.

• Crossing-over: From 2 chromosomes, it consists in
cutting of the initial chromosomes in the same place
chosen at random and in permuting the two parts
of the matrices lines chains.

• Mutation : In this step, we chose a few chromo-
somes at random to be candidate for the mutation
process. If selected, we modify one line of the ma-
trix lines chromosome. If the matrix lines have to
respect some properties (like probabilistic matrix)
we constraint the new values to respect them.

EXPERIMENTS ON DIFFUSIVE PROPERTY

CONTROL

We present in the following some experiments based on
the package MuPAD-Combinat which implements many
data structures related to combinatorics Hivert and
Thierry (2004). The genetic operators are developped
on the predefined domain called Weighted Automaton
from this package.

Our experiment consists to define chromosome code for
probablitistic automata which are specific automata
with multiplicities satisfying the condition that the sum
of each lines coefficient must be equal to 1.

Fitness Function and Auto-Regulation Process

Based on Spectral Analysis

We define a population of genetic probabilistic automata
generated at random and we compute for each matrix,
the secondary greatest eigenvalue module (the first one
is always equal to 1, because of the probablitistic matri-
ces used, respecting Perron-Frobenius Theorem). The
genetic algorithm is described in 1.

Experiment on non Diffusive Systems Control

In the figure 3, we represent a series of histograms com-
puted at different steps where we indicate the number
of automata according to their secondary greatest eigen-
value module. With the evolution of the population, we
observe that the selection will generate population with
chromosome of high secondary greatest eigenvalue mod-
ule.The x-scale is adaptive to the interval containing all
the values of this secondary greatest eignevalue for the
automata population.

Algorithm 1: Auto-regulation algorithm for genetic
automata population
Generation of P the initial population of probabilistic automata
chromosome;
while not end of iterations do

for each chromosome c ∈ P do

Duplicate c;
Update P ;

for each couple of chromosomes (c1, c2) ∈ P do

Make crossing-over on (c1, c2);
Make mutation on c1 and c2 with low random probability;
Update P ;

for each chromosome c ∈ P do

Compute the fitness of c as the secondary greatest eigen-
value module;

Select from P the half higher fitness population and update
P with this selection;

Results analysis and interpretation

As expected by the fitness function, we generate
successive populations which are characterized by the
convergence process which leads to obtain a population
where the greatest secondary eigenvalue module of all
automata with multiplicities is equal 1.

This processus is an auto-regulation processus on the
population itself, managed by a feed-back of the result
control on the system itself.

By controlling the generating automata population
with eigenvalues module equals 1, we constraint the
system to not be dissipative. The spectral analysis
and the eigenvalues module give some indications
on the dissipative aspect during the evolution. If
the eigenvalue modules are less than 1, then we can
conclude that a dissipation exists.

The non dissipative evolution process over automata
with multiplicities proposed here, is a tool based on the
power of the algebraic representation of the automata
with multiplicities, using some computation on their ma-
trix representation. So we deal on a dynamic data struc-
ture according to the complexity of dissipative process
over some self-organized systems. Without managing
each matrix coefficient value, we give a kind of control
tool according to dissipative process increasing or de-
creasing.

CONCLUSION AND PERSPECTIVES

In this paper, we present a methodology which allow to
control a complex system by a global function which is
based on the use of genetic probabilistic automata pop-
ulation. From this population, we compute a spectral
analysis and control the system by reducing its diffusive
properties. The applications to economy can be relevent
and we propose by this method, a practical and com-



Figure 3: Histograms of the evolution of automata population according to their secondary greatest eignevalue module at iteration 1, 10,
20, 30 and 40

putable way to implement the feed-back mechanisms
over systems in economy.

REFERENCES

Arthur B., 1999. Complexity and the Economy. Science,
284, 107–109.

Bak P., 1996. How nature works - the science of self-

organized criticality. Springer Verlag.

Hivert F. and Thierry N.M., 2004. MuPAD - Combinat,

an open-source package for research in algebraic com-

binatorics. Seminaire Lotharingien de Combinatoire,
51.

Holland J., 1975. Hidden Order - How adaptation builds

complexity. Helix Book.

Hopcroft J.; Motwani R.; and Ullman J., 2001. Introduc-

tion to automata theory, languages and computation.
Addison-Wesley.

Jaff L., 2007. Dynamic Data Structures for Complex

Systems. Ph.D. thesis, University of Le Havre.

Kline D., 2001. Positive feedback, lock-in and environ-

mental policy. Policy Sciences, 34, 95–107.

LeMoigne J.L., 1999. La modélisation des systèmes com-
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