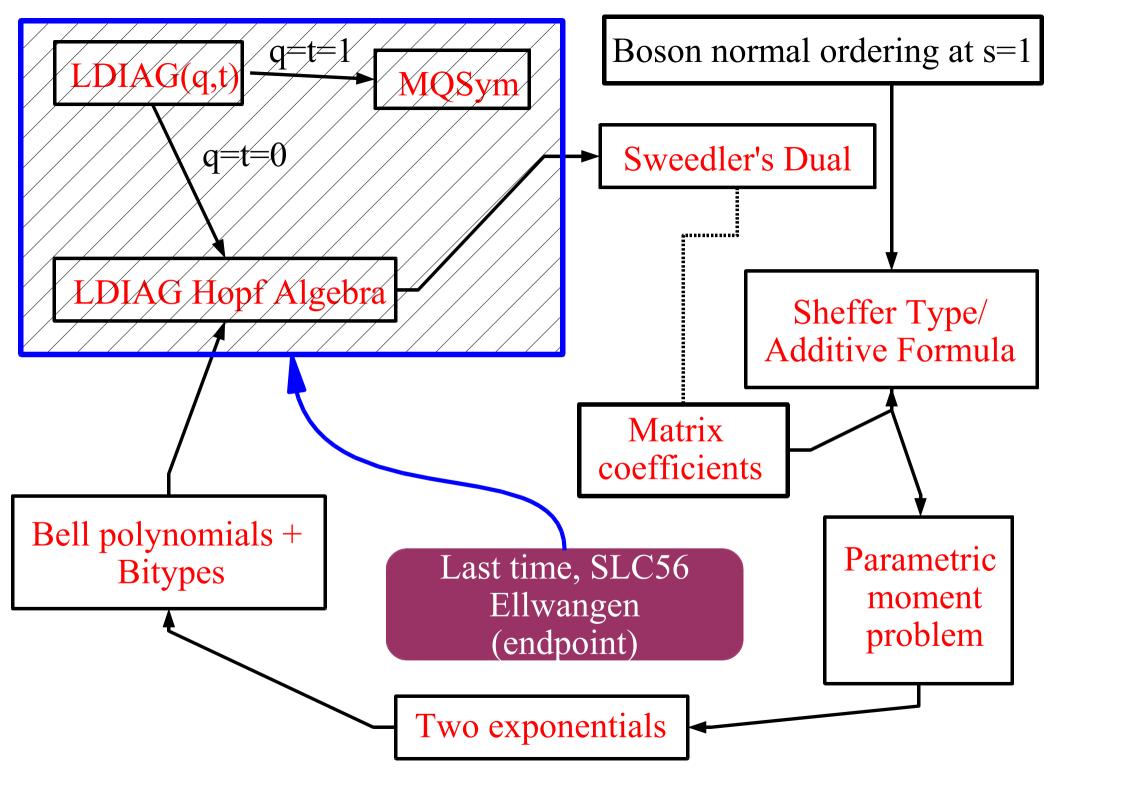
# Deformation of combinatorial algebras linked to physics

Gérard H. E. Duchamp

LIPN, Université de Paris XIII, France

#### **Collaborators**:

Karol A. Penson, LPTMC, Université de Paris VI, France Allan I. Solomon, The Open University, United Kingdom Pawel Blasiak, Instit. of Nucl. Phys., Krakow, Pologne Andrzej Horzela, Instit. of Nucl. Phys., Krakow, Pologne



## Revisiting the contruction of the Hopf algebra LDIAG

In a relatively recent paper Bender, Brody and Meister (\*) introduce a special Field Theory described by a product formula (a kind of Hadamard product for two exponential generating functions - EGF) in the purpose of proving that any sequence of numbers could be described by a suitable set of rules applied to some type of Feynman graphs (see third Part of this talk). These graphs label monomials.

Bender, C.M, Brody, D.C. and Meister, Quantum field theory of partitions, J. Math. Phys. Vol 40 (1999)

## How these diagrams arise and which data structures are around them

Let F, G be two EGFs.

$$F = \sum_{n \ge 0} a_n \frac{y^n}{n!}; \ G = \sum_{m \ge 0} b_m \frac{y^m}{m!}; \ \mathcal{H}(F,G) := \sum_{n \ge 0} a_n b_n \frac{y^n}{n!}$$

$$\mathcal{H}(F,G) = F(y\frac{d}{dx})G(x)|_{x=0}$$

Called « product formula » in the QFTP of Bender, Brody and Meister.

#### In case F(0)=G(0)=1, one can set

$$F(y) = exp(\sum_{n\geq 1} L_n \frac{y^n}{n!}) \quad G(x) = exp(\sum_{n\geq 1} V_m \frac{x^m}{m!})$$

and then,

$$\mathcal{H}(F,G) = F(y\frac{d}{dx})G(x)|_{x=0} =$$

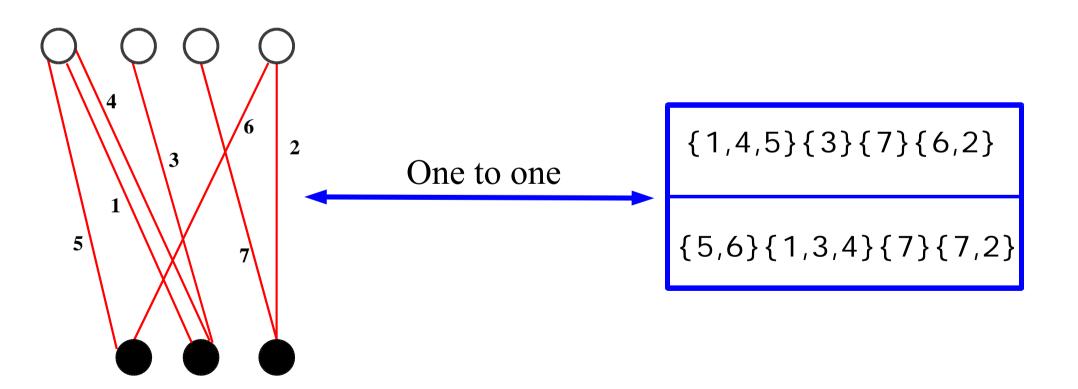
$$\sum_{n\geq 0} \frac{y^n}{n!} \sum_{|\alpha|=|\beta|=n} numpart(\alpha) numpart(\beta) \mathbb{L}^{\alpha} \mathbb{V}^{\beta}$$

with  $\alpha, \beta \in \mathbb{N}^{(\mathbb{N}^*)}$  multiindices

$$numpart(\alpha) = \frac{|\alpha|!}{(1!)^{a_1}(2!)^{a_2}\cdots(r!)^{a_r}(a_1)!(a_2)!\cdots(a_r)!}$$

Remark that the coefficient  $numpart(\alpha)numpart(\beta)$  is the number of pairs of set partitions (P1,P2) with type(P1)= $\alpha$ , type(P2)= $\beta$ .

The original idea of Bender and al. was to introduce a special data structure suited to this enumeration.

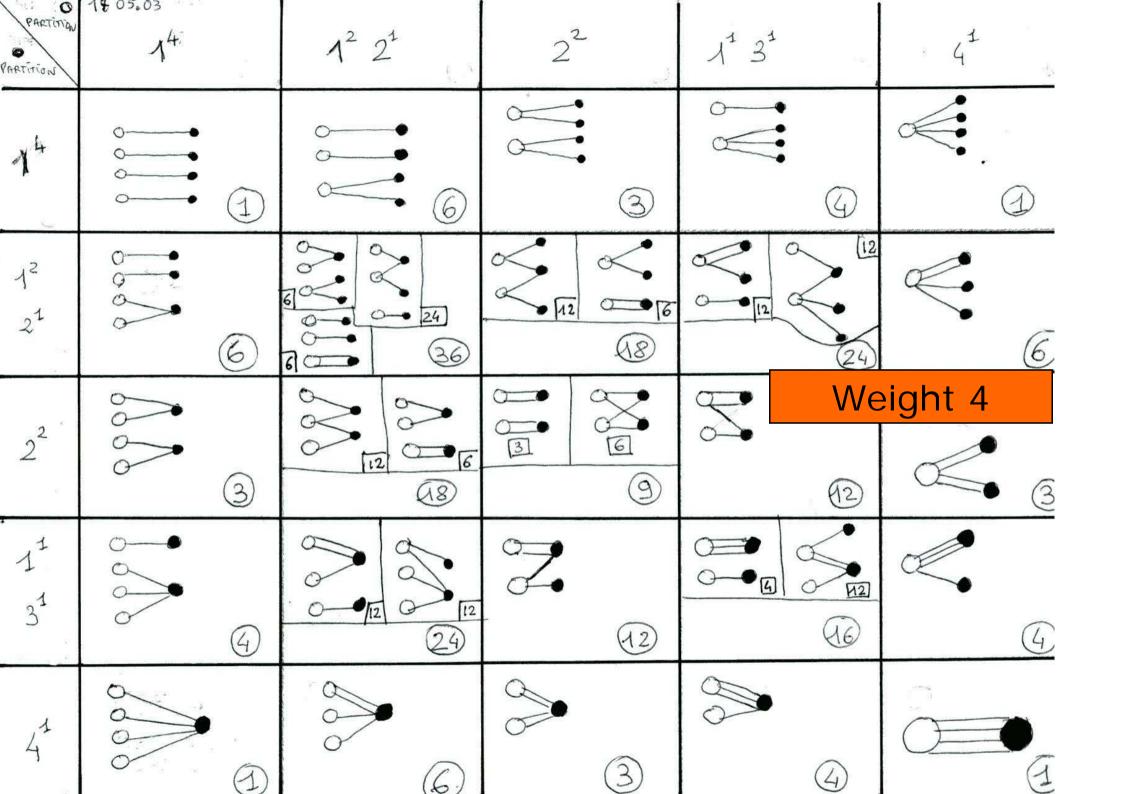


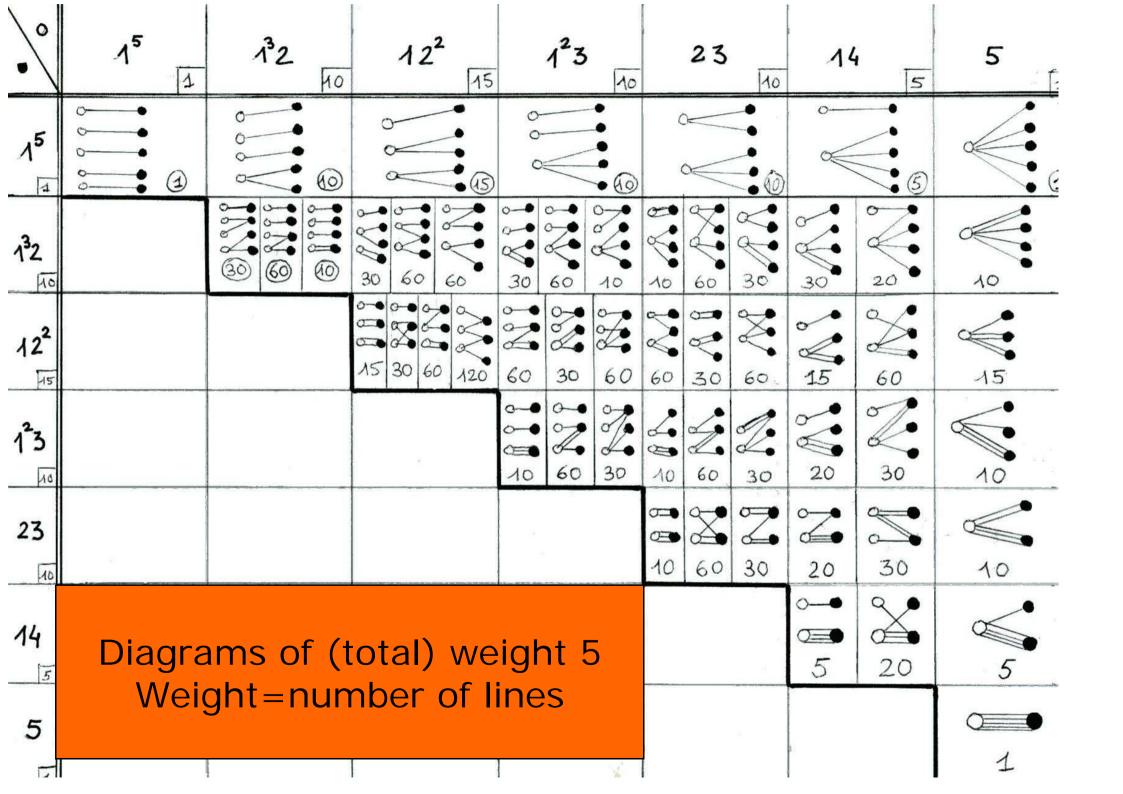
#### Now the product formula for EGFs reads

$$\mathcal{H}(F,G) = \sum_{\substack{d \ FB-diagram}} \frac{y^{|d|}}{|d|!} \mathbb{L}^{\alpha(d)} \mathbb{V}^{\beta(d)}$$

$$\mathcal{H}(F,G) = \sum_{d \in \mathbf{diag}} \frac{y^{|d|}}{|d|!} mult(d) \mathbb{L}^{\alpha(d)} \mathbb{V}^{\beta(d)}$$

The main interest of these new forms is that we can impose rules on the counted graphs and we can call these (and their relatives) graphs: Feynman Diagrams of this theory (i.e. QFTP).





#### One has now 3 types of diagrams:

• the diagrams with labelled edges (from 1 to |d|). Their set is denoted (see above) FB-diagrams.

 the unlabelled diagrams (where permutation of black and white spots). Their set is denoted (see above) diag.

• the diagrams, as drawn, with black (resp. white) spots ordered i.e. labelled. Their set is denoted **Idiag**.

#### Hopf algebra structure

$$(H,\mu,\Delta,1_H,\epsilon,\alpha)$$

Satisfying the following axioms

- $(H,\mu,1_H)$  is an associative k-algebra with unit (here k will be a commutative field)
- $(H,\Delta,\epsilon)$  is a coassociative k-coalgebra with counit
- $\Delta$  : H -> H $\otimes$ H is a morphism of algebras
- $\alpha$  : H -> H is an anti-automorphism (the antipode) which is the inverse of Id for convolution.

#### Convolution is defined on End(H) by

$$\varphi \bullet \psi = \mu (\varphi \otimes \psi) \Delta$$

with this law End(H) is endowed with a structure of associative algebra with unit  $1_{H}\epsilon$ .

#### First step: Defining the spaces

$$Diag = \bigoplus_{d \in diagrams} \mathbf{C} d$$
  $LDiag = \bigoplus_{d \in labelled diagrams} \mathbf{C} d$ 

(functions with finite supports on the set of diagrams). At this stage, we have a natural arrow LDiag → Diag.

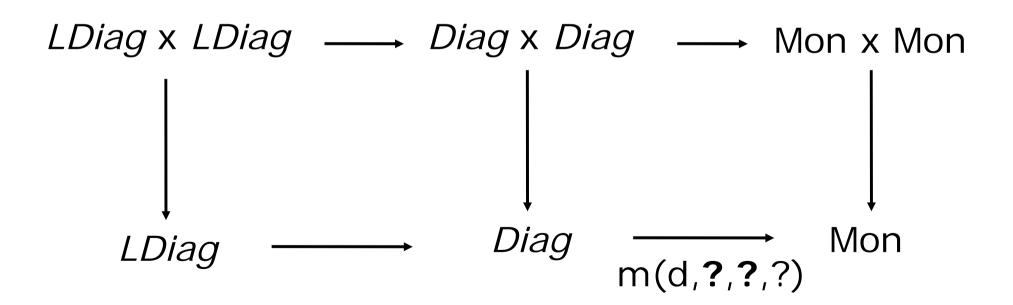
Second step: The product on *Ldiag* is just the concatenation of diagrams

$$d_1 * d_2 = d_1 d_2$$

And, setting  $m(d, \mathbf{L}, \mathbf{V}, z) = \mathbf{L}^{\alpha(d)} \mathbf{V}^{\beta(d)} z^{|d|}$  one gets

$$m(d_1*d_2, \mathbf{L}, \mathbf{V}, z) = m(d_1, \mathbf{L}, \mathbf{V}, z)m(d_2, \mathbf{L}, \mathbf{V}, z)$$

This product is associative with unit (the empty diagram). It is compatible with the arrow LDiag → Diag and so defines the product on Diag which, in turn, is compatible with the product of monomials.

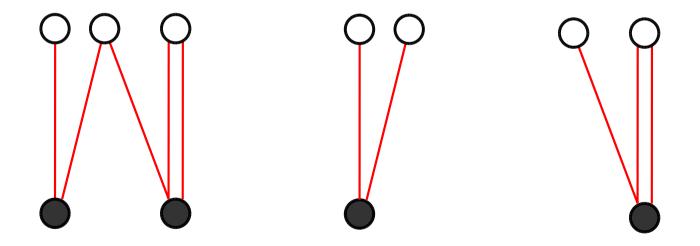


The coproduct needs to be compatible with m(d,?,?,?). One has two symmetric possibilities. The white spots coproduct » reads

$$\Delta_{\rm BS}(d) = \sum d_{\rm I} \otimes d_{\rm J}$$

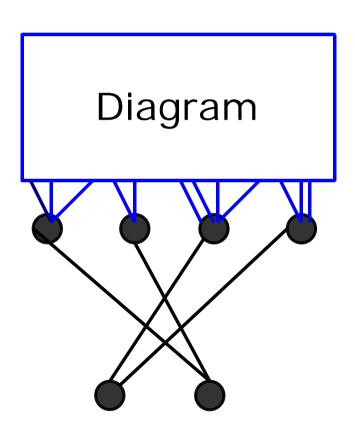
the sum being taken over all the decompositions, (I,J) of the Black Spots of d into two subsets.

For example, with the following diagrams d, d<sub>1</sub> and d<sub>2</sub>

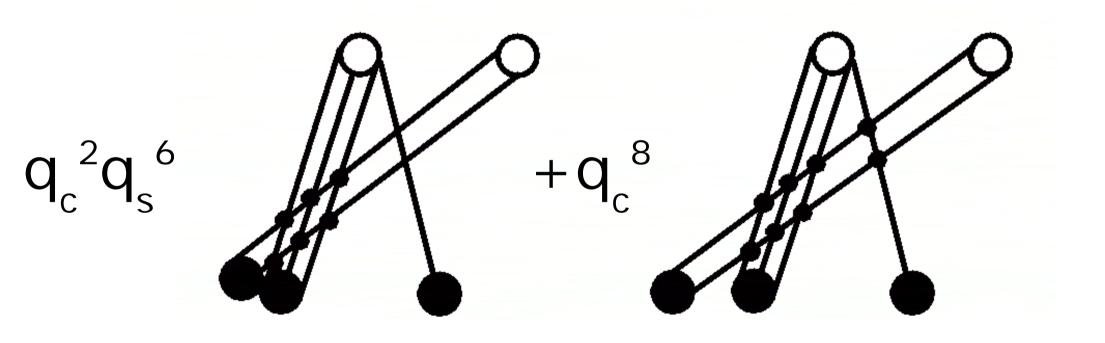


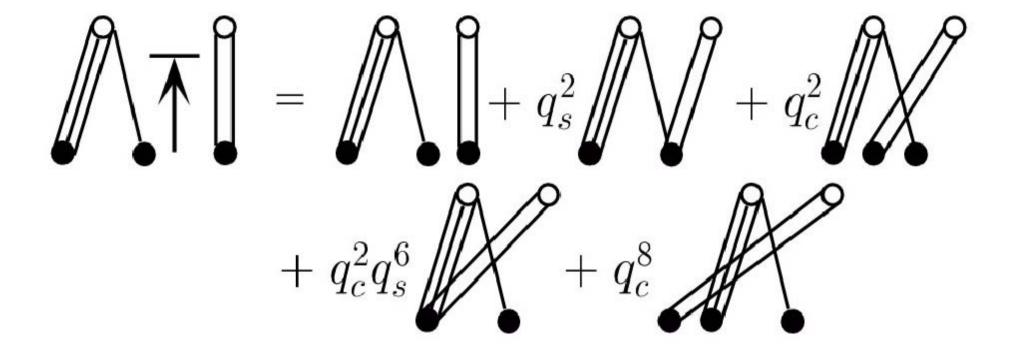
one has 
$$\Delta_{BS}(d) = d \otimes \emptyset + \emptyset \otimes d + d_1 \otimes d_2 + d_2 \otimes d_1$$

In order to connect these Hopf algebras to others of interest for physicists, we have to deform the product. The most popular technic is to use a monoidal action with many parameters (as braiding etc.). Here, it is the symmetric semigroup which acts on the black spots

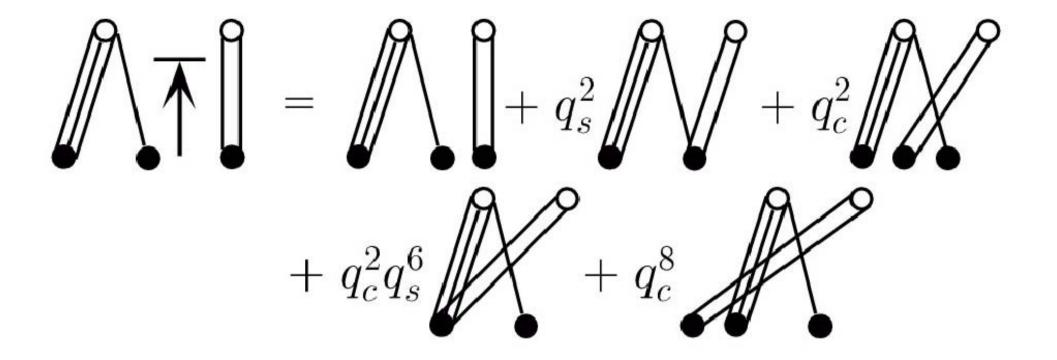


We tried the shuffle with superpositions. The weights being given by the intersection numbers.





What is striking is that this law is associative.



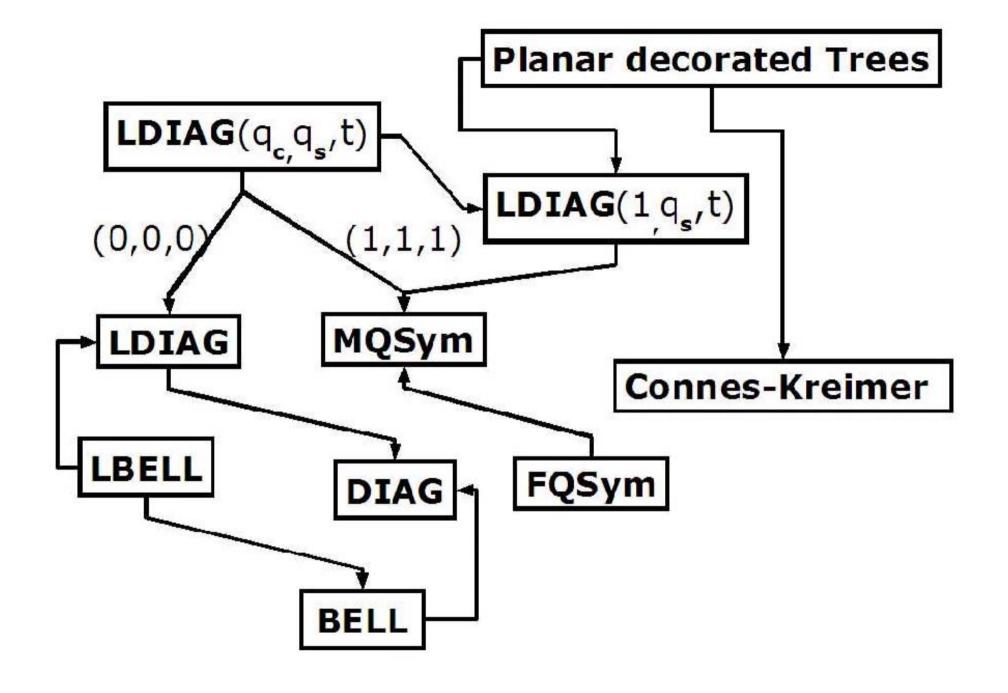
The labelled diagrams are in one to one correspondence with the packed matrices of MQSym and we can see easily that the product of the latter is obtained for

$$q_c = 1 = q_s$$

<u>Hopf interpolation</u>: One can see that the more intertwined the diagrams are the less connected components they have. This is the main argument to prove that  $LDIAG(q_{c_i}, q_s)$  is free. Therefore one can define a coproduct on the generators by

$$\Delta_{\rm t} = (1-t)\Delta_{\rm BS} + t \Delta_{\rm MQSym}$$

this is LDIAG( $q_c q_{s'}t$ ).



The arrow *Planar Dec. Trees*  $\rightarrow$  *LDIAG*(1,q,t) is due to L. Foissy

$$\mathbf{v}$$
,  $\mathbf{v}$ 

(Extr. Of Loic Foissy's Ph D)

## Concluding remarks and future

- i)  $LDIAG(q_{c'}, q_{s'}, t)$  is neither commutative not cocommutative.
- ii) It seems (Foissy) that LDIAG(1,q<sub>s</sub>,t) is a homomorphic image of the one of planar decorated trees.
- iii) LBELL (starting from a particular partition function), has quasi-symmetric functions as homomorphic image and thus Euler-Zagier polyzeta functions.

#### Concluding remarks and future (cont'd)

iv) The deformation above is likely to be decomposed in two deformation processes; twisting (already investigated in NCSFIII) and shifting (ongoing work with JGL and al.). Also, it could have a connection with other well known associators.

iv) The identity on the symmetric semigroup can be lifted to a more general monoid which takes into account the operations of concatenation and stacking which are so familiar to Computer Scientists (ongiong work in LIPN).

## **Partition Function**

$$Z = tr \exp(-\beta H)$$

$$H = \varepsilon a^{+} a$$
Free Boson Gas (single mode)
Coherent state basis
$$Z = (1/\pi) \int d^{2}z < z \mid \exp(-\beta \varepsilon a^{+} a) \mid z >$$

$$= (1/\pi) \int d^{2}z < z \mid \exp(a^{+} a(\exp(-\beta \varepsilon) - 1) : \mid z >$$

$$= (1/\pi) \int_{0}^{2\pi} d\theta \int_{0}^{\infty} r dr \exp(r^{2}(\exp(-\beta \varepsilon) - 1))$$

$$= (1 - \exp(-\beta \varepsilon))^{-1}$$

$$r = \mid z \mid$$

$$Z = \int_{0}^{\infty} dy \exp(y(e^{x} - 1))$$

$$y = r^{2}, x = -\beta \varepsilon$$

$$= \int_0^\infty dy \, B(x,y)$$

## Graphs for Bell numbers B(n)

$$G(x) = \exp(-x/1! + x^2/2! + x^3/3! + ...)$$

Total

 $n=1$ 
 $n=2$ 
 $n=3$ 
 $n=3$ 

### End of the talk

Merci

Thank you

Dziękuję