A multipurpose Hopf deformation of the Algebra of Feynman-like Diagrams

G H E Duchamp^a, A I Solomon^{c,d}, P Blasiak^b, K A Penson^c and A Horzela^b

```
    a Institut Galilée, LIPN, CNRS UMR 7030
    99 Av. J.-B. Clement, F-93430 Villetaneuse, France
```

- ^c Laboratoire de Physique Théorique de la Matière Condensée
 Université Pierre et Marie Curie, CNRS UMR 7600
 Tour 24 2ième ét., 4 pl. Jussieu, F 75252 Paris Cedex 05, France
- ^e The Open University, Physics and Astronomy Department Milton Keynes MK7 6AA, United Kingdom

E-mail:

ghed@lipn-univ.paris13.fr, a.i.solomon@open.ac.uk
pawel.blasiak@ifj.edu.pl, andrzej.horzela@ifj.edu.pl,
penson@lptl.jussieu.fr,

Abstract. We construct a three parameter deformation of the Hopf algebra **LDIAG**. This new algebra is a true Hopf deformation which reduces to **LDIAG** on one hand and to **MQSym** on the other, relating **LDIAG** to other Hopf algebras of interest in contemporary physics. Further, its product law reproduces that of the algebra of polyzeta functions.

1. Introduction

The complete journey between the first appearance of a product formula by Bender et al. [2] and their related Feynman-like diagrams to the discovery of a Hopf algebra structure [11] on the diagrams themselves, goes roughly as follows.

Firstly, Bender, Brody, and Meister [2] introduced a special field theory which proved to be particularly rich in combinatorial links and by-products (not to mention the link with vector fields and one-parameter groups [12, 15]).

Secondly, the Feynman-like diagrams of this theory label monomials which combine naturally in a way compatible with monomial multiplication and co-addition. This is the Hopf algebra **DIAG**.

Thirdly, the natural noncommutative pull-back of this algebra, **LDIAG**, has a basis (the *labelled* diagrams) which is in one-to-one correspondence with that of the *Matrix*

b H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences ul. Eliasza-Radzikowskiego 152, PL 31342 Kraków, Poland

Quasi-Symmetric Functions (the packed matrices of MQSym), but their algebra and co-algebra structures are completely different. In particular, multiplication in MQSym involves a sort of shifted shuffle with overlappings reminiscent of Hoffmann's shuffle used in the theory of polyzeta functions [3]. The superpositions and overlappings involved there are not present in (non-deformed) LDIAG and, moreover, the coproduct of LDIAG is co-commutative while that of MQSym is not.

The aim of this paper is to announce the existence of a Hopf algebra deformation which connects **LDIAG** to other Hopf algebras relevant to physics (Connes-Kreimer, Connes-Moscovici, Brouder-Frabetti, [7]) and other fields (noncommutative symmetric functions, Euler-Zaguier sums).

2. Labelled Diagrams and Diagrams

Labelled diagrams can be identified with their weight functions which are mappings $\omega : \mathbb{N}^+ \times \mathbb{N}^+ \to \mathbb{N}$ such that the supporting subgraph

$$\Gamma_{\omega} = \{ (i, j) \in \mathbb{N}^+ \times \mathbb{N}^+ \mid w(i, j) \neq 0 \}$$
 (1)

has specific projections i.e. $pr_1(\Gamma_\omega) = [1..p]$; $pr_2(\Gamma_\omega) = [1..q]$ for some $p, q \in \mathbb{N}$ (notice that when one of p, q is zero so too is the other).

These graphs are represented by labelled diagrams as follows

The labelled diagrams form the set **ldiag** and prescribe monomials through the formula $\mathbb{L}^{\alpha(d)}\mathbb{V}^{\beta(d)}$ where $\alpha(d)$ (resp. $\beta(d)$) is the "white spot type" (resp. the "black spot type") i.e. the multi-index $(\alpha_i)_{i\in\mathbb{N}^+}$ ($(\beta_i)_{i\in\mathbb{N}^+}$) such that α_i (resp. β_i) is the number of white spots (resp. black spots) of degree i (i lines connected to the spot).

There is a (graphically) natural multiplicative structure on ldiag such that the arrow

$$m(?, \mathbb{L}, \mathbb{V}) : d \mapsto \mathbb{L}^{\alpha(d)} \mathbb{V}^{\beta(d)}$$
 (2)

is a morphism.

It is clear that one can permute black spots, or white spots, of d without changing the monomial $\mathbb{L}^{\alpha(d)}\mathbb{V}^{\beta(d)}$. The classes of (labelled) diagrams up to this equivalence (permutations of white - or black - spots among themselves) are naturally represented by unlabelled diagrams and will be denoted **diag** (including the empty one).

For both types of diagram the product consists of concatenating the diagrams i.e. placing d_2 on the right of d_1 [11] (the result, for d_1 , d_2 , will be denoted $[d_1|d_2]_D$ in **diag** and $[d_1|d_2]_L$ in **ldiag**). These products endow **diag** and **ldiag** with the structure of monoids, with the empty diagram as neutral element. The corresponding commutative diagram is as follows.

Labelled diagrams²
$$\xrightarrow{Unlabelling}$$
 Diagrams² $\xrightarrow{m(?,\mathbb{L},\mathbb{V})\times m(?,\mathbb{L},\mathbb{V})}$ Monomials²

product \downarrow product \downarrow product \downarrow product \downarrow (3)

Labelled diagrams $\xrightarrow{Unlabelling}$ Diagrams $\xrightarrow{m(?,\mathbb{L},\mathbb{V})}$ Monomials

It is easy to see that the labelled diagram (resp. diagrams) form free monoids. We denote by **DIAG** and **LDIAG** the K-algebras of these monoids [?, 1] (K is a field). One can shuffle the product in **ldiag**, counting crossing and superpositions. The definition of the deformed product is expressed by the descriptive formula and diagram below.

$$[d_1|d_2]_{L(q_c,q_s)} = \sum_{\substack{cs(?) \text{ all crossing and} \\ \text{superpositions of black spots}}} q_c^{nc \times weight_2} q_s^{weight_1 \times weight_2} cs([d_1|d_2]_L)$$
(4)

where

- q_c, q_s are coefficients in K
- the exponent of $q_c^{nc \times weight_2}$ is the number of crossings of "what crosses" times its weight
- the exponent of $q_s^{weight_1 \times weight_2}$ is the product of the weights of "what is overlapped"
- cs(?) are the diagrams obtained from $[d_1|d_2]_L$ by the process of crossing and superposing the black spots of d_2 on those of d_1 , the order and identity of the black spots of d_1 (i.e. d_2) being preserved.

$$= + q_s^2 + q_c^2 + q_c^2 + q_c^2 + q_c^8 + q_c^8$$

What is striking is that this law is associative. Moreover, it can be shown [5, 4] that this process decomposes into two transformations: twisting and shifting. In fact, specialized to certain parameters, this law is reminiscent of others [3].

3. Hopf Deformation

Using a total order on the monomials of **ldiag**, it can be shown that the algebra **LDIAG** (q_c, q_s) is free. Thus one may construct a coproduct Δ_t such that (**LDIAG** $(q_c, q_s), 1_{\mathbf{ldiag}}, \Delta_t, \varepsilon, S$) is a Hopf algebra. We have the following specializations

$$\frac{(q_c, q_s, t) = \begin{vmatrix} (0, 0, 0) & (1, 1, 1) \\ \simeq & \mathbf{LDIAG} & \mathbf{MQSym} \end{vmatrix}$$

We finally obtain the following general picture

References

- [1] J. Berstel, C. Reutenauer, Rational series and their languages EATCS Monographs on Theoretical Computer Science, Springer (1988).
- [2] C. M. Bender, D. C. Brody, and B. K. Meister, Quantum field theory of partitions, J. Math. Phys. Vol 40 (1999)
- [3] P. Cartier, Fonctions polylogarithmes, nombres polyzêtas et groupes pro-unipotents, Séminaire Bourbaki, Mars 2001, 53ème année, 2000-2001, 885
- [4] DUCHAMP G. H. E., KOSHEVOY G., PENSON K. A., TOLLU C., TOUMAZET F., Geometric combinatorial twisting and shifting, Séminaire Lotharingien (to be submitted).
- [5] G. Duchamp, A.I. Solomon, P. Blasiak, A. Horzela and K.A. Penson, *The Hopf Algebra of Feynman-like Diagrams: Twisting and Shifting.*
- [6] L. Foissy, Isomorphisme entre l'algèbre des fonctions quasi-symétriques libres et une algèbre de Hopf des arbres enracinés décorés plans, personal communication.
- [7] L. Foissy, Les algèbres de Hopf des arbres enracinés decorés, PhD Memoir, Reims University (2002).
- [8] G. DUCHAMP, A.I. SOLOMON, K.A. PENSON, A. HORZELA AND P. B LASIAK, One-parameter groups and combinatorial physics, Proceedings of the Symposium Third International Workshop on Contemporary Problems in Mathematical Physics (COPROMAPH3) (Porto-Novo, Benin, Nov. 2003), J. Govaerts, M. N. Hounkonnou and A. Z. Msezane (eds.), p.436 (World Scientific Publishing 2004) arXiv: quant-ph/04011262
- [9] A.I. SOLOMON, P. BLASIAK, G. DUCHAMP, A. HORZELA AND K.A. PENSON, Combinatorial Physics, Normal Order and Model Feynman Graphs, Proceedings of the Symposium 'Symmetries in Science XIII', Bregenz, Austria, 2003, B. Gruber, G. Marmo and N. Yoshinaga (eds.), p.527 (Kluwer Academic Publishers 2004) arXiv: quant-ph/0310174
- [10] A.I. SOLOMON, G. DUCHAMP, P. BLASIAK, A. HORZELA AND K.A. PENSON, Normal Order: Combinatorial Graphs Quantum Theory and Symmetries, Proceedings of the 3rd International Symposium P.C. Argyres, T.J. Hodges, F. Mansouri, J.J. Scanio, P. Suranyi, and L.C.R. Wijewardhana (eds.), p.398 (World Scientific Publishing 2004) arXiv:quant-ph/0402082
- [11] G. H. E. DUCHAMP, P. BLASIAK, A. HORZELA, K. A. PENSON, A. I. SOLOMON, FEYNMAN GRAPHS AND RELATED HOPF ALGEBRAS, Journal of Physics: Conference Series, SSPCM'05, Myczkowce, Poland. arXiv: cs.SC/0510041
- [12] G. Duchamp, A.I. Solomon, K.A. Penson, A. Horzela and P. B lasiak, One-parameter groups and combinatorial physics, Proceedings of the Symposium Third International Workshop on Contemporary Problems in Mathematical Physics (COPROMAPH3) (Porto-Novo, Benin, Nov. 2003), J. Govaerts, M. N. Hounkonnou and A. Z. Msezane (eds.), p.436 (World Scientific Publishing 2004) arXiv: quant-ph/04011262
- [13] A.I. SOLOMON, G. DUCHAMP, P. BLASIAK, A. HORZELA AND K. A. PENSON, Partition functions and graphs: A combinatorial approach, Proceedings of the XI International Conference on Symmetry Methods in Physics (SYMPHYS-11) (Prague, Czech Republic, June 2004), C. Burdik, O. Navratil, and S. Posta (eds.) (JINR Publishers, Dubna, 2004) arXiv:quant-ph/0409082
- [14] A. Horzela, P. Blasiak, G. Duchamp, K. A. Penson and A.I. Solomon, A product

- formula and combinatorial field theory, Proceedings of the XI International Conference on Symmetry Methods in Physics (SYMPHYS-11) (Prague, Czech Republic, June 2004), C. Burdik, O. Navratil, and S. Posta (eds.) (JINR Publishers, Dubna) arXiv:quant-ph/0409152
- [15] P. Blasiak, A. Horzela, K. A. Penson, G. H. E. Duchamp, A.I. Solomon, Boson normal ordering via substitutions and Sheffer-Type Polynomials, Phys. Lett. A 338 (2005) 108
- [16] P. Blasiak, K. A. Penson, A.I. Solomon, A. Horzela, G. H. E. Duchamp, Some useful formula for bosonic operators, Jour. Math. Phys. 46 052110 (2005).
- [17] G. Duchamp, F. Hivert, J. Y. Thibon, Non commutative functions VI: Free quasisymmetric functions and related algebras, International Journal of Algebra and Computation Vol 12, No 5 (2002).