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Abstract. We build here a three parameters deformation of the Hopf algebra

LDIAG. This new Algebra is a true Hopf deformation, specializes to LDIAG on

one side and to MQSym on the other, relating LDIAG to the other Hopf algebras

of contemporary Physics. Moreover its product law covers the algebra of polyzeta

functions.
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1. Introduction

The complete journey between a first appearance of a product formula by Bender et al.

[3] and their related Feynman-like diagrams to the discovery of a Hopf algebra structure

[14] (in fact, two distinct but isomorphic ones) on the diagram themselves compatible

with their eveluations, goes roughly as follows.

First, C. M. Bender, D. C. Brody, and B. K. Meister [3] introduced a special field theory

which proved to be particularly rich in combinatorial links and by-products.

Secondly, the Feynman-like diagrams produced by this theory label monomials and

we had the surprise to see that they naturally combine in a way compatible with the

monomial multiplication and co-addition. This is the Hopf algebra DIAG.

Thirdly, the natural noncommutative pull-back of this algebra, LDIAG, has a basis

(the labelled diagrams) which is in one-to-one correspondence with that of the Matrix

Quasi-Symmetric Fonctions (the packed matrices of MQSym), but their algebra and co-

algebra structures are completely different. In particular, in this basis, the multiplication

of MQSym implies a sort of shifted shuffle with overlappings reminiscent to Hoffmann’s

shuffle used in the theory of polyzeta functions [?]. The superpositions and overlappings

involv ed there are not present in the (non-deformed) LDIAG and, moreover, the

coproduct of LDIAG is co-commutative and the one of MQSym is not.

The aim of this paper is to introduce some “dynamic algebra” between the two Hopf

algebras LDIAG and MQSym. The striking result is that, introducing parameters to

count, in the most natural way, the crossings and overlappings of the shifted shuffle

one can witness that the resulting law is associative (graded with unit). We also show

how to interpolate with a coproduct which makes, at each stage, our algebra a Hopf

algebra. The result is thus a three-parameters Hopf algebra deformation wich specialises

to LDIAG at (0, 0, 0) and to MQSym at (1, 1, 1).

The question of “graphic primitive elements” has a very elegant and simple solution

: these elements are the diagrams with only one black spot. The diagrams obtained

reflect the Bell numbers and the corresponding basis has the same multiplication rule

as the polyzeta functions.

The structure of the contribution is the following ...

2. How and why these Feynman-like Diagrams arise

The beginning of the story was explained with full details in [12, 13, 16, 17, 18, 19],

and the Hopf algebra structure was made precise in [14]. Here, we will make the

developpement shorter but focus on the last part, where the algebraic structure

constructed on the diagrams themselves arise.

The very starting point is Bender’s and al. product formula [3], an expression of

the Hadamard product for exponential generating series. That is, with
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The case when F (0) = G(0) = 1 being of special interest, one is interested to obtain

compact and generic formulas. If we write the functions as free exponentials that is with

F (z) = exp
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one gets, through the Bell polynomials in the alphabets L, V (see [14] for details)

H(F,G) =
∑

n≥0

zn

n!

∑

P1,P2∈UPn

L
Type(P1)V

Type(P2) (4)

where UPn is the set of unordered partitions of [1 · · ·n]. An unordered partition P of a

set X, is a subset of P ⊂ P(X) − {∅} (that is an unordered collection of blocks, i. e.

non-empty subsets, of X) such that

• the union
⋃

Y ∈P Y = X (P is a covering)

• P consists of disjoint subsets, i. e.

Y1, Y2 ∈ P and Y1 ∩ Y2 6= ∅ =⇒ Y1 = Y2.

The type of P ∈ UPn is the multiindex (αi)i∈N+ such that αk is the number of

k-blocks, that is the number of members of P with cardinality k.

Here is the point where the formula entangles and the diagrams of the theory arise.

The fundamental remarks are :

• the monomial L
Type(P1)V

Type(P2) needs much less information that is contained in

the individual partitions Pi,

• two partitions have an incidence matrix from which it is still possible to recover the

types of the partitions

Now the construction goes as follows.

(i) Take two unordered partitions of [1 · · ·n], say P1, P2

(ii) Build their incidence matrix (#(Y ∩ Z))(Y,Z)∈P1×P2

(iii) Build the diagram representing the multiplicities of the incidence matrix : for each

block of P1 (resp. P2) draw a white spot (resp. a black spot)
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(iv) Draw lines between the white spot Y ∈ P1 and the black spot Z ∈ P1 as much as

#(Y ∩ Z)

(v) Remove the information of the blocks Y, Z, · · ·.

So doing, one obtains a bipartite graph with p (= #(P1)) white spots, q (= #(P2)

black spots, no isolated vertex and integer multiplicities. Their set will be denoted diag.

Fig 1. — Diagram from the partitions of [1 · · · 11].

P1 = {{1, 3, 5}, {7, 8, 9, 10, 11}, {2, 4, 6}} (white spots (squares) above) and

P2 = {{1, 3}, {2, 5, 7, 8, 9}, {4, 6, 10}, {11}} (black spots underneath).

The incidence matrix corresponding to this diagram (as drawn) is





2 1 0 0

0 3 1 1

0 1 2 0



. But, due

to the fact that the definig partitions are unordered, one can permute the spots (black and

white) and, so, the lines and columns of this matrix can be permuted. the diagram could be

represented by the matrix





0 0 1 2

0 2 1 0

1 0 3 1



 as well.

The product formula now reads

H(F,G) =
∑

n≥0

zn

n!

∑

d∈diag
|d|=n

mult(d)Lα(d)
V

β(d) (5)

where α(d) (resp. β(d)) is the “white spots type” (resp. the “black spots type”)

i.e. the multiindex (αi)i∈N+ ((βi)i∈N+) such that αi (resp. βi) is the number of white

spots (resp. black spots) of degree i (i lines connected to the spot) and mult(d) is the

number of pairs of unordered partitions of [1 · · · |d|] (here |d| = |α(d)| = |β(d)| is the

number of lines of d) with associated diagram d.

Now the natural question arises :

“Is there a (graphically) natural multiplicative structure on diag such that the arrow

d 7→ L
α(d)

V
β(d) (6)

be a morphism ?”

The answer is “yes”. The desired product just consists in concatenating the

diagrams (the result, for d1, d2, will be denoted [d1|d2]D). One must check that this

product is compatible with the permutation (of white and black spots) equivalence,

which is rather straightforward (see [14]). We have
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Proposition 2.1 Let diag be the set of diagrams (including the void one).

i) The law (d1, d2) 7→ [d1|d2]D endows diag with a structure of commutative monoid

with the void diagram as neutral (which will, therefore, be denoted 1diag).

ii) The arrow d 7→ L
α(d)

V
β(d) is a morphism of monoids, the codomain of this arrow

being the monoid of (commutative) monomials in the alphabet L + V i.e.

MON(L + V) = {Lα
V

β}α,β∈(N+)(N) .

iii) The monoid (diag, [?|?]D, 1diag) is a free commutative monoid. Its letters are the

connected (non void) diagrams.

3. Non-commutative lifting

3.1. Labelling the nodes

There are (at least) two good reasons to look for non-commutative structures which

may serve as a noncommutative pullback for diag.

• Rows and Columns of matrices are usually (linearly) ordered and we have seen that

a diagram is not represented by a matrix but by a class of matrices

• The “expressive power” of diag and its algebra is not sufficient to connect it to

other (non-commutative or non-cocommutative) algebras relevant in physics

The solution (of the non-deformed problem [14]) is simple and consists in labelling

the nodes from left to right and from 1 to the desired amount as follows.

1 2 3 4

1 2 3

Fig 2. — Labelled diagram of format 3 × 4 corresponding to the one of Fig 1.

The set of these data structures (i.e. bipartite graphs on some product [1..p]× [1..q]

with no isolated vertex) will be denoted ldiag. The composition law is, as previously,

the concatenation in the obvious sense. Explicitely, if di, i = 1, 2 are two diagrams of

dimensions [1..pi] × [1..qi], one relabels the white (resp. black) spots of d2 from p1 + 1

to p1 + p2 (resp. from q1 + 1 to q1 + q2) the result will be noted [d1|d2]L. One has

Proposition 3.1 Let ldiag be the set of labelled diagrams (including the void one).

i) The law (d1, d2) 7→ [d1|d2]L endows ldiag with a structure of noncommutative monoid

with the void diagram (p = q = 0) as neutral (which will, theredfore, be denoted 1ldiag).

ii) The arrow from ldiag to diag, which consists in “forgetting the labels of the vertices”
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is a morphism of monoids.

iii) The monoid (ldiag, [?|?]L, 1ldiag) is a free (noncommutative) monoid. Its letters are

the irreducible diagrams (denoted, from now on irr(ldiag)).

Note 3.2 In a general monoid (M, ⋆, 1M ), the irreducible elements are the elements

x 6= 1M such that x = y ⋆ z =⇒ 1M ∈ {y, z}.

3.2. Coding ldiag with “words of monomials”

One can code every labelled diagram by a “word of (commutative) monomials” in the

following way.

• Let X = {xi}i≥1 an infinite set of indeterminates and d ∈ ldiagp×q a diagram

(ldiagp×q is the set of diagrams with p white spots and q black spots).

• Associate to d the multiplicity function [1..p] × [1..q] → N such that d(i, j) is the

number of lines from the white spot i to the black spot j.

• The code associated to d is ϕwm(d) = m1 ∗m2 ∗ · · · ∗mq such that mj =
∏p

i=1 x
m(i,j)
i

Fig 3. — Coding a diagram with a word of monomials. The successive subgraphs from

the blackspots correspond successively to the monomials x2
1 (two lines to the first white spot),

x1x
3
2x

3 (one line to the first and third and three lines to the second), similarly the other black

spots give x2x
2
3 and x2. The code is then x2

1 ∗ x1x
3
2x

3 ∗ x2x
2
3 ∗ x2.

As a data structure, the words of monomials are elements of (MON(X)+)∗, the

free monoid whose letters are MON(X)+ = MON(X)−{1}, the semigroup of non-unit

monomials over X.

It is not difficult to see that, through this coding, the concatenation reflects

according to the following formula

ϕwm([d1|d2]L) = ϕwm(d1) ∗ Tp1(ϕwm(d2)) (7)

where Tp is the translation operator which changes the variables according to

Tp(xi) = xi+p (corresponds to the relabelling of the white spots).

4. Counting crossings (qc) and overlappings (qo)

The preceding coding is particularly well adapted to the the deformation we want to

construct here. The philosophy of the deformed product is expressed by the descriptive
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formula.

[d1|d2]L(qc,qo) =
∑

co(?) all crossing and
overlappings of black spots

qnc×weight
c qweight×weight

o co([d1|d2]L) (8)

where

• qc, qo ∈ C

• the exponent of qnc×weight
c is the number of crossings of “what crosses” times its

weight

• the exponent of qweight×weight
o is the product of the weights of “what is overlapped”

• co(?) are the diagrams obtained from [d1|d2]L by the process of crossing and

superposing the black spots of d2 to those of d1, the order and distinguishability of

the black spots of d1 (i.e. d2) being preserved.

What is striking is that this law is associative. This result will be established after

the following paragraph, which is algebraic in nature and can be skipped.

= +q2
o + q2

c

+ q2
cq

6
o + q8

c

Fig 4. — Counting crossings and overlappings produces an associative law.

4.1. Twisted and shifted laws

Proposition 4.1 Let A = (An)n∈N a graded semigroup and A∗ the set of words (denoted

a1 ∗ a2 ∗ · · · ∗ ak) with letters in A. Let qc, qo ∈ k be two elements in a field K of

characteristic zero. We define on K < A >= K[A∗] a new law ↑ by

w ↑ 1A∗ = 1A∗ ↑ w = w

a ∗ u ↑ b ∗ v = a ∗ (u ↑ b ∗ v) + q|a∗u||b|c b ∗ (a ∗ u ↑ v) + q|u||b|c q|a||b|o ab ∗ (u ↑ v) (9)

where the weights (|x| = n if x ∈ An) are extended additively

|a1 ∗ a2 ∗ · · · ∗ ak| =
k
∑

i=1

|ai|

Then:

i) the law ↑ is graded, associative with 1A∗ as unit.
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ii) moreover, if qc is not a root of unity, the algebra (k < A >, ↑, 1A∗) is free, generated

by the elements of (a1 ↑ a2 ↑ · · · ↑ ak)ai∈A

k≥0
.

The framework with diagrams will need another proposition on shifted laws.

Lemma 4.2 Let A be an associative algebra (which law will be denoted ⋆) and A =

⊕n∈NAn a decomposition of A in direct sum. Let n 7→ Tn a morphim

(N, +) → (End(A), ◦). We suppose that the shifted law

a ⋆̄ b = a ⋆ Tα(b) (10)

for a ∈ Aα is graded for the decomposition A = ⊕n∈NAn. Then, if the law ⋆ is associative

so is the law ⋆̄.

This lemma will be applied to the decomposition given by n = sup(Alph(w)) and

the morphims given by Tn(xi) = xi+n.

What does these statements mean for us ?

Here the graded semigroup is MON(X)+ and we do not forget the coding arrow

ϕwm : ldiag → (MON(X)+)∗. The image of ϕwm is exactly the set of words of

monomials w = m1 ∗ m2 ∗ · · · ∗ mk such that the set of variables involved Alph(w)

is of the form x1 · · ·xl (the labelling of the white spots is without hole). By abuse of

language we will say that a word of monomials “is in ldiag” in this case. It is not

difficult to see, from formulas (9,10) that if wi, i = 1, 2 are in ldiag so are all the

factors of w1↑̄w2, this defines a new law on K[ldiag] and this algebra will be called

LDIAG(qc, qo). The propoerties of this algebra will be made precise in the following

proposition.

Proposition 4.3 Let Cldiag be the subspace of (K < MON+(X) >, ↑̄) generated by the

codes of the diagrams (i.e. the words w ∈ MON+(X) such that Alph(w) is without

hole). Then

i) Cldiag is a unital subalgebra of (K < MON+(X) >, ↑̄)

ii) Cldiag is a free algebra. More precisely, for any diagram decomposed in irreducibles

d = d1.d2 · · · dk let

B(d) := ϕwm(d1)↑̄ϕwm(d2) · · · ↑̄ϕwm(dk) (11)

then

α) (B(d))d∈ldiag is a basis of Cldiag

β) B(d1.d2) = B(d1)↑̄B(d2)

As K[ldiag] is isomorphic to Cldiag as a linear space, we denote LDIAG(qc, qo) the

new algebra structure of K[ldiag] inherited from Cldiag. one has

LDIAG(0, 0) ≃ LDIAG; LDIAG(1, 1) ≃ MQSym (12)
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5. Coproducts

Now, one has to define a parametrized (by, say, t) coproduct such that

(LDIAG(qc, qo), ↑, 1ldiag, ∆t, ε) be a graded bialgebra (the counity ε, the same as in the

non-deformed Hopf algebra in [14] is just the “constant term” linear form).

We will take advantage of the freeness of LDIAG(qc, qo) through the following

proposition.

Proposition 5.1 Let Y be an alphabet, K a field of characteristic zero and

K < Y >= K[Y∗] be the free algebra constructed on Y. For every mapping

∆ : A → K < Y > ⊗K < Y >, we denote ∆̄ : K < Y >7→ K < Y > ⊗K < Y >

its extension as a morphism of algebras (K < Y > ⊗K < Y > being endowed with its

non-twisted structure of tensor product of algebras). Then, in order be coassociative, it

is necessary and sufficient that

(∆̄ ⊗ I) ◦ ∆ and (I ⊗ ∆̄) ◦ ∆ (13)

coincide on Y.

The preceding proposition expresses that the possible coproducts for a free algebra

“live” somehow in a linear subspace (to be precise, they are parametrized by a linear

subspace). This will be transparent in formula (16).

Now, we consider the structure constants of the coproduct of MQSym [20]

expressed in the basis

{φSP}P∈PMc

where PMc is the set of connex packed matrices.

∆MQSym(φSP ) =
∑

Q,R∈PMc

α
Q,R
P φSQ φSR (14)

For d, irreducible diagram put

∆1(d) =
∑

d1,d2∈irr(ldiag)

α
ϕpm(d1),ϕpm(d2)

ϕpm(d) d1 ⊗ d2 (15)

and ∆0(d) = ∆WS(d). Then proposition (5.1) proves that

∆t = (1 − t)∆0 + t∆1 (16)

is a coproduct of graded bialgebra for (LDIAG(qc, qo), ↑, 1ldiag).

Let us sum up the results

Proposition 5.2 i) With the operations defined above

LDIAG(qc, qo, t) = (LDIAG(qc, qo), ↑, 1ldiag, ∆t, ε)

is a Hopf algebra.

ii) At parameters (0, 0, 0), one has LDIAG(0, 0, 0) ≃ LDIAG

iii) At parameters (1, 1, 1), one has LDIAG(1, 1, 1) ≃ MQSym
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6. LDIAG(qc, qo, t) and its specializations

Graphic primitive elements, BELL, LBELL, Zagier, Foissy and the general picture.

7. Conclusion

Discuss the self-dual deformation.
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