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Faà di Bruno Hopf algebras

Faà di Bruno (Hopf, bi)algebras appear in several branches of mathematics and physics,
and may be introduced in several ways. Here we start from exponential power series like

f(t) =
∞∑

n=1

fn

n!
tn,

with f1 > 0. In view of Borel’s theorem, one may regard them as local representatives
of orientation-preserving diffeomorphisms of R leaving 0 fixed. On the group G of these
diffeomorphisms we consider the coordinate functions

an(f) := fn = f (n)(0), n ≥ 1.

We wish to compute hn = an(h), where h is the composition f◦g of two such diffeomorphisms,
in terms of the fn and gn. Now,

h(t) =

∞∑

k=1

fk

k!

( ∞∑

l=1

gl

l!
tl
)k

.

To compute the nth coefficient hn we need only consider the sum up to k = n, since the
remaining terms contain powers of t higher than n. From Cauchy’s product formula,

hn =
n∑

k=1

fk

k!

∑

li≥1, l1+···+lk=n

n! gl1 . . . glk

l1! . . . lk!
.

If among the li there are λ1 copies of 1, λ2 copies of 2, and so on, then the sum l1+· · ·+lk = n
can be rewritten as

λ1 + 2λ2 + · · ·+ nλn = n, with λ1 + · · ·+ λn = k. (1)

Since there are k!/λ1! . . . λn! contributions from g of this type, it follows that

hn =
n∑

k=1

fk

∑

λ

n!

λ1! . . . λn!

gλ1

1 . . . gλn
n

(1!)λ1 (2!)λ2 . . . (n!)λn
=:

n∑

k=1

fk Bn,k(g1, . . . , gn+1−k), (2)
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where the sum
∑

λ runs over the sequences λ = (λ1, . . . , λn) ∈ N
N satisfying (1), and the

Bn,k are called the (partial, exponential) Bell polynomials. Usually these are introduced by
the expansion

exp

(
u

∑

m≥1

xm

tm

m!

)
= 1 +

∑

n≥1

tn

n!

[ n∑

k=1

ukBn,k(x1, . . . , xn+1−k)

]
,

which is a particular case of (2). Each Bn,k is a homogeneous polynomial of degree k. (This
is a good moment to declare that the scalar field R may be replaced by any commutative
field of characteristic zero.)

Formula (2) can be recast as

h(n)(t) =

n∑

k=1

∑

λ

n!

λ1! . . . λn!
f (k)(g(t))

(
g(1)(t)

1!

)λ1
(

g(2)(t)

2!

)λ2

· · ·

(
g(n)(t)

n!

)λn

. (3)

Expression (3) is the famous formula attributed to Faà di Bruno (1855), who in fact followed
previous authors; his original contribution was a determinant form of it. Apparently (3)
goes back to Arbogast (1800); we refer the reader to [1] —and references therein— for these
historical matters. This formula shows that the composition of two real-analytic functions
is real-analytic [2]. Indeed, if there are constants A, B, C, D for which |g(m)(t)| ≤ A m!/Bm

and |f (k)(g(t))| ≤ C k!/Dk for all k, m, then since
∑n

k=1

∑
λ

k!
λ1!...λn!

xk = x(1 + x)n−1 by use
of (2), it follows from (3) that

|h(n)(t)| ≤

n∑

k=1

∑

λ

n!

λ1! . . . λn!

Ck!

Dk

(
A

B

)λ1

· · ·

(
A

Bn

)λn

= n!
C

Bn

A

D

(
1 +

A

D

)n−1

=
E n!

F n
,

with E = AC/(A + D) and F = BD/(A + D). Hence f ◦ g is analytic on the domain of g.
Introduce the notation

(
n

λ;k

)
:= n!

/
λ1!λ2! . . . λn!(1!)λ1(2!)λ2 . . . (n!)λn . A Hopf algebra dual

to G is obtained when we define a coproduct ∆ on the polynomial algebra R[a1, a2, . . . ] by
requiring that ∆an(g, f) = an(f ◦ g), or equivalently, an(f ◦ g) = m(∆an(g ⊗ f)) where m
means multiplication. This entails that

∆an =
n∑

k=1

∑

λ

(
n

λ; k

)
aλ1

1 aλ2

2 . . . aλn

n ⊗ ak.

The unnecessary flip of f and g is traditional. This Faà di Bruno bialgebra, so called by Joni
and Rota [3], is commutative but not cocommutative. Since a1 is a grouplike element, it must
be invertible to have a Hopf algebra. For that, one must either adjoin an inverse a−1

1 , or put
a1 = 1, as we do from now on, that is, we consider only the subgroup G1 of diffeomorphisms
tangent to the identity at 0. The first instances of the coproduct are, accordingly,

∆a2 = a2 ⊗ 1 + 1 ⊗ a2,

∆a3 = a3 ⊗ 1 + 1 ⊗ a3 + 3a2 ⊗ a2, (4)

∆a4 = a4 ⊗ 1 + 1 ⊗ a4 + 6a2 ⊗ a3 + (3a2
2 + 4a3) ⊗ a2,

∆a5 = a5 ⊗ 1 + 1 ⊗ a5 + 10a2 ⊗ a4 + (10a3 + 15a2
2) ⊗ a3 + (5a4 + 10a2a3) ⊗ a2.
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The resulting graded connected Hopf algebra F is called the Faà di Bruno Hopf algebra; the
degree # is given by #an = n − 1.

Consider the graded dual Hopf algebra F ′. Its space of primitive elements has a basis
{a′

n : n ≥ 2} defined by 〈a′
n, am〉 = δn,m and 〈a′

n, am1
am2

. . . amr
〉 = 0 for r > 1. Their

product is given by the duality recipe 〈b′c′, a〉 := 〈b′ ⊗ c′, ∆a〉, leading to:

a′
na′

m =

(
m − 1 + n

n

)
a′

n+m−1 + (1 + δn,m)(anam)′.

In particular, taking b′n := (n + 1)! a′
n+1 for n ≥ 1, we are left with the commutator relations

[b′n, b′m] = (m − n)b′n+m. (5)

The Milnor–Moore theorem implies that F ′ is isomorphic to the enveloping algebra of the
Lie algebra A spanned by the b′n with these commutators. A curious consequence of (5) is
that the space P (F) of primitive elements of F just has dimension 2. Indeed, P (F) = (R1⊕
F ′

+
2)⊥, where F ′

+ is the augmentation ideal of F ′. But (5) entails that there is a dual basis
of F ′ made of products, except for its first two elements: therefore, dim P (F) = 2. A basis of
P (F) is given by {a2, a3−

3
2
a2

2}. The second of these corresponds to the Schwarzian derivative,
which is known [4] to be invariant under the projective group PSL(2, R); inexistence of more
primitive elements of F is related to the affine linear and Riccati equations being the only
Lie–Scheffers systems [5] over the real line.

The Faà di Bruno algebra reappears as the maximal commutative Hopf subalgebra of the
(noncommutative geometry) Hopf algebra of Connes and Moscovici [6]. Their description
of F uses a different set of coordinates δn(f) := [log f ′(t)](n)(0), n ≥ 1. Since

h(t) :=
∑

n≥1

δn(f)
tn

n!
= log f ′(t) = log

(
1 +

∑

n≥1

an+1(f)
tn

n!

)
,

it follows from (2), for logarithm and exponential functions respectively, that

δn =

n∑

k=1

(−1)k−1(k − 1)! Bn,k(a2, . . . , an+2−k), inverted by an+1 =

n∑

k=1

Bn,k(δ1, . . . , δn+1−k).

This way we get δ1 = a2, δ2 = a3 − a2
2, δ3 = a4 − 3a2a3 + 2a3

2, and δ4 = a5 − 3a2
3 − 4a2a4 +

12a2
2a3 − 6a4

2, and so on; since the coproduct is an algebra morphism, by use of (4) we may
obtain the coproduct in the Connes–Moscovici coordinates. For instance,

∆δ4 = δ4 ⊗ 1 + 1 ⊗ δ4 + 6δ1 ⊗ δ3 + (7δ2
1 + 4δ2) ⊗ δ2 + (3δ1δ2 + δ3

1 + δ3) ⊗ δ1.

It is not easy to find a closed formula for ∆(δn) directly from (4). Fortunately, through F ′

another method is available. Using Bn,1(a2, . . . , an+1) = an+1, one finds that 〈b′n, δm〉 =
(n + 1)! δn,m. Let A be the graded free Lie algebra generated by primitive elements Xn,
n ≥ 1. Its enveloping algebra U(A) is the concatenation Hopf algebra. A linear basis for
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U(A), indexed by all vectors with positive integer components n̄ = (n1, . . . , nr), is made of
products Xn̄ := Xn1

Xn2
. . .Xnr

, together with the unit X∅ = 1. The coproduct is

∆(Xn̄) =
∑

n̄1,n̄2

shn̄1,n̄2

n̄ Xn̄1 ⊗ Xn̄2,

with shn̄1,n̄2

n̄ denoting the number of shuffles of the vectors n̄1, n̄2 that produce n̄. Let un̄

denote a dual basis to Xn̄; the graded dual of U(A) is the shuffle Hopf algebra H with
product and coproduct, respectively

un̄1

un̄2

=
∑

n̄

shn̄1,n̄2

n̄ un̄, ∆(un̄) =
∑

n̄1n̄2=n̄

un̄1

⊗ un̄2

,

where n̄1n̄2 is the concatenation of the vectors n̄1, n̄2. The surjective morphism ρ : A → A
defined by ρ(Xn) := b′n extends, by the universal property of enveloping algebras, to a
surjective morphism ρ : U(A) → F ′, whose transpose is the injective Hopf map ρt : F → H
given by δn 7→ Γn := δn ◦ ρ. We may thus regard F as a Hopf subalgebra of H , and thereby
compute the coproduct of F from that of H . The argument may look circular, since we seem
to need an expression for Γn, which in turn requires computing ∆(δn). But we can write

〈Γm, Xn̄〉 = 〈δm, ρ(Xn̄)〉 = 〈δm, b′n1
. . . b′nr

〉 = 〈∆(δm), b′n1
⊗ b′n2

. . . b′nr
〉. (6)

Thus, to compute Γn, the only terms we need in the expansion of ∆n are δn ⊗ 1 + 1 ⊗ δn

and the bilinear terms, namely multiples of δi ⊗ δj; the remaining terms are of the form
const δr1

i1
. . . δrk

ik
⊗ δj , where r1i1 + · · · + rkik + j = n. The bilinear part B(δn) may be

computed by induction [6] to be

B(δn) =
n−1∑

i=1

(
n

i − 1

)
δn−i ⊗ δi. (7)

Substituting (7) repeatedly in (6), one obtains Γn = n!
∑

n̄∈Nn
C n̄un̄ with Nn = { n̄ : n1 +

· · ·+nr = n }, whose coefficients are given by C n̄ = (nr +1)
∏r

i=2(ni + · · ·+nr). For instance,
Γ1 = 2u1 and Γ3 = 12(2u3 + u(2,1) + 3u(1,2) + 2u(1,1,1)). Another calculation of Γn is sketched
in [7]; it eventually allows to improve (7) to

∆(δn) = δn ⊗ 1 + 1 ⊗ δn +
∑

n̄∈N ′
n

n!

n1! . . . nr!
Kn1,...,nr−1

nr
δn1

. . . δnr−1
⊗ δnr

,

where N ′
n = { n̄ ∈ Nn : r > 1 } and, mindful that

(
nr

k

)
= 0 when nr < k,

Kn1,...,nr−1

nr
=

r−1∑

k=1

(
nr

k

) ∑

n̄1...n̄k=(n1,...,nr−1)

1

r1! . . . rk!

k∏

i=1

1

1 + ni
1 + · · ·+ ni

ri

.

For r = 2, this becomes Kn−i
i = i

1+n−i
, thus the coefficient of δn−i ⊗ δi is

(
n

i

)
i

1+n−i
=

(
n

i−1

)
,

as in (7).
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The Faà di Bruno Hopf algebra is from the combinatorial viewpoint the incidence Hopf

algebra corresponding to intervals formed by partitions of finite sets. This is no surprise, since
the coefficients of a Bell polynomial Bn,k just count the number of partitions of {1, . . . , n}
into k blocks. A partition π ∈ Π(S), of a finite set S with n elements, is a collection
{B1, B2, . . . , Bk} of nonempty disjoint subsets, called blocks, such that

⋃k

i=1 Bi = S. We say
that π is of type (α1, . . . , αn) if exactly αi of these Bj have i elements; thus α1 + 2α2 + · · ·+
nαn = n and α1 + · · · + αn = k [8]. We write {A1, . . . , An} = π ≤ τ = {B1, . . . , Bm}, and
say π refines τ , if each Ai is contained in some Bj . A subinterval [π, τ ] = {σ : π ≤ σ ≤ τ}
of the lattice P of partitions of finite sets is isomorphic to the poset Πλ1

1 × · · · × Πλn
n , where

Πj := Π({1, . . . , j}) and λi blocks of τ are unions of exactly i blocks of π. One assigns to each
interval the sequence λ = (λ1, . . ., λn) and declares two intervals in P to be equivalent when

their vectors λ are equal. From the matching [π, τ ]˜ ↔ λ ↔ Π̃λ1

1 Π̃λ2

2 . . . Π̃λn
n of equivalence

classes, one may regard the family P̃ of equivalence classes as the algebra of polynomials of
infinitely many variables R[Π̃1, Π̃2, . . . ]. By means of the general theory of coproducts for
incidence bialgebras [9] one then recovers the Faà di Bruno algebra under the identifications

an ↔ Π̃n. The cardinality in the sense of category theory [10] of the groupoid of finite sets
equipped with a partition is given by

∞∑

n=0

n∑

k=1

1

n!
Bn,k(1, . . . , 1) = ee−1.

The characters of F form a group Homalg(F , R) under the convolution operation of Hopf
algebra theory. The action of a character f is determined by its values on the an. The
map f 7→ f(t) =

∑∞
n=1 fnt

n/n!, where fn := 〈f, an〉, matches characters with exponential
power series over R such that f1 = 1. This correspondence is an anti-isomorphism of groups:
indeed, the convolution f ∗ g of f, g ∈ Homalg(F , R) is given by

〈f ∗ g, an〉 := m(f ⊗ g)∆an = 〈g ◦ f, an〉.

This is just the nth coefficient of h(t) = g(f(t)). Also, the algebra endomorphisms Endalg(F)
form a group under the convolution of the unital algebra End(F) of linear endomorphisms.
The inverse under functional composition of an exponential series is given by the reversion
formula of Lagrange [11], one of whose forms [12] states that if f and g are two of such series
and if f1 = 1, f ◦ g(t) = g ◦ f(t) = t, then

gn =

n−1∑

k=1

(−1)kBn−1+k,k(0, f2, f3, . . . ). (8)

Now, the inverse under convolution of f ∈ Endalg(F) is g = f ◦ S, with S the antipode map
of F . The multiplicativity of f forces S(an) =

∑n−1
k=1(−1)kBn−1+k,k(0, a2, a3, . . . ). One may

reverse the roles and prove the combinatorial identity (8) from Hopf algebra theory [13].
Use of partitions with special properties may lead to other incidence algebras: for instance,
if we restrict to noncrossing partitions, we obtain a cocommutative Hopf algebra, with the
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commutative group operation on characters essentially corresponding to Lagrange reversion
of the Cauchy product of reverted series [14].

To go to higher Faà di Bruno algebras, we consider exponential N -series in N variables
of the form

f(t) = f(t1, . . . , tN) =

(
t1 +

∑

|m̄|>1

f 1
m̄

tm̄

m̄!
, t2 +

∑

|n̄|>1

f 2
n̄

tn̄

n̄!
, . . . , tN +

∑

|p̄|>1

fN
p̄

tp̄

p̄!

)
, (9)

where m̄, n̄, . . . , p̄ ∈ N
N . If g is of the same form as f , then f ◦ g(t) =

∑
|k̄|≥1(fk̄/k̄!) g(t)k̄ is

also of the same form. We look for the coefficient of tn̄/n̄! in the r-th term of this expansion,
which is

∑

(λi,m̄i
)

{
f r

k̄
n̄!

∏
i,m̄i

(gi
m̄i

)λi,m̄i

λ!
∏

m̄i
(m̄i!)

λi,m̄i

:
∑

m̄i

λi,m̄i
= ki,

∑

i,m̄i

λi,m̄i
m̄i = n̄

}
. (10)

Here it is understood that i ∈ {1, . . . , N} and for each i, m̄i lies in N
N . In this form, the

comparison with (2) is immediate. The expansion (10) holds [15] without the requirement
that the components of f have leading coefficient 1; but this condition is natural both from
the Hopf algebra viewpoint and for application of the N -series to renormalization analysis
in quantum field theory. These series (9) can be regarded as characters of certain “coloured”
Faà di Bruno Hopf algebras F(N) [13]. For any finite set X gifted with a colouring map
θ : X → {1, . . . , N}, we consider partitions π whose sets of blocks are also coloured, provided
θ({x}) = θ(x) for singletons. Such coloured partitions form a poset, with π ≤ ρ if π refines
ρ as partitions, and if θπ(B) = θρ(B) for each block B of π which is also a block of ρ; this
condition entails that ρ induces a coloured partition ρ|π of the set of blocks of π. Coloured
partitions π of X with θ(X) = r form a poset Πr

n̄, where |π| = n̄ ∈ N
N counts the colours of

its elements; their types Π̃r
n̄ generate the Hopf algebra F(N), with coproduct given by

∆Π̃r
n̄ =

∑

π∈Πr
n̄

(∏

B∈π

Π̃
θ(B)
|B|

)
⊗ Π̃r

|π|.

A character f of F(N) is specified by its values on algebra generators f r
n̄ = f(Π̃r

n̄), which yield
coefficients of the N -series (9). The convolution of two such characters g, f has coefficients

g ∗ f(Π̃r
n̄) =

∑

π∈Πr
n̄

f r
|π|

∏

B∈π

g
θ(B)
|B| =

∑

|k̄|≤|n̄|

f r
k̄

k̄!

∏

(B1,...,B|k̄|)

g1
|B1| . . . g

N
|B|k̄||

where the second product ranges over ordered coloured partitions of a set with |n̄| elements;
since there are n̄!

/∏
i(m̄i!)

λi,m̄i of these with prescribed colours, rearrangement of the right
hand side yields (10). Thus, the character group of F(N) is anti-isomorphic to the group of
N -series like (9) under composition. Also, the antipode on F(N) provides Lagrange reversion
in several variables [13].

As mentioned, the Faà di Bruno algebras (perhaps involving functional derivatives) have
applications in quantum field theory. Some elementary ones are described in [9]. Deeper
ones related to renormalization theory are broached in [16, 17]; much remains to be explored.

6



References
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