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Introduction: Hopf Algebra of Feynman Graphs

Few physicists object nowadays to the idea that diagrams contain more truth than the underlying

formalism, [. . . ]

G. ’t Hooft and M. Veltman, ”Diagrammar”[25]

The perturbative approach to quantum field theory (QFT) is the most successful. Theoret-

ical predictions match experimental results with a vertiginous high precision. Nevertheless, in

most, if not all, of the interesting and relevant 4-dimensional quantum field theories, perform-

ing even simple perturbative calculations, one can not avoid facing ill-defined integrals. The

removal of these divergencies in a sound way is the process of renormalization. The basic idea

of perturbative renormalization in QFT goes back to Kramer [4], and was successfully applied

for the first time in a 1947 paper by Bethe [3], dealing with the concrete problem of the self

energy contribution for the Lamb shift in perturbative quantum electrodynamics (QED). The

latter, nowadays can be regarded as one of the best tested theories in physics. Maintaining the

physical principles of locality, unitarity, and Lorentz invariance, renormalization theory may be

summarized by the statement, that to all orders in perturbation theory the (ultraviolet) diver-

gencies can be absorbed in a redefinition of the parameters defining the QFT. Here two distinct

concepts enter, that of the process of renormalization and the notion of renormalizability.

Unfortunately, despite its accomplishments, renormalization was stigmatized, especially for

its lack of a firm mathematical underpinning. One reason for this weakness might have been the

fact that its building blocks, the (one particle irreducible) Feynman graphs in itself appeared

to be unrelated to any mathematical structure that may possibly underlie the renormalization

prescription.

Almost five decades after Bethe’s paper, this changed to a great extend with the original

paper by Kreimer [17], followed by the work of Kreimer [18], and Connes and Kreimer [7, 8, 9]. In

this approach the combinatorial and algebraic side of the process for renormalization is captured

via a combinatorial Hopf algebra of Feynman graphs, HF , which is essentially characterized by

its coproduct map. Connes’ and Kreimer’s Hopf algebra formalism gives rise to an elegant and

useful disentanglement of analytic and algebraic aspects of perturbative renormalization.



.

The restricted dual of the Hopf algebra of Feynman graphs, denoted by H∗
F , contains the group

G := char(HF ,C) of characters, that is, algebra homomorphisms from HF to the underlying

base field C. Feynman rules are understood as such linear and multiplicative maps. To this

group of characters corresponds a Lie algebra of derivations, or infinitesimal characters, g :=

∂char(HF ,C), which comes from a fundamental pre-Lie algebra structure on Feynman graphs.

Ultraviolet divergencies in general demand for a regularization prescription, where we re-

place the base field C by a (commutative and unital) algebra A of Feynman amplitudes, and we

consider the space of regularized linear maps Hom(HF , A), which contains GA := char(HF , A),

the group of regularized characters, respectively its associated Lie algebra gA := ∂char(HF , A).

As a principal example serves dimensional regularization, where A = C[ε−1, ε]], the field of Lau-

rent series. In this context perturbative renormalization may be formulated as a factorization

problem, to wit, the algebraic Birkhoff decomposition of Feynman rules [7, 8, 9]. The proof of

the Connes–Kreimer factorization of regularized Feynman rules uses the property that Laurent

series actually form a Rota–Baxter algebra [2, 22] with the pole part projection, R := Rms, as

Rota–Baxter operator (minimal subtraction scheme map) fulfilling the Rota–Baxter relation

(of weight 1)

R(x)R(y) + R(xy) = R
(

R(x)y + xR(y)
)

, ∀x, y ∈ A.

Using the generalization of Spitzer’s classical identity [12, 13, 23, 24] to non-commutative Rota–

Baxter algebras, together with Atkinson’s factorization theorem [1] for Rota–Baxter algebras,

one can show that the multiplicative decomposition of Connes–Kreimer follows from an additive

factorization through the exponential map. Hereby we derive Bogoliubov’s R̄-map as a special

case of Spitzer’s identity.

It is the goal of these lecture series to introduce the necessary background, both in physics

and mathematics, for understanding the recent work of Connes and Kreimer on renormaliza-

tion theory in perturbative quantum field theory. In the first part we will outline the basics of

QFT and its perturbative treatment providing the setting in which the problem of divergen-

cies appear, and hence renormalization theory lives. The second will start with some modest

calculations of renormalizations in QFT toy model examples and QED. Thereafter, the Hopf-

algebraic structure of Feynman graphs is introduced with the necessary algebraic-combinatorial

background. In the third and fourth part we continue with the Hopf-algebraic description of the

process of renormalization, formulating it as an factorization problem. After constructing the

Hopf algebra of Feynman graphs, providing the sought-after combinatorial-algebraic setting,



the process of renormalization in perturbative QFT can be described in almost one line, that is

to say, the Birkhoff decomposition of regularized Feynman rules characters, discovered by Alain

Connes and Dirk Kreimer. We will provide the algebraic underpinning for this factorization in

terms of complete filtered Rota–Baxter algebras, Spitzer’s identity and Atkinson’s theorem. In

the fourth lecture we will finish with some aspects related to the renormalizatioin group in the

Connes-Kreimer setting. We hope to find some time at the end of the last lecture to address

some of the more recent results [10, 20].

Each talk will start with a brief review of the results of the forgoing lecture.

We would like to point the reader to [5, 6, 11, 14, 19, 21] for more introductory references,

both with respect to classical renormalization theory in perturbative QFT, and its recently

discovered Hopf-algebraic aspects.

1 Lecture I: Perturbative Quantum Field Theory in a Nutshell

• introduction to perturbative quantum field theory, Feynman rules and diagrams,

the problem of divergencies

2 Lecture II: Introduction to Renormalization Theory

• calculations of Feynman graphs in toy model examples and QED, regularization

prescription I, renormalization schemes, Bogoliubov’s R̄-map, introduction of

Feynman graphs Hopf algebra

3 Lecture III: Hopf Algebra of Renormalization: Feynman Graphs

Combinatorics

• continuation of the presentation of Connes’ and Kreimer’s Hopf algebra of

renormalization, regularization prescription II, complete filtered Rota–Baxter

algebras, Spitzer’s classical identity and its generalization to non-commutative

Rota–Baxter algebras, Atkinson’s factorization theorem for Rota–Baxter algebras

4 Lecture IV: Hopf Algebra of Renormalization: Birkhoff decom-

position

• continuation of lect. III: Connes’ and Kreimer’s algebraic Birkhoff decomposition

of regularized Hopf algebra characters, renormalization group aspects

miscellanies...
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