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Abstract. Recent elegant work[1] on the structure of Perturbative
Quantum Field Theory (PQFT) has revealed an astonishing interplay
between analysis(Riemann Zeta functions), topology (Knot theory),
combinatorial graph theory (Feynman Diagrams) and algebra (Hopf
structure). The difficulty inherent in the complexities of a fully-fledged
field theory such as PQFT means that the essential beauty of the
relationships between these areas can be somewhat obscured. Our
intention is to display some, although not all, of these structures in the
context of a simple zero-dimensional field theory; i.e. quantum theory
of non-commuting non-field-dependent operators. The combinatorial
properties of these boson creation and annihilation operators, which
is our chosen example, may be described by graphs [2, 3], analogous
to the Feynman diagrams of PQFT, which we show possess a Hopf
algebra structure[4]. We illustrate these ideas by means of simple
solvable models, e.g. the partition function for a free boson gas and for
a superfluid bose system. Finally, we sketch the relationship between
the Hopf algebra of our simple model and that of the PQFT algebra.
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1 Partition Function Integrand

Consider the Partition Function Z of a Quantum Statistical Mechan-
ical System

Z = Tr exp(−βH) . (1)

whose hamiltonian is H (β ≡ 1/kT , k=Boltzmann’s constant
T=absolute temperature). We may evaluate the trace over any com-
plete set of states; we choose the (over-)complete set of coherent states

|z〉 = e−|z|2|/2
∑
n

(zn/
√

n!)a†
n|0〉 (2)

where a† is the boson creation operator satisfying [a.a†] = 1 and for
which the completeness or resolution of unity property is

1
π

∫
d2z|z〉〈z| = I ≡

∫
dµ(z)|z〉〈z|. (3)

The simplest, and generic, example is the free single-boson hamiltonian
H = εa†a for which the appropriate trace calculation is

Z =
1
π

∫
d2z〈z| exp

(−βεa†a
)|z〉 =

=
1
π

∫
d2z〈z| : exp

(
a†a(e−βε − 1)

)
: |z〉. (4)

Here we have used the following well-known relation [?, ?] for the
forgetful normal ordering operator : f(a, a†) : which means “normally
order the creation and annihilation operators in f forgetting the com-
mutation relation [a, a†] = 1.”1

We may write the Partition Function in general as

Z(x) =
∫

F (x, z) dµ(z) (5)

thereby defining the Partition Function Integrand (PFI) F (x, z). We
have explicitly written the dependence on x ≡ −β, the inverse tem-
perature, and ε, the energy scale in the hamiltonian.

1 Of course, this procedure may alter the value of the operator to which it is
applied.
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2 Combinatorial aspects: Bell numbers

The generic free-boson example Eq.(5)above may be rewritten to show
the connection with certain well-known combinatorial numbers. Writ-
ing y = |z|2 and x = −βε, Eq.(5) becomes

Z =

∞∫
0

dy exp
(
y(ex − 1)

)
. (6)

This is an integral over the classical exponential generating function
for the Bell polynomials

exp
(
y
(
ex − 1

))
=

∞∑
n=0

Bn(y)
xn

n!
(7)

where the Bell number is Bn(1) = B(n), the number of ways of putting
n different objects into n identical containers (some may be left empty).
Related to the Bell numbers are the Stirling numbers of the second kind
S(n, k), which are defined as the number of ways of putting n differ-
ent objects into k identical containers, leaving none empty. From the
definition we have B(n) =

∑n
k=1 S(n, k). The foregoing gives a com-

binatorial interpretation of the partition function integrand F (x, y) as
the exponential generating function of the Bell polynomials.

2.1 Graphs

We now give a graphical representation of the Bell numbers. Consider
labelled lines which emanate from a white dot, the origin, and finish on
a black dot, the vertex. We shall allow only one line from each white
dot but impose no limit on the number of lines ending on a black
dot. Clearly this simulates the definition of S(n, k) and B(n), with
the white dots playing the role of the distinguishable objects, whence
the lines are labelled, and the black dots that of the indistinguishable
containers. The identification of the graphs for 1,2 and 3 lines is given
in Figure 1. We have concentrated on the Bell number sequence and
its associated graphs since, as we shall show, there is a sense in which
this sequence of graphs is generic. That is, we can represent any
combinatorial sequence by the same sequence of graphs as in the Figure
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Figure 1. Graphs for B(n), n = 1, 2, 3.

1, with suitable vertex multipliers (denoted by the V terms in the same
figure). Consider a general partition function

Z = Tr exp(−βH) (8)

where the Hamiltonian is given by H = εw(a, a†), with w a string (=
sum of products of positive powers) of boson creation and annihilation
operators. The partition function integrand F for which we seek to
give a graphical expansion, is

Z(x) =
∫

F (x, z) dµ(z) , (9)
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where

F (x, z) = 〈z| exp(xw)|z〉 = (x = −βε)

=
∞∑

n=0

〈z|wn|z〉 xn

n!
=

=
∞∑

n=0

Wn(z)
xn

n!
=

= exp
( ∞∑

n=1

Vn(z)
xn

n!

)
, (10)

with obvious definitions of Wn and Vn. The sequences {Wn} and {Vn}
may each be recursively obtained from the other [?]. This relates
the sequence of multipliers {Vn} of Figure 1 to the Hamiltonian of
Eq.(8). The lower limit 1 in the Vn summation is a consequence of the
normalization of the coherent state |z〉.

3 Hopf Algebra structure

We briefly describe the Hopf algebra LBell which the diagrams of Figure
1 define.

1. Each distinct diagram is an individual basis element of LBell; thus
the dimension is infinite. (Visualise each diagram in a “box”.)
The sum of two diagrams is simply the two boxes containing the
diagrams. Scalar multiples are formal; for example, they may be
provided by the V coefficients.

2. The identity element e is the empty diagram (an empty box).

3. Multiplication is the juxtaposition of two diagrams within the
same “box”. LBell is generated by the connected diagrams; this
is a consequence of the Connected Graph Theorem[5]. Since we
have not here specified an order for the juxtaposition, multipli-
cation is commutative.

4. The coproduct ∆LBell → LBell × LBell is defined by

∆(e) = e × e (unit e)
∆(x) = x × e + e × x (generator x)

∆(AB) = ∆(A)∆(B) otherwise
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so that ∆ is an algebra homomorphism.
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