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ABSTRACT

In a previous paper [13], some of the authors dealt with
the use of automata with (various type of) multiplicities
for modelizing agents with rational behaviour and how one
could perform genetic operations on them. In this paper,
we emphasize the role played by shift operators to identify
automata with similar behaviour.

1. Introduction: TODO

2. Shift operators

One of the most notaural operations on functions is the
shifting of the argument. Using the denotation of
http://mathworld.wolfram.com/
ShiftOperator.html,
one has

Ea(f)[x] := f(x + a) (1)

What is little less known (but not less useful) is the use
of sifting operations on the exponents of a taylor series
(which amounts to the same realm, considering a series as
a function of the monomials).
To each series,

S =
∑
n≥0

αnzn (2)

one make correspond the series

γ†z(S) =
∑
n≥0

αn+1z
n (3)

In this manner one can deal not only with polynomials but
with rational functions. This setting has a natural exten-
sion to the multivariate case allowing to dela with ratio-
nal behaviours. Rational behaviours are exactly the be-
haviours of automata with multiplicities and these automta
are the type which is well fitted for the use of genetic algo-
rithms over populations of agents with rational behaviours
[13].

3. Kinds of Automata

Automata theory is at the edge of many areas of human
skill (mathematics, physics, engeneering, ...) and roughly
speaking, could be defined as all models dealing with tran-
sition rules.
Several domains have been developped within automata
theory including: cellular automata, boolean automata
(or finites-state automata) and multiplicity automata.
The first kind deals with with local trasition rules whereas
the two last are defined by global rules. As a matter of
fact, the last one (multiplicity automata theory [?, 2]) in-
cludes the second by specilizing the scalars to the Boolean
semiring. Indeed varying the scalars, one can reach, with
the same theory, models as diverse as deterministic finite
automata, finite Markov chains and transducers (kinds of
automta where transitions produce words and languages).
This gives the general framework for multiplicity automata
or automata with multiplicities. In this model, the output
data of the automata with output belong to a specific al-
gebraic structure, a semiring [10, 14, 24]. In that way,
we will be able to build effective operations on such au-
tomata, using the power of the algebraic structures of the
output data and we are also able to describe this automaton
by means of a matrix representation with all the power of
the new linear algebra (i.e. with semirings).
Moreover, the automaton can be observed by means of the
function it generates. This function will be called the be-
haviour of the automaton.

Definition 1 (Automaton with multiplicities)
An automaton with multiplicities over an alphabet A and
a semiring K is the 5-uple (A,Q, I, T, F ) where

• Q = {S1, S2 · · ·Sn} is the finite set of state;

• I : Q 7→ K is a function over the set of states, which
associates to each initial state a value in K, called
entry cost, and to non- initial state a zero value ;

• F : Q 7→ K is a function over the set states, which
associates to each final state a value in K, called
final cost, and to non-final state a zero value;

• T is the transition function, that is T : Q×A×Q 7→
K which to a state Si, a letter a and a state Sj as-
sociates a value z in K (the cost of the transition) if



it exist a transition labelled with a from the state Si

to the state Sj and and zero otherwise.

Remark 1 to redo As told above, automata with mul-
tiplicities are a generalisation of finite automata. In fact,
finite automata can be considered as automata with mul-
tiplicities in the semiring K, the boolan set B = {0, 1}
(endowed with the logical “or/and”). To each transition,
we affect 1 if it exists and 0 if not.

Remark 2 We have not yet, on purpose, defined what a
semiring is. Roughly it is the least structure which allows
the matrix “calculus” with unit (one can think of a ring
without the ”minus” operation). The previous automata
with multiplicities can be, equivalently, expressed by its
matrix representation which is a triplet

• λ ∈ K1×Q which is a row-vector which coefficients
are λi = I(Si),

• γ ∈ KQ×1 is a column-vector which coefficients are
γi = F (Si),

• µ : A 7→ KQ×Q is the mapping such that the co-
efficient on the qith row and qj th column of µ(a) is
T (qi, a, qj)

As the behaviour is a function on the words, we have
will have advantage to consider operators on such func-
tions.
In this paper we will concentrate on shifts which are gen-
eralizations the univariate case considered above (3).

The behaviour of an automaton A is, by definition,

Behaviour(A) =
∑

w∈A∗

A(w)w (4)

where w → A(w), is the output function
la définir en termes de chemins, puis de
matrices et montrer que c’est la même chose

4. Populations of automata

For complexity theory, it is important to deal with popula-
tions of automata with multiplicities. The first step, before
considering neibourhood of close behaviours is

1. to be able to test whether two automata have the
same behaviour

2. to be able to reduce the number of states of automata
(the behaviour being preserved)

In fact, given an automaton A and if the scalars are taken
in a field (also certain rings can do, see [?]) there is a min-
imal automaton having the same behaviour as A. This au-
tomaton is the automaton of the shifts of Behaviour(A).
For a general function f : A∗ 7→ k,denoted as a sum f =∑

w∈A∗ f(w)w one considers the positive shifts (γu)u∈A∗

γu(f) =
∑

w ∈ A∗f(w)uw (5)

and the negative shifts

γ†u(f) =
∑

w∈A∗

f(uw)w (6)

5. Topological considerations

If K is a field, one sees that the space A(n) of automata
of dimension n (with multiplicities in K) is a K-vector
space of dimension k.n2 + 2n (k is here the number of
letters). So, in case the ground field is the field of real
or complex numbers [3], one can take any vector norm
(usually one takes one of the Hölder norms ||(xi)i∈I ||α :=( ∑

i∈I |xi|α
) 1

α for α ≥ 1, but any norm will do) and the
distance is derived, in the classical way, by

d(A1,A2) = norm(V (A1)− V (A2)) (7)

where V (A) stands for the vector of all coefficients of
A = (λ, µ, γ) arranged in some order. One has then the
result of Theorem 1. Assuming that K is the field of real or
complex numbers, we endow the space of series/behaviours
with the topology of pointwise convergence (Topology of
F. Treves [25]).

Theorem 1 Let (An) be a sequence of automata with limit
L (L is an automaton), then one has

Behaviour(L) = lim
n→∞

Behaviour(An) (8)

where the limit is computed in the topology of Treves.

6. Genetic automata as efficient operators

We define the chromosome for each automata with multi-
plicities as the sequence of all the matrices associated to
each letter from the (linearly ordered) alphabet. The chro-
mosomes are composed with alleles which are here the
lines of the matrix [6].

In the following, genetic algorithms are going to gener-
ate new automata containing possibly new transitions from
the ones included in the initial automata.

The genetic algorithm over the population of automata
with multiplicities follows a reproduction iteration broken
up in three steps [15, 20, 19]:

• Duplication: where each automaton generates a clone
of itself;

• Crossing-over: concerns a couple of automata. Over
this couple, we consider a sequence of lines of each
matrix for all. For each of these matrices, a permu-
tation on the lines of the chosen sequence is made
between the analogue matrices of this couple of au-
tomata;

• Mutation: where a line of each matrix is randomly
chosen and a sequence of new values is given for
this line.



Finally the whole genetic algorithm scheduling for a
full process of reproduction over all the population of au-
tomata is the evolutionary algorithm:

1. For all couple of automata, two children are cre-
ated by duplication, crossover and mutation mech-
anisms;

2. The fitness for each automaton is computed;

3. For all 4-uple composed of parents and children, the
performless automata, in term of fitness computed
in previous step, are suppressed. The two automata,
still living, are the result of the evolution of the two
initial parents.

Remark 3 The fitness is not defined at this level of ab-
stract formulation, but it is defined corresponding to the
context for which the automaton is a model, as we will do
in the next section.

7. Applications to competition-cooperation modeling
using prisoner dilemma

We develop in this section how we can modelize competition-
cooperation processes in a same automata-based represen-
tation. The genetic computation allows to make automatic
transitions from competition to cooperation or from coop-
eration to competition. The basic problem used for this
purpose is the well-known prisoner dilemma [1].

7.1. From adaptive strategies to probabilistic automata

The prisoner dilemma is a two-players game where each
player has two possible actions: cooperate (C) with its ad-
versary or betray him (C). So, four outputs are possible for
the global actions of the two players. A payoff is defined
relatively to these possible outputs, as described in the fol-
lowing table where the rows correspond to one player be-
haviour and the columns to the other player one.

C C
C (3,3) (0,5)
C (5,0) (1,1)

Table 1. Prisoner dilemma payoff

In the iterative version of the prisoner’s dilemma, suc-
cessive steps can be defined. Each player do not know
the action of its adversary during the current step but he
knows it for the preceding step. So, different strategies
can be defined for a player behaviour, the goal of each one
is to obtain a maximal payoff for himself.

In Figures ?? and ??, we describe two strategies with
transducers. Each transition is labeled by the input cor-
responding to the player perception which is the prece-
dent adversary action and the output corresponding to the

present player action. The only inital state is the state 1,
recognizable by the incoming arrow labeled only by the
output. The final states are the states 1 and 2, recognizable
with the double circles.

In the strategy of Figure ??, the player has systemat-
ically the same behaviour as its adversary at the previous
step. In the strategy of Figure ??, the player chooses defin-
itively to betray as soon as his adversary does it. The pre-
vious automaton represents static strategies and so they are
not well adapted for the modelization of evolutive strate-
gies. For this purpose, we propose a model based on a
probabilistic automaton described by Figure ?? [5].

This automaton represents all the two-states strategies
for cooperation and competitive behaviour of one agent
against another in prisoner’s dilemma.

The transitions are labeled in output by the probabili-
ties pi of their realization. The first state is the state reached
after cooperation action and the second state is reached af-
ter betrayal.

For this automaton, the associated matrix representa-
tion, as described previously, is:

I = ( p1 1− p1 ) ; (9)

F =
(

p6

1− p6

)
; (10)

T (C) =
(

p2 1− p2

p3 1− p3

)
; (11)

T (C) =
(

p4 1− p4

p5 1− p5

)
(12)

7.2. From probabilistic automata to genetic automata

From the matrix representations of the automata, we can
compute genetic automata as described in previous sec-
tions. Here the chromosomes are the sequences of all the
matrices associated to each letter. We have to define the
fitness in the context of the use of these automata. The
fitness here is the value of the payoff.

7.3. General Genetic Algorithm Process for Genetic
Automata

A population of automata is initially generated. These au-
tomata are playing against a predefined strategy, named
S0.

Each automaton makes a set of plays. At each play, we
run the probabilistic automaton which gives one of the two
outputs: (C) or (C). With this output and the S0’s output,
we compute the payoff of the automaton, according with
the payoff table.



At the end of the set of plays, the automaton payoff is
the sum of all the payoffs of each play. This sum is the
fitness of the automaton. At the end of this set of plays,
each automaton has its own fitness and so the selection
process can select the best automata. At the end of these
selection process, we obtain a new generation of automata.

This new generation of automata is the basis of a new
computation of the 3 genetic operators.

This processus allows to make evolve the player’s be-
havior which is modelized by the probabilistic multi-stra-
tegies two-states automaton from cooperation to compe-
tition or from competition to cooperation. The evolution
of the strategy is the expression of an adaptive computa-
tion. This leads us to use this formalism to implement
some self-organisation processes which occurs in complex
systems.

8. Extension to Emergent Systems Modeling

In this section, we study how evolutive automata-based
modeling can be used to compute automatic emergent sys-
tems. The emergent systems have to be understood in the
meaning of complex system paradigm that we recall in the
next section. We have previously defined some way to
compute the distance between automata and we use these
principles to define distance between agents behaviours
that are modeled with automata. Finally, we defined a spe-
cific fitness that allows to use genetic algorithms as a kind
of reinforcement method which leads to emergent system
computation [16].

8.1. Complex System Description Using Automata-Ba-
sed Agent Model

According to General System Theory [4, 21], a complex
system is composed of entities in mutual interaction and
interacting with the outside environment. A system has
some characteristic properties which confer its structural
aspects, as schematically described in part (a) of Figure
??:

• The set elements or entities are in interactive depen-
dance. The alteration of only one entity or one in-
teraction reverberates on the whole system.

• A global organization emerges from interacting con-
stitutive elements. This organization can be identi-
fied and carries its own autonomous behavior while
it is in relation and dependance with its environ-
ment. The emergent organization possesses new prop-
erties that its own constitutive entities do not have.
”The whole is more than the sum of its parts”.

• The global organization retro-acts over its constitu-
tive components. ”The whole is less than the sum of
its parts” after E. Morin.

The interacting entities network as described in part (b)
of Figure ?? leads each entity to perceive informations or
actions from other entities or from the whole system and
to act itself.

A well-adapted modeling consists of using an agent-
based representation which is composed of the entity called
agent as an entity which perceives and acts on an environ-
ment, using an autonomous behaviour as described in part
(c) of Figure ??.

To compute a simulation composed of such entities,
we need to describe the behaviour of each agent. This one
can be schematically described using internal states and
transition processes between these states, as described in
part (d) of Figure ??.

There are several definitions of “agents” or “intelligent
agents” according to their behaviour specificities [11, 26].
Their autonomy means that the agents try to satisfy a goal
and execute actions, optimizing a satisfaction function to
reach it.

For agents with high level of autonomy, specific ac-
tions are realized even when no perception are detected
from the environment. To represent the process of this de-
liberation, different formalisms can be used and a behav-
iour decomposed in internal states is an effective approach.
Finally, when many agents operate, the social aspects must
also be taken into account. These aspects are expressed as
communications through agent organisation with message
passing processes. Sending a message is an agent action
and receiving a message is an agent perception. The pre-
vious description based on the couple: perception and ac-
tion, is well adapted to this.

8.2. Agent Behavior Semi-Distance

We describe in this section the bases of the genetic algo-
rithm used on the probabilistic automata allowing to man-
age emergent self-organizations in the multi-agent simula-
tion.

For each agent, we define e an evaluation function of
its own behaviour returning the matrix M of values such
that Mi,j is the output series from all possible successive
perceptions when starting from the initial state i and end-
ing at the final state j, without cycle. It will clearly be 0
if either i is not an initial state or j is not a final one and
the matrix Mi,j is indeed a matrix of evaluations [2] of
subseries of

M∗ := (
∑
a∈A

µ(a)a)∗ (13)

Notice that the coefficients of this matrix, as defined,
are computed whatever the value of the perception in the
alphabet A on each transition on the successful path1. This

1A succesful path is a path from an initial state to a final state



means that the contribution of the agent behaviour for col-
lective organization formation is only based, here, on prob-
abilities to reach a final state from an initial one. This al-
lows to preserve individual characteristics in each agent
behaviour even if the agent belongs to an organization.

Let x and y be two agents and e(x) and e(y) their re-
spective evaluations as described above. We define d(x, y)
a semi-distance (or pseudometrics, see [3] ch IX) between
the two agents x and y as ||e(x) − e(y)||, a matrix norm
of the difference of their evaluations. Let Vx a neighbour-
hood of the agent x, relatively to a specific criterium, for
example a spatial distance or linkage network. We define
f(x) the agent fitness of the agent x as :

f(x) =


card(Vx)∑

yi∈Vx

d(x, yi)2
if

∑
yi∈Vx

d(x, yi)2 6= 0

∞ otherwise

8.3. Evolutive Automata for Automatic Emergence of
Self-Organized Agent- Based Systems

In the previous computation, we defined a semi-distance
between two agents. This semi-distance is computed us-
ing the matrix representation of the automaton with mul-
tiplicities associated to the agent behaviour. This semi-
distance is based on the computation of successful paths
which needs to define initial and final states on the be-
haviour automata. For specific purposes, we can choose
to define in some specific way, the initial and final states.
This means that we try to compute some specific action
sequences which are chararacterized by the way of going
from some specific states (defined here as initial ones) to
some specific states (defined here as final ones).

Based on this specific purpose which leads to define
some initial and final states, we compute a behaviour semi-
distance and then the fitness function defined previously.
This fitness function is an indicator which returns high
value when the evaluated agent is near, in the sense of
the behaviour semi-distance defined previously, to all the
other agents belonging to a predefined neighbouring.

Genetic algorithms will compute in such a way to make
evolve an agent population in a selective process. So dur-
ing the computation, the genetic algorithm will make evolve
the population towards a newer one with agents more and
more adapted to the fitness. The new population will con-
tain agents with better fitness, so the agents of a population
will become nearer to each others in order to improve their
fitness. In that way, the genetic algorithm reinforces the
creation of a system which aggregates agents with similar
behaviors, in the specific way of the definition of initial
and final states defined on the automata.

The genetic algorithm proposed here can be consid-
ered as a modelization of the feed-back of emergent sys-
tems which leads to gather agents of similar behaviour,

but these formations are dynamical and we cannot predict
what will be the set of these aggregations which depends
of the reaction of agents during the simulation. Moreover
the genetic process has the effect of generating a feed-
back of the emergent systems on their own contitutive el-
ements in the way that the fitness improvement leads to
bring closer the agents which are picked up inside the emer-
gent aggregations.

For specific problem solving, we can consider that the
previous fitness function can be composed with another
specific one which is able to measure the capability of the
agent to solve one problem. This composition of fitness
functions leads to create emergent systems only for the
ones of interest, that is, these systems are able to be de-
veloped only if the aggregated agents are able to satisfy
some problem solving evaluation.

9. Conclusion

The aim of this study is to develop a powerful algebraic
structure to represent behaviors concerning cooperation-
competition processes and on which we can add genetic
operators. We have explained how we can use these struc-
tures for modeling adaptive behaviors needed in game the-
ory. More than for this application, we have described
how we can use such adaptive computations to automat-
ically detect emergent systems inside interacting networks
of entities represented by agents in a simulation.

10. References

[1] R. Axelrod, The complexity of cooperation, Princeton
University Press, 1997.

[2] J. Berstel and G. Reutenauer, Rational series and their
languages, EATCS, 1988.

[3] Bourbaki N., Elements of Mathematics: General
Topology, Chapters 5-10, Springer-Verlag Telos (dec.
1998).

[4] L. von Bertalanffy, General System Theory, Georges
Braziller Ed., 1968.

[5] C. Bertelle, M. Flouret, V. Jay, D. Olivier, and J.-
L. Ponty ”Adaptive behaviour for prisoner dilemma
strategies based on automata with multiplicities.” In
ESS 2002 Conf., Dresden (Germany), October 2002.

[6] C. Bertelle, M. Flouret, V. Jay, D. Olivier, and J.-L.
Ponty ”Genetic algorithms on automata with multi-
plicities for adaptive agent behaviour in emergent or-
ganizations” In SCI’2001, Orlando, Florida, USA, 22-
25th July 2001.

[7] G. Duchamp, Hatem Hadj-Kacem and Eric
Laugerotte, ”Algebraic elimination of ε-transitions”,
DMTCS, Volume 7 n. 1 (2005), pp. 51-70.



[8] G. Duchamp, J-M Champarnaud, Derivatives of ra-
tional expressions and related theorems, Theoretical
Computer Science 313 (2004).
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