
Shift Operators and
Complex Systems

Luäı Jaff*
LIPN - University of Paris 13
99, avenue Jean-Baptiste Clément
93430 Villetaneuse - France
E-mail: luai.jaff@gmail.com
E-mail: gheduchamp@gmail.com
*Corresponding author

Gérard H.E. Duchamp
LIPN - University of Paris 13
99, avenue Jean-Baptiste Clément
93430 Villetaneuse - France
E-mail: gheduchamp@gmail.com

Cyrille Bertelle
LITIS - University of Le Havre
25 rue Ph. Lebon - BP 540
76058 Le Havre cedex - France
E-mail: cyrille.bertelle@univ-lehavre.fr

Abstract: In this paper, we deal with some multi-agent systems modeling, based on
population of automata. We focus our attention with automatic computation of emerg-
ing systems. A multi-scale representation is proposed here and consists in representing
the internal states of an agent behavior by a automaton with multiplicities, on the one
hand, and an adaptive global system behavior by a genetic algorithm over a population
of automata, on the other hand. This genetic process can lead to generate many new
automata which behavior can be eventually similar. The role played by shift operators
is to identify these similar behaviors . Two applications are presented. The first one
concerns adaptive strategies in game theory. The second one concerns an automatic
emerging computation of self-organized multi-agent systems based on the efficience of
operation expressivity of automata with multiplicities.

Keywords: shift operators; complex systems; automata; emergence.

Reference to this paper should be made as follows: Jaff, L., Duchamp, G.H.E. and
Bertelle, C., (2006) ‘Shift Operators and Complex Systems’, Int. J. of Modeling,
Identification and Control, Special Issue Modeling Complex Systems, Vol. x, Nos.
x/y/z, pp.xx–yy.

Biographical notes: LuäıJaff is PhD student at LIPN in the Institute Galilée at
the University of Paris 13, France. He is working on efficient operators and complex
systems modelling, especially in using genetic on automata.
Prof. Gérard H.E. Duchamp is one of the founders of the series of congresses
FPSAC. Born in 1951 (Paris, France), he took his studies and degrees in the region of
Ile de France and began trainer for the competitive examinations of ”Grandes coles”.
He received his Ph. D. and Habilitation in Paris VII under the direction of Dominique
Perrin and Marcel-Paul Schtzenberger (a member of french Academy of Sciences), both
founders of the french school of Theoretical Computer Science. Pr.G.H.E. Duchamp’s
interests cover essentially the interplay between computation and the other areas of
knowledge. His publications cover many domains where computation is involved such
as: Automata Theory, Lie algebras, Quantum groups, Combinatorics (he made a video
on the subject with Xavier Viennot), Computer algebra, Representation Theory and
Quantum Physics.
Prof. Cyrille Bertelle works in Computer Sciences in Le Havre University. His
activities concern complex systems modelling: their conceptual formalization, their
distributed implementation and their applications in various domains: aquatic ecosys-
tems, game theory, logistic and cognitive sciences. He focuses his studies on emerging
computing using collective intelligence methods. He manages a research master on com-
plex systems modelling based on both mathematical and computer science approaches.

1 INTRODUCTION

According to General System Theory (4; 23), a complex
system is composed of entities in mutual interaction and
interacting with the outside environment. A system has
some characteristic properties which confer its structural
aspects, as schematically described in part (a) of Figure 1:

• The set elements or entities are in interactive depen-
dance. The alteration of only one entity or one inter-
action reverberates on the whole system.

• A global organization emerges from interacting con-
stitutive elements. This organization can be identified
and carries its own autonomous behavior while it is in
relation and dependance with its environment. The
emergent organization possesses new properties that
its own constitutive entities do not have. ”The whole
is more than the sum of its parts”.

• The global organization retro-acts over its constitu-
tive components. ”The whole is less than the sum of
its parts” after E. Morin.

The interacting entities network as described in part
(b) of Figure 1 leads each entity to perceive informations
or actions from other entities or from the whole system
and to act itself. A well-adapted model consists of using
an agent-based representation which is composed of the
entity called agent as an entity which perceives and acts
on an environment, using an autonomous behaviour as
described in part (c) of Figure 1. To compute a simula-
tion composed of such entities, we need to describe the
behaviour of each agent. This one can be schematically
described using internal states and transition processes
between these states, as described in part (d) of Figure 1.

There are several definitions of “agents” or “intelligent
agents” according to their behaviour specificities (11; 29).
Their autonomy means that the agents try to satisfy a goal
and execute actions, optimizing a satisfaction function
to reach it. For agents with high level of autonomy,
specific actions are realized even when no perception
are detected from the environment. To represent the
process of this deliberation, different formalisms can be
used and a behaviour decomposed in internal states is an
effective approach. Finally, when many agents operate,
the social aspects must also be taken into account. These
aspects are expressed as communications through agent
organisation with message passing processes. Sending a
message is an agent action and receiving a message is an
agent perception. The previous description based on the
couple: perception and action, is well adapted to this.

In the following, we define in sections 2 and 3 some gen-
eral efficient operators and data structures which are well-
suited for agent behavior modelling. In sections 4 and 5,

Copyright c© 200x Inderscience Enterprises Ltd.

we deal with populations of automata to define operators
on them and we conclude in section 6, to define genetic op-
erators on automata. Then we develop two applications.
The first in section 7 concerns adaptive strategies for game
theory. The second consists in an original contribution for
automatic emergent system computation. This final ap-
plication is an illustration of an efficient computation for
the complex systems concepts defined previously in this
section.

2 KINDS OF AUTOMATA

Automata theory is at the edge of many areas of human
skill (mathematics, physics, engeneering, ...) and roughly
speaking, could be defined as all models dealing with tran-
sition rules.
Several domains have been developped within automata
theory including: cellular automata, boolean automata (or
finite-state automata) and multiplicity automata.
The first kind deals with local transition rules whereas the
two last are defined by global rules. As a matter of fact, the
last one (multiplicity automata theory (10; 2)) includes the
second by specializing the scalars to the Boolean semiring
B = {0, 1} (induced by the logical operations “or/and”)
Indeed varying the scalars, one can reach, with the same
theory, models as diverse as deterministic finite automata,
finite Markov chains and transducers (kinds of automata
where transitions produce words and languages).
This gives the general framework for multiplicity automata
or automata with multiplicities. In this model, the output
data of the automata belongs to a specific algebraic struc-
ture, a semiring (10; 15; 27). In that way, we will be able
to build effective operations on such automata, using the
power of the algebraic structures of the output data and
we are also able to describe this automaton by means of a
matrix representation with all the power of this new linear
algebra (i.e. with semirings).
Moreover, the automaton can be observed by means of the
function it generates. This function will be called the be-
haviour of the automaton.

2.1 Definitions

Definition 1. (Automaton with multiplicities)
An automaton with multiplicities over an alphabet A and
a semiring K is the 5-uple (A, Q, I, T, F) where

• Q = {S1, S2 · · ·Sn} is the (finite) set of states;

• I : Q 7→ K is a function over the set of states, which
associates to each initial state a value in K (for in-
stance probability, word or boolean), called entry cost,
and to non-initial state a zero value ;

• F : Q 7→ K is a function over the set states, which
associates to each final state a value in K, called final
cost, and to non-final state a zero value;

2

Agent

Agent

Agent

and structures

Global Dynamics
Global structures

Interacting Entities

Environment
Environment

actionsperceptions

behaviour

Agent

perceptions actions

Agent

behaviour

(a) Global complex system (b) Interacting entities network

(c) Agent−based model for entity (d) automata−based model for agent behaviour

Figure 1: Multi-scale complex system description: from global to individual models

3

• T is the transition function, that is
T : Q × A × Q 7→ K which, to a state Si, a letter a

and a state Sj associates a value α in K (the cost
of the transition) if it exist a transition labelled with
a from the state Si to the state Sj and and zero
otherwise.

Remark 1. i) As told previously, automata with multi-
plicities are a generalisation of finite automata. In fact,
finite automata can be considered as automata with multi-
plicities in the semiring K, the boolan set B = {0, 1}. To
each transition, we affect the number 1 if it exists and the
number 0 if not.
ii) We have not yet, on purpose, defined what a semiring
is. Roughly it is the least structure which allows the matrix
“calculus” with unit (one can think of a ring without the
”minus” operation).

With such a setting, the automaton can be seen as a
machine which accepts a word and provides a scalar (for
instance a probability, a word or a boolean). Let us de-
scribe now how the output is computed.

We associate to the support of T the weighted graph ΓT

with edges edges(ΓT) =

{(q, a, α, r) ∈ Q × A × k × Q} T (q,a,r) 6=0 (1)

This means that every edge (q → r) is superscripted by the
pair (a|α) such that T (q, a, r) = α 6= 0. Classically call the
path, a sequence of edges (pj , aj, αj , qj)1≤j≤n such that,
for all j < n, one has qj = pj+1.

Now, the cost of the path is
∏

1≤j≤n αj (product in K) and
its label is a1a2 ... an (concatenation)

A(w) =
∑

q,r∈Q

I(q)
(

∑

c path q→r

label(c)=w

cost(c)
)

F (r) (2)

Remark 2. The previous automaton with multiplicities
can be, equivalently, expressed by its matrix representation
which is a triplet

• λ ∈ K1×Q which is a row-vector which coefficients are
λi = I(Si),

• γ ∈ KQ×1 is a column-vector which coefficients are
γi = F (Si),

• µ : A 7→ KQ×Q is the mapping such that the co-
efficient on the qith row and qjth column of µ(a) is
T (qi, a, qj)

Due to the effect of matrix computation we have

Theorem 1. (2; 10) Still denoting µ the extension of µ

to words, one has

A(w) = Iµ(w)T

As the behaviour is a function on the words, we will have
advantage to consider operators on such functions.
In this paper we will concentrate on shifts which are gen-
eralizations of the univariate case considered above (12).

The behaviour of an automaton A is, by definition,

Behaviour(A) =
∑

w∈A∗

A(w)w (3)

where w → A(w), is the output function

2.2 Topological Considerations

If K is a field, one sees that the space A(n) of automata
of dimension n (with multiplicities in K) is a K-vector
space of dimension k.n2 + 2n (k is here the number of
letters). So, in case the ground field is the field of real
or complex numbers (3), one can take any vector norm
(usually one takes one of the Hölder norms ||(xi)i∈I ||α :=
(
∑

i∈I |xi|
α
)

1
α for α ≥ 1, but any norm will do) and the

distance is derived, in the classical way, by

d(A1,A2) = norm(V (A1) − V (A2)) (4)

where V (A) stands for the vector of all coefficients of
A = (λ, µ, γ) arranged in some order. One has then the
result of Theorem 2. Assuming that K is the field of real or
complex numbers, we endow the space of series/behaviours
with the topology of pointwise convergence (Topology of
F. Treves (28)).

Theorem 2. Let (An) be a sequence of automata with
limit L (L is an automaton), then one has

Behaviour(L) = lim
n→∞

Behaviour(An) (5)

where the limit is computed in the topology of Treves.

3 POPULATIONS OF AUTOMATA

For complexity theory, it is important to deal with pop-
ulations of automata with multiplicities. The first step,
before considering neibourhood of close behaviours (how-
ever, see below sections 5 and 8) is

1. to be able to test whether two automata have the same
behaviour

2. to be able to reduce the number of states of automata
(the behaviour being preserved)

In fact, given an automaton A and if the scalars are taken
in a field (also certain rings can do, see (24)) there is a min-
imal automaton having the same behaviour as A. This au-
tomaton is the automaton of the shifts of Behaviour(A).
For a general function f : A∗ 7→ k, denoted as a sum
f =

∑

w∈A∗ f(w)w one considers the positive shifts
(γu)u∈A∗

γu(f) =
∑

w ∈ A∗f(w)uw (6)

4

and their duals, the negative shifts

γ†
u(f) =

∑

w∈A∗

f(uw)w (7)

Now, the states of the minimal automaton correspond-
ing to A is exactly the orbit of Behaviour(A) under the
negative shifts, more precisely

Ω(Behaviour(A)) =
{

γ†
u(Behaviour(A))

}

u∈A∗
(8)

now, one can show that this orbit can be computed from a
finite process (see theorem below and (12), for full details).

3.1 The Orbit Method for Functions
A

∗ → K

One has the following central theorem which sheds some
light over the effective computation of a normal form
within population of automata.

Theorem 3. Let k be a field, S ∈ kA∗

and
Ω(S) =

{

γ†
u(S)

}

u∈A∗
be the orbit of S as above then

1. S is the behaviour of an automaton if and only if Ω(S)
is of finite rank

2. in the case above, let (γ†
ui

(S))n
i=1 be a basis of

span(Ω(S)) ⊂ kA∗

. Then, one must have, for
(i, a) ∈ [1..n] × A

γ†
a(γ†

ui
(S)) =

n
∑

j=1

µij(a)γ†
uj

(S) (9)

set

S =
∑n

i=1 λiγ
†
ui

(S)

I = (λi)
n
i=1 and F = [(S(ui))

n
i=1]

t

T (i, a, j) = µij(a), for pairs (i, j)
such that µij(a) 6= 0

and, we have the behaviour of (A, Q, I, T, F) which is
effectively S.

3. Conversely, if A = (A, Q, I, T, F) is an automaton
recognizing S and A0 = (A, Q0, I0, T0, F0) the automa-
ton constructed from S as above, one has interwining
matrices between the linear representations of A and
A0.

Now, from any automaton, one can construct algorith-
mically a minimal automaton and decide wether an au-
tomaton is the minimized the other.

The reader is refered to (12) where this algorithm is de-
scribed in detail.

3.2 Shift Operators and Modern Compu-
tation Techniques

One of the most natural operations on functions is the
shifting of the argument. Using the denotation of
http://mathworld.wolfram.com/

ShiftOperator.html,
one has

Ea(f)[x] := f(x + a) (10)

What is little less known (but not less useful) is the use
of shifting operations on the exponents of a Taylor series
(which amounts to the same realm, considering a series as
a function of the monomials).
To each series,

S =
∑

n≥0

αnzn (11)

one makes correspond the serie

γ†
z(S) =

∑

n≥0

αn+1z
n (12)

In this manner one can deal not only with polynomials
but with rational functions. This setting has a natural
extension to the multivariate case allowing to deal with
rational behaviours. Rational behaviours are exactly
the behaviours of automata with multiplicities and these
automata are the type which is well fitted for the use
of genetic algorithms over populations of agents with
rational behaviours (14).

We would like here to mention two fields of applications
of these shifting technique. The first is the use of shifts to
symbolic summation (17). The second is finding formulas
for algebraic combinatorics. Let us illustrate this on one
example belonging to a class of problems that could be
named:

“finding closed formulas describing
statistics over data structures”.

Here the data structure under consideration is that of
permutations of certain sets [1, 2, ..., n]. Readers who are
more familiar with lists are invited to consider these as
lists [σ(1), σ(2), ..., σ(n)] such that every number between
1 to n occurs once (and then only once).
The population we consider will be the set of permutations
without pattern 123. This means that there is no triplet
i < j < k such that σ(i) < σ(j) < σ(k) these permutations
begin by a maximal descent that is there exists k such that

σ(1) > σ(2) > ... > σ(k) < σ(k + 1)

Denoting by L(n, k) their set and writing
σ(1), σ(2), ..., σ(n) instead of the list, we get the first
values

• L(n, 0) = L(0, n) = ∅ (∀n ≥ 1)

• L(0, 0) = {∅}

5

• L(1, 1) = {1}

• L(2, 1) = {1 2}

• L(2, 2) = {2 1}

• L(3, 1) = {132, 231}

• L(3, 2) = {312, 213}

• L(3, 3) = {321}

Now if one sets l(n, k) = |L(n, k)| one can prove that

• l(n, 0) = l(0, n) = 0 (∀n ≥ 1)

• l(0, 0) = 1

• l(n, k) =
∑

j≥k+1 l(n − 1, j)

whence the easy computed table of the first values

n\ k 0 1 2 3 4 5 6 7

0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
2 0 1 1 0 0 0 0 0
3 0 2 2 1 0 0 0 0
4 0 5 5 3 1 0 0 0
5 0 14 14 9 4 1 0 0
6 0 42 42 28 14 5 1 0
7 0 132 132 90 48 20 6 1

This implies that, if one considers the diagonal functions,

Fn(k) := l(n + k, k)

using

(E1 − Id)Fn(k) =
l(n + (k + 1), k + 1) − l(n + k, k) =

l(n + (k + 1), k + 2)
and Fn(0) = 0 for n ≥ 1 (13)

One can conjecture that

Fn(k) =
k.(k + n + 1)...(k + 2n − 1)

n!

and indeed, relations (13) have become nowadays an au-
tomatic certificate (17) of validity for this formula.

Finally, we have the double generating series of these
statistics

∑

n,k

l(n, k)xnyk =
1

1 − xy√
1−4x

3.3 Genetic Automata

We define the chromosome for each automata with mul-
tiplicities as the sequence of all the matrices associated
to each letter from the (linearly ordered) alphabet. The
chromosomes are composed with alleles which are here
the lines of the matrices (6).

In the following, genetic algorithms are going to gen-
erate new automata containing possibly new transitions
from the ones included in the initial automata.

The genetic algorithm over the population of automata
with multiplicities follows a reproduction iteration broken
up in three steps (16; 22; 21):

• Duplication: where each automaton generates a clone
of itself;

• Crossing-over: concerns a couple of automata. Over
this couple, we consider a sequence of lines of each ma-
trix for all. For each of these matrices, a permutation
on the lines of the chosen sequence is made between
the analogue matrices of this couple of automata;

• Mutation: where a line of each matrix is randomly
chosen and a sequence of new values is given for this
line.

Finally the whole genetic algorithm scheduling for a full
process of reproduction over all the population of automata
is the evolutionary algorithm:

1. For all couple of automata, two children are created
by duplication, crossover and mutation mechanisms;

2. The fitness for each automaton is computed;

3. For all 4-uple composed of parents and children, the
performless automata, in term of fitness computed in
previous step, are suppressed. The two automata, still
living, are the result of the evolution of the two initial
parents.

Remark 3. The fitness is not defined at this level of ab-
stract formulation, but it is defined corresponding to the
context for which the automaton is a model, as we will do
in the next section.

4 APPLICATIONS TO GAME THEORY

We develop in this section how we can modelize
competition-cooperation processes in a same automata-
based representation. The genetic computation allows
to make automatic transitions from competition to co-
operation or from cooperation to competition. The basic
problem used for this purpose is the well-known prisoner
dilemma (1).

6

4.1 From adaptive strategies to proba-
bilistic automata

The prisoner dilemma is a two-players game where each
player has two possible actions: cooperate (C) with its
adversary or betray him (C). So, four outputs are possible
for the global actions of the two players. A payoff is
defined relatively to these possible outputs, as described
in the following table where the rows correspond to one
player behaviour and the columns to the other player.

C C

C (3,3) (0,5)

C (5,0) (1,1)

Table 1: Prisoner dilemma payoff

In the iterative version of the prisoner’s dilemma,
successive steps can be defined. Each player do not know
the action of its adversary during the current step but he
knows it for the preceding step. So, different strategies
can be defined for a player behaviour, the goal of each one
is to obtain a maximal payoff for himself.

In Figures 2 and 3, we describe two strategies with
transducers. Each transition is labeled by the input
corresponding to the player perception which is the
precedent adversary action and the output corresponding
to the present player action. The only inital state is the
state 1, recognizable by the incoming arrow labeled only
by the output. The final states are the states 1 and 2,
recognizable with the double circles.

In the strategy of Figure 2, the player has systematically
the same behaviour as its adversary at the previous step.
In the strategy of Figure 3, the player chooses definitively
to betray as soon as his adversary does it. The previous
automaton represents static strategies and so they are not
well adapted for the modelization of evolutive strategies.
For this purpose, we propose a model based on a proba-
bilistic automaton described by Figure 4 (5).

C:C

C:C

1 2

C:C

C:C

 C

Figure 2: Tit-for-tat strategy automaton

This automaton represents all the two-states strategies
for cooperation and competitive behaviour of one agent

C:C

C:C

1 2

C:C

C:C

 C

Figure 3: Vindictive strategy automaton

21

C:p5
C:p4

C:1−p2

C:1−p3
C:1−p5

C:p3

C:p2

C:1−p4

1−p1p1

p6 1−p6

Figure 4: Probabilistic multi-strategies automaton

against another in prisoner’s dilemma.

The transitions are labeled in output by the probabil-
ities pi of their realization. The first state is the state
reached after cooperation action and the second state is
reached after betrayal.

For this automaton, the associated matrix representa-
tion, as described previously, is:

I =
(

p1 1 − p1

)

; (14)

F =

(

p6

1 − p6

)

; (15)

T (C) =

(

p2 1 − p2

p3 1 − p3

)

; (16)

T (C) =

(

1 − p4 p4

1 − p5 p5

)

(17)

4.2 From probabilistic automata to ge-
netic automata

From the matrix representations of the automata, we can
compute genetic automata as described in previous sec-
tions. Here the chromosomes are the sequences of all the
matrices associated to each letter. We have to define the
fitness in the context of the use of these automata. The
fitness here is the value of the payoff.

4.3 General Genetic Algorithm Process
for Genetic Automata

A population of automata is initially generated. These
automata are playing against a predefined strategy, named

7

S0.

Each automaton makes a set of plays. At each play,
we run the probabilistic automaton which gives one of
the two outputs: (C) or (C). With this output and the
S0’s output, we compute the payoff of the automaton,
according with the payoff table.

At the end of the set of plays, the automaton payoff is
the sum of all the payoffs of each play. This sum is the
fitness of the automaton. At the end of this set of plays,
each automaton has its own fitness and so the selection
process can select the best automata. At the end of these
selection process, we obtain a new generation of automata.

This new generation of automata is the basis of a new
computation of the 3 genetic operators.

This processus allows to make evolve the player’s be-
havior which is modelized by the probabilistic multi-stra-
tegies two-states automaton from cooperation to compe-
tition or from competition to cooperation. The evolution
of the strategy is the expression of an adaptive computa-
tion. This leads us to use this formalism to implement
some self-organisation processes which occurs in complex
systems.

5 EMERGENT SYSTEMS MODELLING

In this section, we study how evolutive automata-based
modeling can be used to compute automatic emergent sys-
tems. The emergent systems have to be understood in
the meaning of complex system paradigm that we recall
in the first section. We have previously defined some way
to compute the distance between automata and we use
these principles to define semi-distance between agents be-
haviours that are modeled with automata. Finally, we de-
fined a specific fitness that allows to use genetic algorithms
as a kind of reinforcement method which leads to emergent
system computation (18).

5.1 Agent Behavior Semi-Distance

We describe in this section the bases of the genetic
algorithm used on the probabilistic automata allowing
to manage emergent self-organizations in the multi-agent
simulation.

For each agent, we define e an evaluation function of its
own behaviour returning the matrix M of values such that
Mi,j is the output series from all possible successive per-
ceptions when starting from the initial state i and ending
at the final state j, without cycle. It will clearly be 0 if
either i is not an initial state or j is not a final one and
the matrix Mi,j is indeed a matrix of evaluations (2) of

subseries of

M∗ := (
∑

a∈A

µ(a)a)∗ (18)

Notice that the coefficients of this matrix, as defined,
are computed whatever the value of the perception in the
alphabet A on each transition on the successful path1.
This means that the contribution of the agent behaviour
for collective organization formation is only based, here,
on probabilities to reach a final state from an initial
one. This allows to preserve individual characteristics
in each agent behaviour even if the agent belongs to an
organization.

Let x and y be two agents and e(x) and e(y) their re-
spective evaluations as described above. We define d(x, y)
a semi-distance (or pseudometrics, see (3) ch IX) between
the two agents x and y as ||e(x) − e(y)||, a matrix norm
of the difference of their evaluations. Let Vx a neighbour-
hood of the agent x, relatively to a specific criterium, for
example a spatial distance or linkage network. We define
f(x) the agent fitness of the agent x as :

f(x) =

card(Vx)
∑

yi∈Vx

d(x, yi)
2

if
∑

yi∈Vx

d(x, yi)
2 6= 0

∞ otherwise

5.2 Evolutive Automata for Automatic
Emergence of Self-Organized Agent-
Based Systems

In the previous computation, we defined a semi-distance
between two agents. This semi-distance is computed
using the matrix representation of the automaton with
multiplicities associated to the agent behaviour. This
semi-distance is based on the computation of successful
paths which needs to define initial and final states on the
behaviour automata. For specific purposes, we can choose
to define in some specific way, the initial and final states.
This means that we try to compute some specific action
sequences which are chararacterized by the way of going
from some specific states (defined here as initial ones) to
some specific states (defined here as final ones).

Based on this specific purpose which leads to define
some initial and final states, we compute a behaviour
semi-distance and then the fitness function defined previ-
ously. This fitness function is an indicator which returns
high value when the evaluated agent is near, in the sense
of the behaviour semi-distance defined previously, to all
the other agents belonging to a predefined neighbouring.

Genetic algorithms will compute in such a way to
make evolve an agent population in a selective process.
So during the computation, the genetic algorithm will
make evolve the population towards a newer one with

1A succesful path is a path from an initial state to a final state

8

agents more and more adapted to the fitness. The new
population will contain agents with better fitness, so
the agents of a population will become nearer to each
others in order to improve their fitness. In that way,
the genetic algorithm reinforces the creation of a system
which aggregates agents with similar behaviors, in the
specific way of the definition of initial and final states
defined on the automata.

The genetic algorithm proposed here can be considered
as a modelization of the feed-back of emergent systems
which leads to gather agents of similar behaviour, but
these formations are dynamical and we cannot predict
what will be the set of these aggregations which depends
of the reaction of agents during the simulation. Moreover
the genetic process has the effect of generating a feed-
back of the emergent systems on their own contitutive
elements in the way that the fitness improvement leads
to bring closer the agents which are picked up inside the
emergent aggregations.

For specific problem solving, we can consider that the
previous fitness function can be composed with another
specific one which is able to measure the capability of the
agent to solve one problem. This composition of fitness
functions leads to create emergent systems only for the
ones of interest, that is, these systems are able to be devel-
oped only if the aggregated agents are able to satisfy some
problem solving evaluation.

6 CONCLUSION

The aim of this study is to develop a powerful algebraic
structure to represent behaviors concerning cooperation-
competition processes and on which we can add genetic
operators. We have explained how we can use these struc-
tures for modeling adaptive behaviors needed in game the-
ory. More than for this application, we have described how
we can use such adaptive computations to automatically
detect emergent systems inside interacting networks of en-
tities represented by agents in a simulation.

REFERENCES

[1] R. Axelrod, The complexity of cooperation, Princeton
University Press, 1997.

[2] J. Berstel and G. Reutenauer, Rational series and
their languages, EATCS, 1988.

[3] Bourbaki N., Elements of Mathematics: General
Topology, Chapters 5-10, Springer-Verlag Telos (dec.
1998).

[4] L. von Bertalanffy, General System Theory, Georges
Braziller Ed., 1968.

[5] C. Bertelle, M. Flouret, V. Jay, D. Olivier, and J.-
L. Ponty ”Adaptive behaviour for prisoner dilemma
strategies based on automata with multiplicities.” In
ESS 2002 Conf., Dresden (Germany), October 2002.

[6] C. Bertelle, M. Flouret, V. Jay, D. Olivier, and J.-
L. Ponty ”Genetic algorithms on automata with mul-
tiplicities for adaptive agent behaviour in emergent
organizations” In SCI’2001, Orlando, Florida, USA,
22-25th July 2001.

[7] G. Duchamp, Hatem Hadj-Kacem and Eric
Laugerotte, ”Algebraic elimination of ǫ-transitions”,
DMTCS, Volume 7 n. 1 (2005), pp. 51-70.

[8] G. Duchamp, J-M Champarnaud, Derivatives of ra-
tional expressions and related theorems, Theoretical
Computer Science 313 (2004).

[9] N. Eber, Théorie des jeux, Dunod, 2004.

[10] S. Eilenberg, Automata, languages and machines, Vol.
A and B, Academic press, 1976.

[11] J. Ferber, Multi-agent system, Addison-Wesley, 1999.

[12] M. Flouret, E. Laugerotte, Noncommutative mini-
mization algorithms, Info. Proc. Letters. (2003)

[13] L.J. Fogel, A.J. Owens, M.J. Welsh, Artificial intelli-
gence through simulated evolution, John Wiley, 1966.

[14] R. Ghnemat, K. Khatatneh, S. Oqeili, C. Bertelle,
G.H.E. Duchamp Automata-based adaptive behavior
for economic modeling using game theory, Proc. of
EPNADS05 (Emergent Properties In Natural and Ar-
tificial Dynamical Systems), Paris, November 17th,
2005, Springer (In press)

[15] J.S. Golan, Power algebras over semirings, Kluwer
Academic Publishers, 1999.

[16] D.E. Goldberg, Genetic Algorithms, Addison-Wesley,
1989.

[17] J. von zur Gathen and J. Gerahrd, Modern Computer
Algebra, Cambridge (1999).

[18] J. H. Holland, Hidden Order - How adaptation builds
complexity, Persus books ed., 1995.

[19] J.E. Hopcroft, R. Motwani, J.D. Ullman, Introduc-
tion to automata theory, Languages and Computation,
Addison-Wesley, 2001.

[20] V. A. Kostyantyn, A New Representation of Formal
Power Series, FPSAC’04 (Vancouver 2004).

[21] J. Koza, Genetic programming, Encyclopedia of Com-
puter Sciences and Technology, 1997.

[22] M. Mitchell, An introduction to Genetic Algorithms,
The MIT Press, 1996.

9

[23] J.-L. Le Moigne, La modélisation des systèmes com-
plexes, Dunod, 1999.

[24] J. -G. Luque, Monöıdes et automates admettant un
produit de mélange : Monoids and automata admit-
ting a shuffle product, Ph. D. University of Rouen
(Dec. 1999).

[25] I. Rechenberg, Evolution strategies, Fromman-
Holzboog, 1973.

[26] M.P. Schutzenberger, ”On the definition of a family
of automata”, Information and Control 4, 245-270
(1961).

[27] R.P. Stanley, Enumerative combinatorics, Cambridge
University Press, 1999.

[28] F. Treves, Topological Vector Spaces, Distributions
and Kernels, Acad. Press 1967.

[29] G. Weiss, ed., Multiagent Systems, MIT Press, 1999.

10

