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1. Introduction

It is in the purpose of proving that any sequence of numbers could be produced by

special classes of Feynman-like diagrams that Bender, Brody and Meister (see BBM

and also our papers) introduced a special Field Theory (Field Theory of Partitions)

based on the following product formula

F

(

z
d

dx

)

G(x)

∣
∣
∣
∣
x=0

= H(F,G). (1)

This product corresponds to the Hadamard product of the EGF’s (see ...). The case

when F (0) = G(0) = 1 is of special interest and, here, F and G can be seen as

specializations of free exponentials, that is

F (z) = exp

(
∞∑

n=1

Ln

zn

n!

)

, G(z) = exp

(
∞∑

n=1

Vn

zn

n!

)

. (2)

It is well known that, individually, F and G develop according to Bell polynomials where

coefficients are the number of set partitions of a certain type α = 1α12α2 ...kαk

numpart(α) =
|α|!

α1!α2!...αk!1!2!...3!
(3)

(see Comtet, Stanley) hence, in multiindex notation

F (z) =
∞∑

n=0

zn

n!

∑

|α|=n

numpart(α)Lα (4)
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Figure 1. ...

G(z) =
∞∑

n=0

zn

n!

∑

|β|=n

numpart(β)Vβ, (5)

and the product formula reads

H(F,G) =
∞∑

n=0

zn

n!

∑

|α|=|β|

numpart(α)numpart(α)Lα
V

β. (6)

This is here that the Feynman-like diagrams of this theory and their structure arise.

To every pair (P1, P2) of set partitions one can associate an incidence matrix. For

example, with P1 = {1, 3}, {5}, {2, 4, 6} and P2 = {1, 2}, {3, 4}, {5, 6} one gets

1,3 5 2,4,6

1,2 1 0 1

3,5 1 1 0

4,6 0 0 2

which has the representation by the Feynman-like diagram as in Fig.(1) which are

finite biparate graphs with multiplicities in N+ = {1, 2, 3, ...}.

There are two remarks to be made:

(1) The order of the (white and black) spots is irrelevant now (it will be later, see

paragraph ...) as the set partitions (P1, P2) are unordered.

(2) To rewrite the Eq.(7) one can forget the blocks, only the diagram counts.

With these two remarks Eq.(7) reads

H(F,G) =
∞∑

d∈diag

mult(d)Lα(d)Vβ(d)
z|d|

|d|!
, (7)

where

• α(d) is the multiindex of the degrees ingoing the white spots.

• β(d) is the multiindex of the degrees outgoing from the black spots (lines are thought

as going from bottom to top.
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• |d| is the weight of the diagram, i.e. the number of its edges.

• mult(d) is the number of pairs of (unordered) partitions whose incidence diagram

is d

Because we want to compute on the diagrams themselves (use perturbative

methods, compose and decompose). We want to endow the set of diagrams (or better

the set of finite supported complex functions over them) with a structure which is

compatible with the indexation of the monomials, i.e. such that the arrow

diag −→ Pol(L, V) (8)

d −→ L
α(d)

V
β(d). (9)

is a morphism of algebras.

We have in mind three models Free Boson Gas, Kerr and Superfluidity such that

Nn = 1. In a second step, we will see that this is a natural comultiplication, induced

by the black spots (whence the denotation ∆BS) such that the arrow (induced by these

three models)

diag −→ Pol(V) (10)

d −→ V
β(d) (11)

is compatible with the decomposition.

Endowed with these two operations, a unite (the empty diagram), counit (the Dirac

measure located on the unit) and antipode (which is directly computed on the diagrams),

see ...) one gets the Hopf algebra DIAG which has immediately a noncommutative

analogue LDIAG obtained by labeling the (white and black) spots from left to right

and composing them by concatenation (lists) rather than union (multisets). The latter

is also endowed with the structure of a Hopf algebra for which the arrow

LDIAG −→ DIAG (12)

is a Hopf arrow. The primitive graphs (i.e. the primitive elements of the graphs) of

these algebras are the ones for which there is only one black spot in each connected

(irreducible) component. These sub-albebras will be called Bell and LBell and will be

of special interest as baby models.

It turns out that the data structure involved in LDIAG is in one-to-one

correspondence with the so called packed matrices of MQSym [5], the algebra of

Matrix NonCommutative Functions, but the product and the coproduct in MQSym

are completely different.

In a forthcoming paper we will construct a multiparametric deformation of LDIAG

of which LDIAG and MQSym are specializations.

The paper is organized as follows ...

2. Monoids of Feynman-like diagrams and functions over them

2.1. Description of the monoids of Feynman-like diagrams

2.1.1. Labelled diagrams (ldiag)
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Figure 2. ...

In order to precise the operations on them, we have now to describe in details our

data structures. A Feynman-like labelled diagram (labelled diagram for short) is just

a multiset of arrows of [1...p] × [1...q] with no isolated vertex. Formally it gives the

following definition

Definition 2.1 A labelled diagram Γ of dimension p × q is the data of

a) Γ ⊂ [1...p] × [1...q] with no isolated vertex, i.e. pr1(Γ) = [1...p] and pr2(Γ) = [1...q]

b) A weight function w : Γ −→ N
+ = {1, 2, 3, ...}.

The set of labelled diagrams will be denoted ldiag.

Example 2.1 One usually draws such graphs as bipartite graphs with multiple edges.

For instance a diagram in Fig.(2) is composed as follows:

Γ = {(1, 1), (2, 1), (2, 2), (2, 3), (3, 2), (3, 3), (4, 2)} and the weight mapping (or function)

w is (1, 1) → 2; (2, 1) → 1; (2, 2) → 3; (2, 3) → 1; (3, 2) → 1; (3, 3) → 2; (4, 2) → 1.

Remark 2.1 (i) If either p = 0 or q = 0, then the condition of “no isolated vertex”

implies automatically that p = q = 0 and then w is the void mapping [2]. We

obtain a unique void diagram which will be denoted by ∅. This diagram will play

an important rôle in the sequel.

(ii) One can make the labelled diagrams ldiag in one-to-one correspondence with the

packed matrices which are rectangular matrices of integers with no zero line or

column [5]. The correspondence is made by the weight function. To a labelled

diagram of dimension p × q one associates the packed matrix of dimension p × q

defined by

M [i, j] =

{

w(i, j) if (i, j) ∈ Γ

0 otherwise.

It is clear that the result is a packed matrix and the correspondence is one-to-one.
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Now we define the monoid structure on ldiag. This monoid structure will turn out

to be compatible with the evaluation by multipliers

cite related papers.

Let d1 = (Γ1, w1) (resp. d2 = (Γ2, w2)) be labelled diagrams of dimension p1 × q1

(resp. p2 × q2) then their concatenation

d3 =

[

d1

d2

]

L

= (Γ3, w3) is defined by

(i, j) ∈ Γ3 if







1 ≤ i ≤ p1, 1 ≤ j ≤ q1 and (i, j) ∈ Γ1

or

p1 + 1 ≤ i ≤ p1 + p2, q1 + 1 ≤ j ≤ q1 + q2 and (i − p1, j − q1) ∈ Γ2

and

w3(i, j) =







w1(i, j) if (i, j) ∈ [1 · · · p1] × [1 · · · q1]

and

w2(i − p1, j − q1) if (i, j) ∈ [p1 + 1 · · · p1 + p2] × [q1 + 1 · · · q1 + q2]

Remark 2.2 (i) At the level of drawing d3 is just the diagram obtained by putting d2

under d1, as shown by Fig.(3)

(ii) As regards the correspondence d −→ packed(d) one has

packed

([

d1

d2

]

L

)

=

(

packed(d1) 0p1×q2

0p2×q1 packed(d2)

)

,

hence juxtaposition product becomes the blockdiagonal product on matrices.
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In general

[

d1

d2

]

L

6=

[

d2

d1

]

L

. More precisely, the following result will be a conse-

quence of proposition (2.2).

Proposition 2.1 If

[

d1

d2

]

L

=

[

d2

d1

]

L

then d1 and d2 are powers of a common

diagram (say d), i.e.

d1 =








d

d
...

d








L
︸ ︷︷ ︸

n times

and d2 =








d

d
...

d








L
︸ ︷︷ ︸

m times

.

We have the following proposition

Proposition 2.2 (ldiag, [ ]L, ∅) is a free monoid.

Proof. ... ⊓⊔

Definition 2.2 Let d be a labelled diagram of dimension p × q. Then we set

WS(d) = [1 · · · p] ′′white spots′′

BS(d) = [1 · · · q] ′′black spots′′

for (i, j) ∈ Γ

{

out(i) =
∑

(i,k)∈Γ w(i, k)

in(j) =
∑

(k,j)∈Γ w(k, j)

and the total weight |d| is the number of edges, i.e.

|d| =
∑

(i,j)∈Γ

w(i, j).

In order to describe precisely other operations (such as the coproduct and the action

of the symmetric group on the spots) we have advantage to consider also an horizontal

composition.

Let d1 ∈ ldiagp×q and d2 ∈ ldiagq×r described by their weight functions w1, w2,

then one builds a diagram d3 = d1.d2 with weight function

w3(i, k) =

q
∑

j=1

w1(i, j)w2(j, k) (13)

this amounts to counting the number of paths going from i to k.

If one allows the diagrams to have isolated vertices (i.e. if one relaxes condition

(a) of (2.1)), one just obtains the subcategory of the category of matrices formed by
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the matrices with non-negative coefficients. For such a generalised labelled diagram d of

dimension p × q (their set will be denoted by gldiagp×q), with weight function w, one

has the support

Γ = supp(d) = {(i, j) ∈ [1 · · · p] × [1 · · · q] | w(i, j) 6= 0} (14)

and WS(d) = pr1(supp(d)), BS(d) = pr2(supp(d)) (the functions in, out and | | being

defined as in definition (2.2)). Thus a labelled diagram can be characterized among those

of gldiagp×q by the conditions WS(d) = [1 · · · p], BS(d) = [1 · · · q].

This category of diagrams (generalised labelled diagrams) will be endowed with

the two compositions : vertical and horizontal. Moreover, we will need the natural

involution d → d∗ which consist in exchanging the white and black spots by a vertical

symmetry. This involution is perfectly described by means of the weight functions as

wd∗(j, i) = wd(i, j) (15)

One can check easily that

d ∈ ldiag ⇐⇒ d∗ ∈ ldiag (16)

2.1.2. Functional diagrams Let f : [1 · · · p] 7→ [1 · · · q], we denote by df ∈ gldiag the

diagram of dimension p × q with weight function wf (i, j) = δf(i),j.

Example 2.2 i) (Some non-crossing diagrams) Let X ⊂ [1 · · ·n] and j
(n)
X denote the

unique strictly increasing mapping [1 · · · |X|] 7→ [1 · · ·n] such that j
(n)
X ([1 · · · |X|]) = X.

In other words, if |X| = k and X = {x1 < x2 < · · · < xk} one has j
(n)
X (t) = xt.

ii) (Permutations) Let Sn be the symmeric group of order n. For every permutation

σ ∈ Sn, the diagram dσ belongs to ldiagn×n.

It is straightforward to check that, in general, if f : [1 · · · p] 7→ [1 · · · q] and

g : [1 · · · q] 7→ [1 · · · r] then

df .dg = dg◦f (17)

One can, with this setting, construct two important operations on the labelled

diagrams : selections and relabelling.

Selection. —

Let d ∈ ldiagp×q and I ⊂ [1 · · · p]. We set

J = supp(d)〈I〉 = {j | (∃i ∈ I)((i, j) ∈ supp(d))} (18)

(the image of I by the correspondence supp(d), see also [2] chap II par 3.1 Def 3)

then, we define

Definition 2.3 With the denotations as above, the restriction of d ∈ ldiagp×q to the

white spots of I ⊂ [1 · · · p] is

d|I = d
j
(p)
I

.d.(d
j
(q)
J

)∗ (19)
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Relabelling. —

Let d ∈ ldiag. For (σ, τ) ∈ SWS(d) × SBS(d) one defines d(σ,τ) by d(σ,τ) =

(Γ(σ,τ), w(σ,τ))where

(i, j) ∈ Γ(σ,τ) ⇔ (σ(i), τ(j)) ∈ Γ and w(σ,τ)(i, j) = w(σ(i), τ(j)).

It can be easily seen that these formulas define an action of the group S[1···p]×S[1···q]

on the set of labelled diagrams of dimension p × q.

One says that two diagrams are equivalent (and denotes d1 ∼ d2) if they are in the

same orbit for this action. The class function of this equivalence class turns out to be

compatible with the “vertical composition”. One has the following result.

Proposition 2.3 The product on ldiag is compatible with respect to the equivalence ∼.

In other words if d11 ∼ d12 and d21 ∼ d22 then
[

d11

d21

]

L

∼

[

d12

d22

]

L

Proof. For two pemutations σ ∈ Sn, τ ∈ Sm one can check that

[

dσ

dτ

]

L

is the labelled diagram of a permuation which we will denote σ.τ in this proof [4].

Now, let di1 ∈ ldiagpi×qi
; i = 1, 2 and d12 = d

(σ1,τ1)
11 ; d22 = d

(σ2,τ2)
21 .

One has the following equality
[

d12

d22

]

L

=

[

d
(σ1,τ1)
11

d
(σ2,τ2)
21

]

L

=

[

d11

d21

](σ1·σ2,τ1·τ2)

L

⊓⊔

We are now in position of defining the monoid diag.

Proposition 2.4 Set diag := ldiag/ ∼. Then, the set diag is endowed with the unique

structure of monoid such that the class arrow Φd : ldiag −→ diag is a morphism of

monoids.

Proof. ⊓⊔

The set of parameters of a diagram is invariant in the following sense. Let

(σ, τ) ∈ SWS(d) × SBS(d) then for (i, j) ∈ Γ one has (d = (Γ, w))

out(d(σ,τ); σ(i)) = out(d; i)

in(d(σ,τ); τ(i)) = in(d; i)

|d(σ,τ)| = |d|
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2.2. Algebras of functions

2.2.1. Generalities Let X be a set. The set of complex-valued functions on X will

be denoted by C
X [2]. This set is at once endowed with a pointwise (or Hadamard)

product f ⊙ d : x 7−→ f(x)g(x) which makes the C-vector space C
X an algebra. A

function f is idempotent (f ⊙ f = f) in this algebra iff it ranges in {0, 1}; these are the

characteristic functions of sets. Minimal idempotents are identified with Dirac measures,

that is to say characteristic functions of singletons, i.e. δx := (y −→ δxy) (which is the

characteristic function of {x}). The vector space generated by the (δx)x∈X is exactly

the space of finitely supported functions, it will be denoted C
(X), and for f ∈ C

(X) one

has f =
∑

x∈X f(x)δx. If, additionally, X is a monoid, C
X is endowed with a second

product, the Cauchy or convolution product [3] [1] [6] given by
(

∑

x∈X

f(x)δx

) (
∑

y∈X

g(y)δy

)

=
∑

z∈X

(
∑

xy=z

f(x)g(y)

)

δz (20)

We note that Eq.(20) still makes sense for general functions if the monoid fulfills

the condition

[D] (∀x ∈ X)(|{(x, y) ∈ X × X : xy = z}| < ∞).

(see [3] for this discussion).

In this case (which will be fulfilled by ldiag and diag) the algebra C
X (which is then

called the total algebra of X [3]) is endowed with two structures of algebra given by the

Hadamard (denoted ⊙) and the Cauchy product (denoted by · or without a sign).

Proposition 2.5 The monoid ldiag and diag fulfill condition [D].

Proof.This can be seen by the fact that the number of diagrams with total weight n is

finite and from the fact that in the two cases the product is graded
∣
∣
∣
∣
∣

[

d1

d2

]∣
∣
∣
∣
∣
s

= |d1|s + |d2|s (21)

where s stands for one of the two signs L or D. ⊓⊔

¿From now on, we set

LdiagC = C
(ldiag), LdiagC = C

ldiag, DiagC = C
(diag), DiagC = C

diag (22)

these spaces being endowed with the structure of the associative algebra with unit

(AAU) given by the Cauchy product.

prehilbertian structure and denotation of Dirac-Schützenberger

3. Hopf algebra structure of LdiagC and DiagC

3.1. LdiagC

3.1.1. Coproduct

First, for I ⊂ WS(d) we have defined the operation of restriction to I which amounts
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to take the white spots belonging to I and the subgraph conected to these white spots

and removing all the other edges and spots.

The coproduct of LdiagC is defined on the generators by

∆(d) =
∑

I+J⊂WS(d)

d|I ⊗ d|J . (23)

3.1.2. The bialgebra LdiagC

First, we prove that ∆ : LdiagC −→ LdiagC ⊗ LdiagC is coassociative, that is to say

that the following diagram is commutative

Ldiag ∆ //

∆
²²

LdiagC ⊗ LdiagC

∆⊗Id

²²
LdiagC ⊗ LdiagC

Id⊗∆ // LdiagC ⊗ LdiagC ⊗ LdiagC

Indeed, we have, for d of dimension p × q

∆ ⊗ Id(∆(d)) = (∆ ⊗ Id)




∑

I+J=[1···p]

d|I ⊗ d|J





= (∆ ⊗ Id)





p
∑

k=0




∑

I+J=[1···p], |I|=k

d|I ⊗ d|J









=

p
∑

k=0

∑

I+J=[1···p],
I={i1<···<ik}

∆(d|I) ⊗ d|J

=

p
∑

k=0

∑

I+J=[1···p]
I={i1<···ik}




∑

I1+I2=[1···k]

(d|I)|I1 ⊗ (d|I)|I2



 ⊗ d|J

=
∑

I+J+K=[1···p]

d|I ⊗ d|J ⊗ d|K

To prove that ∆ is a morphism we need the following lemma

Lemma 3.1 Let sp1 [1, · · · , p1] −→ [p1 + 1, · · · , p1 + p2] denote the unique strictly

increasing mapping and s−p1 its reciprocal (in other words dsp1
is the unique non-crossing

functional diagram from [1 · · · p1] to [p1 + 1 · · · p1 + p2] with no isolated vertex).

Then for di (i = 1, 2) of dimension pi × qi one has
[

d1

d2

]

L

|I+sp1 (I2) =

[

d1|I1
d2|I2

]

L
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Then

∆(d1)[ ]⊗
2

L ∆(d2) =




∑

I1+I2=[1···p1]

d1|I1 ⊗ d2|I2



 [ ]⊗
2

L




∑

J1+J2=[1···p2]

d1|J1 ⊗ d2|J2





=
∑

I1+J1=[1···p1], I2+J2=[1···p2]

[

d1|I1
d2|I2

]

L

⊗

[

d1|J1

d2|J2

]

L

=
∑

I1+J1=[1···p1], I2+J2=[1···p2]

[

d1

d2

]

L

∣
∣
∣
∣
∣
I+sp1 (I2)

⊗

[

d1

d2

]

L

∣
∣
∣
∣
∣
J+sp1 (J2)

but the mapping

{(I1, J1, I2, J2) : I1 + J1 = [1 · · · p1], I2 + J2 = [1 · · · p2]} −→ {I + J = [1 · · · p1 + p2]}

defined by (I1, J1, I2, J2) −→ (I1 + sp1(I2), J1 + sp1(J2)) is one-to- one.

So the sum equals to

∑

I+J=[1···p1+p2]

[

d1

d2

]

L

∣
∣
∣
∣
∣
I

⊗

[

d1

d2

]

L

∣
∣
∣
∣
∣
J

= ∆

([

d1

d2

]

L

)

Counity: The counit LdiagC

ǫ
−→ C is defined on the generators by ǫ(d) = δd,∅ so

that, if a =
∑

d∈ldiag αdd, one has ǫ(a) = α∅

natl(ǫ ⊗ Id)(∆(d)) = natl




∑

I+J=[1···p1]

ǫ(d|I) ⊗ d|J





= natl




∑

I+J=[1···p1], I 6=0

ǫ(d|I) ⊗ d|J + ǫ(∅) ⊗ d





(∗)
= natl(ǫ(∅) ⊗ d) = natl(1C ⊗ d) = d,

where equality (∗) is due to vanishing of the first sum inside natl.The same computation

gives natr(Id ⊗ ǫ)(∆(d)) = d. As a consequence the following diagram is commutative

diagC ⊗ C

natr
²²

LdiagC ⊗ LdiagC

Id⊗ǫoo ǫ⊗Id // C ⊗ LdiagC

natl
²²

LdiagC

Id // LdiagC

Id //

∆

OO

LdiagC

All these properties prove that (LdiagC, ·, δ∅, ∆, ǫ) is a bialgebra.

One can remark that this bialgebra is graded with respect to the total weight and the

homogeneous components have finite dimensions thus by a general theorem antipode

exists. We can even give an explicit formula.
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Proposition 3.1 Let d be a diagram of dimension p × q, then the antipode of d reads

α(d) =
∞∑

k=0

(−1)k
∑

I1+I2+···+Ik=[1···p],

Ij 6=∅






d|I1
...

d|Ik






L

3.2. The Hopf arrow LdiagC −→ DiagC

...

Compatibility of ∆

Let us prove that d(σ,τ)|I =
(
d|σ(I)

)(σ′,τ ′)
where

I
j<
I //

σ
ÃÃA

A

A

A

A

A

A

A

σ(I)

σ′

²²
σ(I)

J
j<
J //

τ
ÃÃA

A

A

A

A

A

A

A

τ(J)

τ ′

²²
τ(J)

If we select I ∈ BS(d), we must select only j’s that are nonzero columns, so...

3.3. Sweedler’s duals and a modified Kleene-Schützenberger’s Theorem

...

4. Conclusion

...
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