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ABSTRACT 

In this paper we sum up our works on multiscale programs, 
mainly simulations. We first start with describing what 
multiscaling is about, how it helps perceiving signal from a 
background noise in a flow of data for example, for a direct 
perception by a user or for a further use by another 
program. We then give three examples of multiscale 
techniques we used in the past, maintaining a summary, 
using an environmental marker introducing an history in the 
data and finally using a knowledge on the behavior of the 
different scales to really handle them at the same time. 

INTRODUCTION: WHAT THIS PAPER IS ABOUT, 

AND WHAT IT’S NOT 

Although we delved into different applications and 
application domains, the computer science research goals of 
our team has remained centered on the same subject for 
years. It can be expressed in different ways that we feel are, 
if not exactly equivalent, at least closely connected. It can 
be defined as managing multiple scales in a simulation. It 
also consists in handling emergent structures in a 
simulation. It can often also be seen as dynamic heuristic 
clustering of dynamic data1. This paper is about this theme, 
about why we think it is of interest and what we’ve done so 
far in this direction. It is therefore akin to a state of the art 
kind of article, except more centered on what we did. We 
will allude to what others have done, but the focus of the 
article is presenting our techniques and what we’re trying to 
do, like most articles do, and not present an objective 
description of the whole field, as the different applications 
examples could make think : we’re sticking to the same 

                                                           

1 We will of course later on describe in more details what 
we mean by all this. 

computer science principles overall. We’re taking one step 
back from our works to contemplate them all, and not the 
three steps which would be necessary to encompass the 
whole domain, as it would take us beyond the scope of the 
conference. 

PERCEPTION: FILTERING TO MAKE DECISIONS 

I look at a fluid flow simulation but all I’m interested in is 
where does the turbulence happen, in a case where I 
couldn’t know before the simulation (Tranouez et al. 2005). 
I use a multi-participant communication system in a crisis 
management piece of software and I would like to know 
what are the main interests of each communicant based on 
what they are saying (Lesage et al. 1999). I use an IBM 
model of different fish species but I’m interested in the 
evolution of the populations, not the individual fish 
(Prevost et al. 2004). I use a traffic simulation with 
thousands of cars and a detailed town but what I want to 
know is where the traffic jams are (coming soon). 

In all those examples, I use a piece of software which 
produces huge amounts of data but I’m interested in 
phenomena of a different scale than the raw basic 
components. What we aim at is helping the user of the 
program to reach what he is interested in, be this user a 
human (Clarification of the representation) or another 
program (Automatic decision making). Although we’re 
trying to stay general in this part, we focused on our past 
experience of what we actually managed to do, as described 
in “Some techniques to make these observations in a time 
scale comparable to the observed”, this isn’t gratuitous 
philosophy. 

Clarification of the representation 

This first step of our work intends to extract the patterns on 
the carpet from its threads (Tranouez 1984). Furthermore, 
we want it to be done in “real (program) time”, meaning not 
a posteriori once the program is ended by examining its 
traces (Servat et al; 1998), and sticking as close as possible 
to the under layer, the one pumping out dynamic basic data. 
We don’t want the discovery of our structures to be of a 
greater time scale than a step of the program it works upon. 

How to detect these structures? For each problem the 
structure must be analyzed, to understand what makes it 
stand out for the observer. This implies knowing the 
observer purpose, so as to characterize the structure. The 



answers are problem specific, nevertheless rules seem to 
appear. 

In many situations, the structures are groups of more basic 
entities, which then leads to try to fathom what makes it a 
group, what is its inside, its outside, its frontier, and what 
makes them so. 

Quite often in the situation we dealt with, the groups 
members share some common characteristics. The problem 
in that case belongs to a subgenre of clustering, where the 
data changes all the time and the clusters evolve with them, 
they are not computed from scratch at each change.  

The other structures we managed to isolate are groups of 
strongly communicating entities in object-oriented 
programs like multiagent simulations. We then endeavored 
to manage these cliques. 

In both cases, the detected structures are emphasized in the 
graphical representation of the program. This clarification 
lets the user of the simulation understand what happens in 
its midst. Because modeling, and therefore understanding, 
is clarifying and simplifying in a chosen direction a multi-
sided problem or phenomenon, our change of 
representation participates to the understanding of the 
operator. It is therefore also a necessary part of automating 
the whole understanding, aiming for instance at computing 
an artificial decision making. 

Automatic decision making 

Just like the human user makes something of the emerging 
phenomena the course of the program made evident, other 
programs can use the detected organizations. 

For example in the crisis management communication 
program, the detected favorite subject of interest of each of 
the communicant will be used as a filter for future incoming 
communications, favoring the ones on connected subjects. 
Other examples are developed below, but the point is once 
the structures are detected and clearly identified, the 
program can use models it may have of them to compute its 
future trajectory. It must be emphasized that at this point 
the structures can themselves combine into groups and 
structures of yet another scale, recursively. We’re touching 
there an important component of complex system. We may 
hope the applications of this principle to be numerous, such 
as robotics, where perceiving structures in vast amounts of 
data relatively to a goal, then being able to act upon these 
accordingly is a necessity. 

We’re now going to develop these notions in examples 
coming from our past works. 

SOME TECHNIQUES TO MAKE THESE 

OBSERVATIONS IN A TIME SCALE 

COMPARABLE TO THE OBSERVED 

The examples of handling dynamic organization we chose 
are taken from two main applications, one of a simulation 
of a fluid flow, the other of the simulation of a huge cluster 
of computing resources, such as computers. The methods 

titled “Maintaining a summary of a simulation” and 
“Reification: behavioral methods” are theories from the 
hydromechanics simulation, while “Ants” refers to the 
computing resources management simulation. We will first 
describe these two applications, so that an eventual 
misunderstanding of what they are doesn’t hinder later the 
clarity of our real purpose, the analysis of multiscale 
handling methods. 

In a part of a more general estuarine ecosystem simulation, 
we developed a simulation of a fluid flow. This flow uses a 
particle model (Leonard 1980), and is described in details 
in (Tranouez 2005) or (Tranouez et al. 2005). The basic 
idea is that each particle is a vorticity carrier, each 
interacting with all the others following Biot-Savart laws. 
As fluid flows tend to organize themselves in vortices, from 
all spatial scales from a tens of angstrom to the Atlantic 
Ocean, this is these vortices we tried to handle as the 
multiscale characteristic of our simulation. The two 
methods we used are described below. 

 

Figure 1: Vortices in a fluid flow by Leonardo Da Vinci 

The other application, described in depth (Dutot 2005), is a 
step toward automatic distribution of computing over 
computing resources in difficult conditions, as: 

� The resources we want to use can each appear and 
disappear, increase or decrease in number. 



� The computing distributed is composed of 
different object-oriented entities, each probably a 
thread or a process, like in a multiagent system for 
example (the system was originally imagined for 
the ecosystem simulation alluded to above, and the 
entities would have been fish, plants, fluid vortices 
etc., each acting, moving …) 

Furthermore, we want the distribution to follow two 
guidelines: 

� As much of the resources as possible must be used, 

� Communications between the resources must be 
kept as low as possible, as it should be wished for 
example if the resources are computers and the 
communications therefore happen over a network, 
bandwidth limited if compared to the internal of a 
computer. 

This the ultimate goal of this application, but the step we’re 
interested in today consists in a simulation of our 
communicating processes, and of a program which, at the 
same time the simulated entities act and communicate, 
advises how they should be regrouped and to which 
computing resource they should be allocated, so as to 
satisfy the two guidelines above. 

Maintaining a summary of a simulation 

The first method we would like to describe here relates to 
the fluid flow simulation. The hydrodynamic model we use 
is based on an important number of interacting particles. 
Each of these influences all the other, which makes n² 
interactions, where n is the number of particles used. This 
makes a great number of computations. Luckily, the 
intensity of the influence is inversely proportional to the 
square of the distance separating two particles. We 
therefore use an approximation called fast multipoles 
method, which consists in covering the simulation space 
with grids, of a density proportional to the density of 
particles (see Figure 2). The computation of the influence 
of its colleagues over a given particle is then done exactly 
for the ones close enough, and averaged on the grid for 
those further. All this is absolutely monoscale. 

As the particles are vorticity carriers, it means that the more 
numerous they are in a region of space, the more agitated 
the fluid they represent is. We would therefore be interested 
in the structures built of close, dense particles, surrounded 
by sparser ones. A side effect of the grids of the FMP, is 
that they help us do just that. It’s not that this clustering is 
much easier on the grids, it’s above all that they are an 
order of magnitude less numerous, and organized in a tree, 
which makes the group detection much faster than if the 
algorithm was ran on the particles themselves. Furthermore, 
the step by step management of the grids is not only cheap 
(it changes the constant of the complexity of the particles 
movement method but not the order) but also needed for the 
FPM. 

We therefore detect structures on  

� Dynamic data (the particles characteristics) 

� With little computing added to the simulation, 

which is what we aimed at. 

The principle here is that through the grids we maintain a 
summary of the simulation, upon which we can then run 
static data algorithm, all this at a cheap computing price.  

 

Figure 2 : Each color corresponds to a detected aggregate 

Ants 

 

Figure 3: Each color corresponds to a detected aggregate 

Reification: behavioral methods 

This last example of our multiscale handling methods was 
also developed on the fluid flow simulation. Once more, we 
want to detect structures in a dynamic flow of data, without 
getting rid of the dynamicity by doing a full computation on 
each step of the simulation. The idea here is doing the full 
computation only once in a good while, and only relatively 
to the unknown parts of our simulation. 



We begin with detecting vortices on the basic particles 
once. Vortices will be a rather elliptic set of close particles 
of the same rotation sense. We then introduce a multiagent 
system of the vortices. We have indeed a general 
knowledge of the way vortices behave. We know they 
move like a big particle in our Biot-Savard model, and we 
model its structural stability through social interactions with 
the surrounding basic particles, the other vortices and the 
obstacles, through which they can grow, shrink or die (be 
dissipated into particles). The details on this can be found in 
(Tranouez et al. 2005). Later on we occasionally make a 
full-blown vortex detection, but only on the remaining basic 
particles, as the already detected vortexes are managed by 
the multiagent system 

 

Figure 4: Fluid flow around an obstacle, initial state 

 

Figure 5: Part of the flow, some steps later. The ellipses are 
vortices. 

In this case, we possess knowledge on the structures we 
want to detect, and we use it to actually build the upper 
scale level of the simulation, which at the same time 
lightens ulterior structures detection. We’re definitely in the 
category described in Automatic decision making. 

CONCLUSION 

Our research group works on complex systems and focused 
on the computer representation of their 
hierarchical/holarchical characteristics (Koestler 1978) 
(Simon 1996) (Kay 2000). We tried to illustrate that 
describing a problem at different scales is a well-spread 
practice at least in the modeling and simulating community. 
We then presented some methods for handling the different 
scales, with maintaining a summary, using an 
environmental marker introducing an history in the data and 
finally using a knowledge on the behavior of the different 
scales to really handle them at the same time. 

We know believe we start to have sound multiscale 
methods, and must focus on the realism of the applications, 
to compare the sacrifice in details we make when we model 
the upper levels rather than just heavily computing the 
lower ones. We save time and lose precision, but what is 
this trade-off worth precisely? 
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