
DIFFERENT GOALS IN MULTISCALE SIMULATIONS AND HOW TO REACH

THEM

Pierrick Tranouez and Antoine Dutot
LITIS

Université du Havre
UFR Sciences et Techniques
25 rue Ph. Lebon - BP 540

76058 Le Havre Cedex – France
Pierrick.Tranouez@univ-lehavre.fr

AKNOWLEDGEMENTS

Now they’re grown-ups and write their articles alone, the
authors would like to thank Cyrille Bertelle and Damien
Olivier, former PhD supervisors, who could be credited as
co-author for all they did on this subject. But they won’t.
Hey, we must start at some time.

KEYWORDS

Multiscale, clustering, dynamic graphs, adaptation

ABSTRACT

In this paper we sum up our works on multiscale programs,
mainly simulations. We first start with describing what
multiscaling is about, how it helps perceiving signal from a
background noise in a flow of data for example, for a direct
perception by a user or for a further use by another
program. We then give three examples of multiscale
techniques we used in the past, maintaining a summary,
using an environmental marker introducing an history in the
data and finally using a knowledge on the behavior of the
different scales to really handle them at the same time.

INTRODUCTION: WHAT THIS PAPER IS ABOUT,

AND WHAT IT’S NOT

Although we delved into different applications and
application domains, the computer science research goals of
our team has remained centered on the same subject for
years. It can be expressed in different ways that we feel are,
if not exactly equivalent, at least closely connected. It can
be defined as managing multiple scales in a simulation. It
also consists in handling emergent structures in a
simulation. It can often also be seen as dynamic heuristic
clustering of dynamic data1. This paper is about this theme,
about why we think it is of interest and what we’ve done so
far in this direction. It is therefore akin to a state of the art
kind of article, except more centered on what we did. We
will allude to what others have done, but the focus of the
article is presenting our techniques and what we’re trying to
do, like most articles do, and not present an objective
description of the whole field, as the different applications
examples could make think : we’re sticking to the same

1 We will of course later on describe in more details what
we mean by all this.

computer science principles overall. We’re taking one step
back from our works to contemplate them all, and not the
three steps which would be necessary to encompass the
whole domain, as it would take us beyond the scope of the
conference.

PERCEPTION: FILTERING TO MAKE DECISIONS

I look at a fluid flow simulation but all I’m interested in is
where does the turbulence happen, in a case where I
couldn’t know before the simulation (Tranouez et al. 2005).
I use a multi-participant communication system in a crisis
management piece of software and I would like to know
what are the main interests of each communicant based on
what they are saying (Lesage et al. 1999). I use an IBM
model of different fish species but I’m interested in the
evolution of the populations, not the individual fish
(Prevost et al. 2004). I use a traffic simulation with
thousands of cars and a detailed town but what I want to
know is where the traffic jams are (coming soon).

In all those examples, I use a piece of software which
produces huge amounts of data but I’m interested in
phenomena of a different scale than the raw basic
components. What we aim at is helping the user of the
program to reach what he is interested in, be this user a
human (Clarification of the representation) or another
program (Automatic decision making). Although we’re
trying to stay general in this part, we focused on our past
experience of what we actually managed to do, as described
in “Some techniques to make these observations in a time
scale comparable to the observed”, this isn’t gratuitous
philosophy.

Clarification of the representation

This first step of our work intends to extract the patterns on
the carpet from its threads (Tranouez 1984). Furthermore,
we want it to be done in “real (program) time”, meaning not
a posteriori once the program is ended by examining its
traces (Servat et al; 1998), and sticking as close as possible
to the under layer, the one pumping out dynamic basic data.
We don’t want the discovery of our structures to be of a
greater time scale than a step of the program it works upon.

How to detect these structures? For each problem the
structure must be analyzed, to understand what makes it
stand out for the observer. This implies knowing the
observer purpose, so as to characterize the structure. The

answers are problem specific, nevertheless rules seem to
appear.

In many situations, the structures are groups of more basic
entities, which then leads to try to fathom what makes it a
group, what is its inside, its outside, its frontier, and what
makes them so.

Quite often in the situation we dealt with, the groups
members share some common characteristics. The problem
in that case belongs to a subgenre of clustering, where the
data changes all the time and the clusters evolve with them,
they are not computed from scratch at each change.

The other structures we managed to isolate are groups of
strongly communicating entities in object-oriented
programs like multiagent simulations. We then endeavored
to manage these cliques.

In both cases, the detected structures are emphasized in the
graphical representation of the program. This clarification
lets the user of the simulation understand what happens in
its midst. Because modeling, and therefore understanding,
is clarifying and simplifying in a chosen direction a multi-
sided problem or phenomenon, our change of
representation participates to the understanding of the
operator. It is therefore also a necessary part of automating
the whole understanding, aiming for instance at computing
an artificial decision making.

Automatic decision making

Just like the human user makes something of the emerging
phenomena the course of the program made evident, other
programs can use the detected organizations.

For example in the crisis management communication
program, the detected favorite subject of interest of each of
the communicant will be used as a filter for future incoming
communications, favoring the ones on connected subjects.
Other examples are developed below, but the point is once
the structures are detected and clearly identified, the
program can use models it may have of them to compute its
future trajectory. It must be emphasized that at this point
the structures can themselves combine into groups and
structures of yet another scale, recursively. We’re touching
there an important component of complex system. We may
hope the applications of this principle to be numerous, such
as robotics, where perceiving structures in vast amounts of
data relatively to a goal, then being able to act upon these
accordingly is a necessity.

We’re now going to develop these notions in examples
coming from our past works.

SOME TECHNIQUES TO MAKE THESE

OBSERVATIONS IN A TIME SCALE

COMPARABLE TO THE OBSERVED

The examples of handling dynamic organization we chose
are taken from two main applications, one of a simulation
of a fluid flow, the other of the simulation of a huge cluster
of computing resources, such as computers. The methods

titled “Maintaining a summary of a simulation” and
“Reification: behavioral methods” are theories from the
hydromechanics simulation, while “Ants” refers to the
computing resources management simulation. We will first
describe these two applications, so that an eventual
misunderstanding of what they are doesn’t hinder later the
clarity of our real purpose, the analysis of multiscale
handling methods.

In a part of a more general estuarine ecosystem simulation,
we developed a simulation of a fluid flow. This flow uses a
particle model (Leonard 1980), and is described in details
in (Tranouez 2005) or (Tranouez et al. 2005). The basic
idea is that each particle is a vorticity carrier, each
interacting with all the others following Biot-Savart laws.
As fluid flows tend to organize themselves in vortices, from
all spatial scales from a tens of angstrom to the Atlantic
Ocean, this is these vortices we tried to handle as the
multiscale characteristic of our simulation. The two
methods we used are described below.

Figure 1: Vortices in a fluid flow by Leonardo Da Vinci

The other application, described in depth (Dutot 2005), is a
step toward automatic distribution of computing over
computing resources in difficult conditions, as:

� The resources we want to use can each appear and
disappear, increase or decrease in number.

� The computing distributed is composed of
different object-oriented entities, each probably a
thread or a process, like in a multiagent system for
example (the system was originally imagined for
the ecosystem simulation alluded to above, and the
entities would have been fish, plants, fluid vortices
etc., each acting, moving …)

Furthermore, we want the distribution to follow two
guidelines:

� As much of the resources as possible must be used,

� Communications between the resources must be
kept as low as possible, as it should be wished for
example if the resources are computers and the
communications therefore happen over a network,
bandwidth limited if compared to the internal of a
computer.

This the ultimate goal of this application, but the step we’re
interested in today consists in a simulation of our
communicating processes, and of a program which, at the
same time the simulated entities act and communicate,
advises how they should be regrouped and to which
computing resource they should be allocated, so as to
satisfy the two guidelines above.

Maintaining a summary of a simulation

The first method we would like to describe here relates to
the fluid flow simulation. The hydrodynamic model we use
is based on an important number of interacting particles.
Each of these influences all the other, which makes n²
interactions, where n is the number of particles used. This
makes a great number of computations. Luckily, the
intensity of the influence is inversely proportional to the
square of the distance separating two particles. We
therefore use an approximation called fast multipoles
method, which consists in covering the simulation space
with grids, of a density proportional to the density of
particles (see Figure 2). The computation of the influence
of its colleagues over a given particle is then done exactly
for the ones close enough, and averaged on the grid for
those further. All this is absolutely monoscale.

As the particles are vorticity carriers, it means that the more
numerous they are in a region of space, the more agitated
the fluid they represent is. We would therefore be interested
in the structures built of close, dense particles, surrounded
by sparser ones. A side effect of the grids of the FMP, is
that they help us do just that. It’s not that this clustering is
much easier on the grids, it’s above all that they are an
order of magnitude less numerous, and organized in a tree,
which makes the group detection much faster than if the
algorithm was ran on the particles themselves. Furthermore,
the step by step management of the grids is not only cheap
(it changes the constant of the complexity of the particles
movement method but not the order) but also needed for the
FPM.

We therefore detect structures on

� Dynamic data (the particles characteristics)

� With little computing added to the simulation,

which is what we aimed at.

The principle here is that through the grids we maintain a
summary of the simulation, upon which we can then run
static data algorithm, all this at a cheap computing price.

Figure 2 : Each color corresponds to a detected aggregate

Ants

Figure 3: Each color corresponds to a detected aggregate

Reification: behavioral methods

This last example of our multiscale handling methods was
also developed on the fluid flow simulation. Once more, we
want to detect structures in a dynamic flow of data, without
getting rid of the dynamicity by doing a full computation on
each step of the simulation. The idea here is doing the full
computation only once in a good while, and only relatively
to the unknown parts of our simulation.

We begin with detecting vortices on the basic particles
once. Vortices will be a rather elliptic set of close particles
of the same rotation sense. We then introduce a multiagent
system of the vortices. We have indeed a general
knowledge of the way vortices behave. We know they
move like a big particle in our Biot-Savard model, and we
model its structural stability through social interactions with
the surrounding basic particles, the other vortices and the
obstacles, through which they can grow, shrink or die (be
dissipated into particles). The details on this can be found in
(Tranouez et al. 2005). Later on we occasionally make a
full-blown vortex detection, but only on the remaining basic
particles, as the already detected vortexes are managed by
the multiagent system

Figure 4: Fluid flow around an obstacle, initial state

Figure 5: Part of the flow, some steps later. The ellipses are
vortices.

In this case, we possess knowledge on the structures we
want to detect, and we use it to actually build the upper
scale level of the simulation, which at the same time
lightens ulterior structures detection. We’re definitely in the
category described in Automatic decision making.

CONCLUSION

Our research group works on complex systems and focused
on the computer representation of their
hierarchical/holarchical characteristics (Koestler 1978)
(Simon 1996) (Kay 2000). We tried to illustrate that
describing a problem at different scales is a well-spread
practice at least in the modeling and simulating community.
We then presented some methods for handling the different
scales, with maintaining a summary, using an
environmental marker introducing an history in the data and
finally using a knowledge on the behavior of the different
scales to really handle them at the same time.

We know believe we start to have sound multiscale
methods, and must focus on the realism of the applications,
to compare the sacrifice in details we make when we model
the upper levels rather than just heavily computing the
lower ones. We save time and lose precision, but what is
this trade-off worth precisely?

REFERENCES

Dutot A., Distribution dynamique adaptative à l'aide de
mécanismes d'intelligence collective, PhD thesis, Le Havre
University

Kay J., « Ecosystems as Self-Organising Holarchic Open Systems
: narratives and the second law of thermodynamics »,
S.E.JORGENSEN, MÜLLER F., Eds., Handbook of Ecosystems
Theories and Management, Lewis Publishers, 2000.

Koestler A. 1978, Janus. A Summing Up 1978

Leonard A. 1980, « Vortex methods for flow simulation »,
Journal of Computational Physics, vol. 37, 1980, p. 289-335.

Lesage F., Cardon A., Tranouez P. : "A multiagent based
prediction of the evolution of knowledge with multiple points of
view"; KAW' 99; (1999)

Prevost G., Tranouez P., Lerebourg S., Bertelle C., Olivier D.
2004 : "Methodology for holarchic ecosystem model based on
ontological tool"; ESMC 2004; pp 164-171 (2004)

Servat D., Perrier E., Treuil J.-P., Drogoul A. 1998, « When
Agents Emerge from Agents: Introducing Multi-scale Viewpoints
in Multi-agent Simulations », MABS, 1998, p. 183-198.

Simon H. 1996, The Sciences of the Artificial (3rd Edition) MIT
Press

Tranouez Pierre 1984, Fascination et narration dans l'œuvre
romanesque de Barbey d'Aurevilly , Doctorat d’État

Tranouez Pierrick 2005, Penicillo haere, nam scalas aufero, PhD
thesis, Le Havre University

Tranouez P., Bertelle C. and Olivier D. 2005, « Changing levels of
description in a fluid flow simulation”, EPNADS 2005

