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ABSTRACT

In this paper, we deal with some specific domains of ap-
plications to game theory. This is one of the major class
of models in the new approaches of modelling in the eco-
nomic domain. For that we use genetic automata which
are used to buid adaptive strategies for the players. We ex-
plain how the automata formalism proposed - linear repre-
sentation of automata with multiplicities - allows to define
a distance between the strategy behaviors. With that tools,
we are able to generate an automatic processus to compute
emergent systems of entities whose behaviors are repre-
sented by these genetic automata.

1. Introduction: Adaptive Behaviour Modeling for Game
Theory

Game theory has become since the five last decades a ma-
jor aspect in economical sciences modelling and in a great
number of domains where strategical aspects has to be in-
volved. Game theory is usually defined as a mathematical
tool allowing to analyse strategical interactions between
individuals.

Initially funded by mathematical researchers, J. von
Neumann, E. Borel or E. Zermelo in 1920s, game theory
increased in importance in the 1940s with a major work
from J. von Neumann and O. Morgenstern and then with
the works of John Nash in the 1950s. John Nash has pro-
posed an original equilibrium obtained with adaptive pro-
cess. In game theory, the Nash equilibrium is a kind of
optimal strategy for games involving two or more players,
whereby the players reach an outcome to mutual advan-
tage. If there is a set of strategies for a game with the prop-
erty that no player can benefit by changing his strategy
while the other players keep their strategies unchanged,
then this set of strategies and the corresponding payoffs
constitute a Nash equilibrium.

We can understand easily that the modelization of player
behavior needs some adaptive properties. The computable
model corresponding to genetic automata are in that way a

good tool to modelize such adaptive strategy.

The plan of this paper is the following. In the next sec-
tion, we present some efficient algebraic structures, the au-
tomata with multiplicities, which allow to implement pow-
erful operators. We present in section 3, some topological
considerations about the definition of distance between au-
tomata which induces a theorem of convergence on the
automata behaviors. Genetic operators are proposed for
these automata in the section 4. For that purpose, we use
their linear representions showing the powerful capabili-
ties of such algebraic structures. In section 5, we focus our
attention on the ”iterated prisonner dilemma” and we buid
an original evolutive probabilistic automaton for strategy
modeling, showing that genetic automata are well-adapted
to model adaptive strategies. The section 6 shows how we
can use the genetic automata developed previously to rep-
resent agent evolving in complex systems description. An
agent behavior distance is then defined and allow to pro-
pose an automatic computation of emergent systems as a
kind of self-organization detection.

2. Automata from boolean to multiplicies theory (Au-
tomata with scalars)

Automata are initially considered as theoretical tools. They
are created in the 1950’s following the works of A. Tur-
ing who previously deals with the definition of an abstract
”machine”. The aim of the Turing machines is to define
the boundaries of what a computing machine could do and
what it could not do.

The first class of automata, called finite state automata
corresponds to simple kinds of machines. They are stud-
ied by a great number of researchers as abstract concepts
for computable building. In that aspect, we can recall the
works of some linguist researchers, for example N. Chom-
sky who defined the study of formal grammars.

In many works, finite automata are associated to an op-
erator which allows to describe a language. In such works,
the condition of a transition is simply a symbol from an
alphabet. From a specific state S, the reading of a symbol
a allows to make the transition which is labeled by a and



comefromS. A whole automaton is in that way, associ-
ated to a language, the recognized language, which is the
set of words. These recognized words are composed of the
sequence of letters of the alphabet which allows to go from
a specific state called initial state, to another specific state,
called final state.

A first classification is based on the geometric aspect :
DFA (Deterministic Finite Automata) and NFA (Nonde-
terministic Finite Automata).

• In Deterministic Finite Automata, for each state there
is almost one transition for each possible input and
only one initial state.

• In Nondeterministic Finite Automata, there can be
none or more than one transition from a given state
for a given possible input.

Besides the classical aspect of automata as machines
allowing to recognize languages, another approach con-
sists in associate to the automata a functional goal. In ad-
dition of accepted letter from an alphabet as condition of
transition, we add for each transition an information which
can be considered as an output data of the transition, the
read letter is now called input data. We define in such a
way an automaton with outputs or weighted automaton.

Such automata with outputs give a new classification
of machines. Transducers are some kind of machines, they
generate outputs based on a given input and/or a state us-
ing actions. They are currently used for control applica-
tions. Moore machines are also such machines where out-
put depends only on a state, i.e. the automaton uses only
entry actions. The advantage of the Moore model is a sim-
plification of the behaviour.

Finally, we focus our attention on a special kind of au-
tomata with outputs which are efficient in operational way.
This automata with output are called automata with mul-
tiplicities. An automaton with multiplicities is based on
the fact that the output data of the automata with output
belong to a specific algebraic structure, a semiring. In that
way, we will be able to build effective operations on such
automata, using the power of the algebraic structures of
the output data. And we are also able to describe this au-
tomaton by means of a matrix representation with all the
power of linear algebra.

Definition 1 (Automaton with multiplicities)
An automaton with a multiplicities over an alphabet A and
a semiring is the 5-uple (A, Q, I, T, K) where

• Q = {S1, S2 · · ·Sn} is the finite set of state;

• I : Q 7→ K is a function over the set of initial
states, which associates to each initial state a value
of K, called entry cost, and to non-initial state a zero
value ;

• F : Q 7→ K is a function over the set of the final
states, which is associated to each final state a value
of K, called final cost, and to non-final state a zero
value;

• T is the transition function, that is T : Q×A×Q 7→
K which to a state Si, a letter a and a state Sj asso-
ciates a value z of K if it exist a transition labelled
with a from the state Si to the state Sj and and zero
otherwise.

Remark 1 Automata with multiplicities is a generalisa-
tion of finite automata. In fact, finite automata can be con-
sidered as automata with multiplicities with for the semir-
ing K, the boolan set B = {0, 1}. To each transition we
affect 1 if it exists and 0 if not.

Remark 2 We have not yet, on purpose, defined what a
semiring is. Roughly it is the least structure that allows
matrix computation with units (one can think of a ring
without the ”minus” operation’). The previous automata
with multiplicities can be, equivalently, expressed by a lin-
ear representation which is a triplet

• λ ∈ K1×Q which is a row-vector which coefficients
are λi = I(Si),

• γ ∈ KQ×1 is a row-vector which coefficients are
γi = F (Si),

• µ : A∗ 7→ KQ×Q is a morphism of monoids (in-
deed KQ×Q is endowed with the product of matri-
ces) such that the coefficient on the qith row and qj th
column of µ(a) is T (qi, a, qj)

3. Topological considerations

If K is a field, one sees that the space A(n) of automata of
dimension n (with multiplicities in K) is a K-vector space
of dimension k.n2 + 2n (k is here the number of letters).
So, in case the ground field is the field of real and complex
numbers, one can take any vector norm (usually one takes

one of the Hölder norms ||(xi)i∈I ||α :=
(
∑

i∈I |xi|
α
)

1

α

for α ≥ 1, but any norm will do) and form the distance in
the classical way by

d(A1,A2) = norm(V (A1) − V (A2)) (1)

one has then the result of Theorem 1. Assuming that K is
the field of real or complex numbers, we endow the space
of series/behaviours with the topology of pointwise con-
vergence (Topology of F. Treves [21]).

Theorem 1 Let (An) be a sequence of automata with limit
L (L is an automaton), then one has

Behaviour(L) = limitn→∞Behaviour(An) (2)

where the limit is computed for the topology of Treves.



4. Genetic automata as efficient operators

We define the chromosome for each automata with multi-
plicities as the sequence of all the matrices associated to
each letter from the alphabet . The chromosomes are com-
posed with alleles which are here the lines of the matrix.

In the following, genetic algorithms are going to gen-
erate new automata containing possiblly new transitions
from the ones included in the initial automata.

The genetic algorithm over the population of automata
with multiplicities follows a reproduction iteration broken
up in three steps:

• Duplication where each automata generates a clone
of itself;

• Crossing-over concerns a couple of automata. Over
this couple, we consider a sequence of lines of each
matrix for all . For each of these matrices, a permu-
tation on the lines of the chosen sequence is made
between the analogue matrices of this couple of au-
tomata;

• Mutation where a line of each matrix is randomly
chosen a sequence of new values is given for this
line.

Finally the whole genetic algorithm scheduling for a
full process of reproduction over all the population of au-
tomata is the evolutionary algorithm:

1. For all couple of automata, two children are cre-
ated by duplication, crossover and mutation mech-
anisms;

2. The fitness for each automata is computed;

3. For all 4-uple composed of parents and children, the
performless automata, in term of fitness computed
in previous step, are suppressed. The two automata,
still living, result from the evolution of the two ini-
tial parents.

Remark 3 The fitness is not defined at this level of ab-
stract formulation, but it is defined corresponding to the
context for which the automata is a model, as we will do
in the next section.

5. Applications to competition-cooperation modeling
using prisoner dilemma

We develop in this section how we can modelize competition-
cooperation processes in a same automata-based represen-
tation. The genetic computation allow to make automatic
transition from competition to cooperation or from coo-
peartion to competition. The basic problem used for that
purpose is the well-known prisoner dilemma.

5.1. From adaptive strategies to probabilistic automata

The prisoner dilemma is a two-players game where each
player has two possible actions: cooperate (C) with its ad-
versary or defect it (C). So, four outputs are possible for
the global actions of the two players. A relative payoff is
defined relatively to these possible outputs, as described
in the following table where the rows correspond to one
player behaviour and the columns to the other player one.

C C

C (3,3) (0,5)
C (5,0) (1,1)

Table 1. Prisoner dilemma payoff

In iterative version of the prisoner dilemma, successive
steps can be defined. Each player do not know the action
of its adversary during the current step but he knows it for
the preceding step. So different strategies can be defined
for a player behaviour, the goal of each one is to obtain
maximal payoff for himself.

In the Figure 1 and 2, we describe two strategies with
transducers. Each transition is labeled by the input cor-
responding to the player perception which is the prece-
dent adversary action and the output corresponding to the
present player action. The only inital state is the state 1,
recognizable by the incoming arrow labeled only by the
output. The final states are the states 1 and 2, recognizable
with the double circles.

In strategy of the Figure 1, the player has systemat-
ically the same behaviour as its adversary at the previ-
ous step. In strategy of the Figure 2, the player chooses
definitively to defect as soon as his adversary does once.
The previous automata represent static strategies and so
they are not well adapted for the modelization of evolutive
strategies. For this purpose, we propose a model based on
a probabilistic automaton described by the Figure 3.
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Figure 1. Tit-for-tat strategy automaton

This automaton represents all the two-states strategies
for cooperation and competitive behaviour of one agent
against another in prisoner dilemma.
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Figure 2. Vindictive strategy automaton
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Figure 3. Probabilistic multi-strategies two-states au-
tomaton for prisoner dilemma

The transitions are labeled in output by the probabili-
ties pi of their realization. The first state is the state reached
after cooperation action and the second state is reached af-
ter defection.

For this automaton, the associated linear representa-
tion, as described previously, is:

I = ( p1 1 − p1 ) ; (3)

F =

(

1
1

)

; (4)

T (C) =

(

p2 1 − p2

p3 1 − p3

)

; (5)

T (C) =

(

p4 1 − p4

p5 1 − p5

)

(6)

5.2. From probabilistic automata to genetic automata

With the linear representation of the automata, we can
compute genetic automata as described in previous sec-
tion. Here the chromosomes are the sequences of all the
matrices associated to each letter. We have to define the
fitness in the context of the use of these automata. The
fitness here is the value of the payoff.

5.3. General Genetic Algorithm Process for Genetic
Automata

A population of automata is initially generated. These au-
tomata are playing against a predefined strategy, named
S0.

Each automaton makes a set of plays. At each play,
we execute the probabilistic automaton which gives one of
the two outputs: (C) or (C). With this output and the SO’s
output, we compute the payoff of the automaton, accord-
ing with the payoff table.

At the end of the set of plays, the automaton payoff is
the sum of all the payoffs of each play. This sum is the
fitness of the automaton. At the end of this set of plays,
each automaton has its own fitness and so the selection
process can select the best automata. On the end of these
selection process, we obtain a new generation of automata.

This new generation of automata is the basis of a new
computation of the 3 genetics operators.

This processus allows to make evolve the player’s be-
havior which is modelized by the probabilistic multi-strategies
two-states automaton from cooperation to competition or
from competition to cooperation. The evolution of the
strategy is the expression of an adaptive computation. This
leads us to use this formalism to implement some self-
organisation processes which occus in complex systems.

6. Extension to Emergent Systems Modeling

We study in this section how evolutive automata-based
modeling can be used to compute automatic emergent sys-
tems. The emergent systems have to be understand in the
meaning of complex system paradigm that we recall in
the next section. We have previously defined some way
for compute distance between automata and we use these
principle to defined distance beween agant behaviour that
are modeled with automata. Finally, we defined a specific
fitness that allow to use genetic algorithm as a kind of re-
inforcement method that lead to emergent system compu-
tation.

6.1. Complex System Description Using Automata-Ba-
sed Agent Model

According to General System Theory [3, 17], a complex
system is composed with entities in mutual interaction and
interacting with outside environment. A system has some
characteristic properties which confer its structural aspects,
as schematically described in the part (a) of the figure 4:

• The set elements or entities are in interactive depen-
dance. The alteration of only one entity or one in-
teraction reverberates on the whole system.

• A global organization emerges from interacting con-
stitutive elements. This organization can be identi-
fied and carries its own autonomous behavior while
it is in relation and dependance with its environ-
ment. The emergent organization possesses new prop-
erties that its own constitutive entities don’t have.
”The whole is more than the sum of its parts”.
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(a) Global complex system (b) Interacting entities network

(c) Agent−based model for entity (d) automata−based model for agent behaviour

Figure 4. Multi-scale complex system description: from global to individual models

• The global organization retro-acts on its constitutive
components. ”The whole is less than the sum of its
parts” after E. Morin.

The interacting entities network as described in the
part (b) of the figure 4 lead to each entity to perceive infor-
mations or actions from other entities or from the whole
system and to act itself.

A well-adapted modeling consist of using agent-based
representation which is composed of the entity called agent
as an entity which perceives and acts on an environment,
using a autonomous behaviour as described in the part (c)
of the figure 4.

To compute a simulation composed of such entities,
we need to describe the behaviour of each agent. This
one can be schematically describe using internal states and
transition processes between these states, as described in
the part (d) of the figure 4.

There are several definitions of “agents” or “intelligent
agents” according to their behaviour specificities [9, 22].
Their autonomy means that the agents try to satisfy a goal
and execute actions, optimizing a satisfaction function to
reach it.

For agents with high level autonomy, specific actions
are realized even when no perception are detected from the
environment. To represent the processing of this deliber-
ation, different formalisms can be used and a behaviour
decomposed in internal states is a effective approach. Fi-
nally, when many agents operate, the social aspects must
also be taken into account. These aspects are expressed
as communications throw agent organisation with message
passing processes. Sending a message is an agent action
and receiving a message is an agent perception. The previ-
ous description based on the couple: perception and action
is well adapted to that.



6.2. Agent Behavior Distance

We describe in this section the bases of the genetic algo-
rithm used on the probabilistic automata allowing to man-
age emergent auto-organizations in the multi-agent simu-
lation.

For each agent, we define e an evaluation function of
its own behaviour returning the matrix M of values such
that Mi,j is the output series from all possible succes-
sive perceptions when starting from the initial state i and
ending in the final state j, without cycle. It will clearly
be 0 if either i is not an initial state or j is not a final
one. Notice that the coefficients of this matrix, such as de-
fined, are computed whatever the value of the perception
in the alphabet A on each transition on the successful path.
That means that the contribution of the agent behaviour for
collective organization formation is only based, here, on
probabilities to reach a final state from an initial one. This
allows to preserve individual characteristics in each agent
behaviour even if the agent belongs to an organization.

Let x and y two agents and e(x) and e(y) their respec-
tive evaluations as described above. We define d(x, y) a
distance between the two agents x and y as ‖ e(x)−e(y) ‖,
a matrix norm on the difference of their evaluations. Let
Vx a neighbouring of the agent x, relatively to a specific
criterium, for example a spatial distance or linkage net-
work. We define f(x) the agent fitness of the agent x as :

f(x) =















card(Vx)
∑

yi∈Vx

d(x, yi)
2

if
∑

yi∈Vx

d(x, yi)
2 6= 0

∞ otherwise

6.3. Evolutive Automata for Automatic Emergence of
Self-Organized Agent-Based Systems

In the previous computation, we defined a distance be-
tween two agents. This distance is computed using the
linear representation of the automata with multiplicities
associated to the agent behaviour. This distance is based
on successfull paths computation which needs to define
initial and final states on the behaviour automata. For spe-
cific purposes, we can choose to define in specific way, the
initial and final states. That means we try to compute some
specific action sequences which are chararacterized by the
way of going from some specific states (defined here as
initial ones) to some specific states (defined here as final
ones).

Based on this specific purpose which leads to define
some initial and final states, we compute a behaviour dis-
tance and then the fitness function defined previously. This
fitness function is an indicator that returns high value when
the evaluated agent is near, in the sense of the behaviour
distance defined previously, to all the other agents belong-
ing to a predefined neighbouring.

Genetic algorithms will compute in such a way to make
evolve an agent population in selective process. So during
the computation, the genetic algorithm will make evolve
the population to a newer one with agents more and more
adapted to the fitness. The new population will contain
agents with better fitness, so the agents of a population
will become nearer each others to improve their fitness. In
that way, the genetic algorithm reinforce the creation of a
system which aggregate agents with similar behaviour, in
the specific way of the definition of initial and final states
defined on the automata.

The genetic algorithm proposed here can be consid-
ered as a modelization of the feed-back of emergent sys-
tems which leads to gather agents of similar behaviour, but
these formations are dynamical ones and we cannot predict
what will be the set of these aggregations which depend of
the reaction of agents during the simulation. Moreover the
genetic process has the effect of generating a feed-back of
the emergent systems on their own contitutive elements in
the way that the fitness improvement lead to bring closer
the agents which are picked up inside the emergent aggre-
gations.

For specific solving problems, we can consider that the
previous fitness function can be composed with another
specific one which is able to measure the capability of the
agent to solve one problem. This composition of fitness
functions leads to create emergent systems only for the
ones of interest, that is, these systems are able to be de-
veloped only if the aggregated agents are able to satisfy a
problem solving evaluation.

7. Conclusion

(to be continued)
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