Paris, le 27 Septembre 2003, 16h38

Normal ordering and generalized combinatorial numbers versus Lie
groups

Résune

We consider the normal ordering problem of powers of strings of boson creatign (
and annihilation ) operators satisfyingz,a™] = 1, which (?? correspond to unipotent
trranssformations). These strings are monomials in the farm™?a(a™)?. We give the
solution of the normal ordering problem for every set of parameltegs, » > p. In par-
ticular it can be expressed through the sets of generalized Stirling numbers of the second
kind and generalized Bell numbers for which we give exact expressions, generating func-
tions as well as combinatorial interpretations.
We demonstrate that the above is equivalent to a problem of an action of exponentials of
certain differential operators on Taylor expandable functions. We formulate conditions that
such an action be a substitution of variables. In the general case these operators form a
group which, in turn, is equivalent to a Frechet Lie group structure of infinite dimension.
We show that, such a formalism can be expressed in terms of so called Sheffer-type po-
lynomials, thereby establishing a link between quantum statistics, combinatorics and Lie
groups of infinite dimension. Many concrete and detailed examples of such structures are
explicitly worked out in detail. In particular, we show that the one-parameter subgroups
induced by these operators are conjugate of groups of homographic substitutions which are
here explicitely given.

1 Introduction
2 ../..

3 First order boson strings as differential operators

3.0.1 General definitions

In this section, we deal with theord Stirling numbersin the followinga™,a are the generators
of the Heisenberg-Weyl algebra ije.a™] = 1.

lw|, =7; |w|g=s; r— s =e; then,

if e>0,onehas N(w") = u" Y S, (n.k)u"d"
k=0
if e <0, one has

Nw™) = (" Syp(nk)urd*)d 1)
k=0
Definition 3.1 For any wordw € {a™.a}* with |w|,+ = r > |w|, = s, denotinge = r — s, one
has .
N(w") = (a*)" Y Su(nk)(a™)*a" )
k=0
Remark that, due to the reordering relatiarnt = a*a + 1, the sum above is finite. In fact, the
“last” coefficient isS,,(n,ns) = 1 andS,,(n,k) = 0 for & > ns. Then, the numbes§,, form a

unipotent matrix iffs = 1. This case is very rich and will be treated below.
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3.1 The numbersS,+)r—rq(aty (n.k)
Proposition 3.2 Letw, = (a*)"Pa(a™)? then
p

Suynk) =3 () (e + 1S+ 1) )

=0

Proof — The formula is of course true for = 0. We first remark that*w;,, = wya™, then,
supposing: > 0, one has on the one hand

@’ (@) ,i Supr (n:k) (0" = N(awp, ) = N(wja®) = (a*)™ ]i S, () (a*)¥atat =
(a™)™ 2 S, (n,k)(a*) (a"a®) = (a™)™ li Sy, (n,) (@) (at a* + katt) =

(@) (a®)" g:lswp(n,k)( atYea + ]iswp(n,kxk)(a-i—)k—lak—l) _

(a*)(a")™ (g S, (k) (a™)Fak + gswp (nk+1)(k + 1)(a+)kak)> _

(a™)(a™)"* (i Sw, (k) + Sy, (nk+1)(k+1) (a™)ra®) = A (4)

F(n,k)

Let us compute separately the facton,k), then, by induction hypothesis,
p _ p _
F(nk)=>" ( ’Z’ ) (k+1)'Spnk+ D)+ (k+1)> ( 7; ) (k+2)'Sm(nk+1+1) =
p
l

(k+ 178 (nk+1+1) =

=0 1 ) =0
p—1
Sra(ne) + ( < pel > (k+ DS (ks + 14 1)) + (b + D)PFTS,(nk +p + 1)
= p+1 +1 -
S (1) tisamern®
Hence
oo p+1 1 —
A= (Z > ( ) (k4 1) S (n.k + l)) (a™)*kak) (6)
k=0 1=0
which proves the equality (3). O

The characteristic series of the numbggg(n,k) is then given by

S S k) = Y (Z( )i+ 1) STl(nkle))x—T

n,k>0 n,k>0 [=0
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n

Zp: ( ( y ) (k + l)lyk> > Sn(nk + 1)% - zp: ( ( p ) (k + 1)lyk> g(b]iajgk;l' -

=0 k>0 n>0 ' =0 k>0
where
¢(x) = g:osrl(”al)n! = (y(e B - 1)) ‘yzl = ((1_(70_1)9) - 1) 8
Thus
" p al ¢({L‘)k+l /4 P al ¢(l’)m
Sw n,k—k: (p> kU2 — ( ) m —
MZZO (k)Y ; l leé@ (k;+l)!) ; 1)yl % (v (m)! )
p [ m p [
p)@ m @@ _ (p>aey¢(x): 1+3 Pey(@) — (1 4+ d(x))Pe??@ (9
> (] o 2 ) =2 (1) oy (1+5) (14 6(x)Pe® (9)
Note 3.3 The same proof as above for (3) shows that
p _
Sutarp (1) =3 (1) (b + Dl S(@puln + 1 (10)

=0

3.2 The strings(a™)"Pa(a™)? as infinitesimal operators

We here consider the string )" ?a(a™)? in the representationt — z, « — - acting on
analytic functions. The one-parameter transformation group is then defined by

U(f) = AP g = 50 X (ayrragat (11)
k=0 """
whereU,, is a one parameter group of some fonction space. One has
D) =3 @y a(@ I = 30 S (@) ) Y Sunk) (@) et ] =
n=0 """ n=0 """ k>0
oo )\nxn(rfl) dk . » ¢<)\xr71)k dk’
kzzo (7120 " Sw(n,k:)) tt ol = kzzo (1o)==t (] (12)
as . )
5 Sulnk) v = (14 6 40 = (14 6@y ¥ v g
n,k>0 n. >0 k!
and then, iff = 37,50 ¢y One has
. P gb()\xr—l)kxk xm—k
O\f] = (14 o™ ) I T
r— P mem r—
(1 + ¢()\x 1)) lg]mZk — ( 7}? ) Qﬁ(}\x l)k: =
T P Cmx™ Tﬁ
(1 + ¢p(A\x 1)) mgozg) - ( 7;; ) p(Az"H)F =
13\ P Crn ™ ,_
(1 + (ﬁ()\x 1)) mXZ:O - oo ( ?Z ) (b()\l‘ 1)k =
(1+ ¢(Mr_l))pn§0 C”;f! (1+60a ™))" = (1+ 60" ™))" f [z (14 6(0a")] (14)



3.3 One parameter groups
3.3.1 Groups of substitutions

Considering an operat@® on the sequences, the one-parameter group correspondingsto
generally speakingfe*?}. It may be full (i.e. defined for every € R) or local A €] — €€l

It always fulfills an additive rule, i.e., when it has sense, the relagion g, = ¢,+,, Where

* IS some law (in the following, composition or pointwise multiplication). The simplest one-
parameter group one can imagine is ghéfti.e. the transformation

f(@) = flz+A)

On can congugate this group by an invertible (at least locally) variable charge:(x) with
inverseu~! (this means that, on appropriate domaiig—!(y)) = y andu=*(u(x)) = z). Thus,
we get

fl@) = flu™ (u(z) + X)) (15)
One can prove that, if two differentiable one-parameter groups have the same initial derivative,
then they coincide. Unsing the chain rule, one gets the initial derivative of the group (15) which
reads

(@) + )],y = () () + ) X () + V)] =
d d, 1 d
D@ x G ule) = e < () (8

For example, with the vector fields on the half line of tyﬁej;, the method consists in resolving

the equation
d —Q
—(w)(2) =2 (7)

Cclfoz

in the caseq # 1) one getsu(z) = =—. The inverse ofiisu™"(y) = ((1 — a)y)ﬁ and the
one-parameter group (a substitution group) is given by

-«

Pl (u(z) + X)) = 1 (((1 BNTE

11—«

+ )\))1_1‘”> =f (x((l + (1 - a))\xo‘_l))lia> (18)

which reproves the result of

?%r ecedent avec .

For the caser = 1, an analog computation proves that the one parameter group is a group of
dilatationsf (z) — f(e*z).

With the field(1 + xz)% one gets, = arctan; v~ = tan the one-parameter group is then

sx(z) = u "t (u(x) + \) = tan(arctan(z) +A) =
tan(arctan(x)) +tan(X)  x+tan(X)  wcos(\) + sin(N)

1 — tan(arctan(z))tan(N) 1 —axtan(\)  cos(A) — zsin()) (19)

all the preceding results can be found A [
With (1 — z%)-L, one has

1+z
l1—=x

u(z) = arctanh(x) = In( ); ut(z) = tanh(z);
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zcosh(\) + sinh(X)

_ _ 2
sx(z) = tanh(arctanh(z) + \) cosh(\) £ zsinh(\) (20)
With ¥ (1;“"2)%, one gets
w(z) = V1+a? vl (z) = Va2 - 1
sa(2) = Va2 + 20T 1 22 + A2 1)

3.3.2 Conjugates of one-parameter groups of substitutions and prefunctions

Let A be a continuous invertible operator over a certain function space (typically, in the fol-
lowing A will be the multiplication by a non-vanishing function. Then, one Hase*?A =

M 7'24 (which can be proved using the fact that, if two differentiable one-parameter groups
have the same initial derivatives then they coincide). Using this fact, we can act with two fonc-
tionnal parameters instead of one, then

h/
21 d ha d ha(d 1 (p,d 1 d
e>‘(h2 h1 +h2 ;) — e/\hl (hi+h1 ;) — e>‘h1 (3zh1) — e>‘(h1 (h2 g5 )h1) — e)\(’“@a)hl (22)

hi
For example, we can treat the cds€)"Pa(a™)? remarking thaf) = 2" P -La? = 277 (27 L )P
Then

d

AL dz 1P (23)

_ r
N = TP

and denotings,(z) = x((l + (1 — r))\x’”‘l))ﬁ, the one-parameter substitutionnal group
corresponding to the vector field % the transform of a functiori reads

7 (55(2) (52 ()P = (“) F(5a(a)) (24)

T

Remark 3.4 Using h,,h,; as above, one can also treat by conjugacy the example of the diffe-
rential operator of (Dattoli)2 = (¢(z)% + v(x)) with g = h; v = q%.



