
Paris, le 15 Mai 2003, 21h03
1) Endofunctions by number of cycles. —
Forf : F → F , we definefn = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸

n factors

. Let p be a prime and set

Jp(n) = #{f : [[n]] → [[n]]s.t. f 1+p = f} (1)

where[[n]] := [1..n]. One has the following characterizationf 1+p = f iff every connected
component of the graph has

– a1- or ap-cycle
– for all x, f(x) is in the cycle

then the EGF for connected components with a1-cycle is
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the EGF for connected components with ap-cycle is
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Hence, having analyzed the connected components, one gets, with the exponential formula,
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If, one wants to count these endofonctions more finely, we can get the EGF again with the
exponential formula. with
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instead of (3), we get
∑
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2) Élémentary computation of theα
(n)
k,l . —

By elementary counting, we get
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and, from (7)
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n (x,y) =
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if we glue the two types of cycles, one gets the numbersJp(n,k) which is the number of such
endofunctions withk cycles. These numbers fill a lower triangular matrix (Jp(n,k) = 0 for
k > n). We have
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and this proves that we are in presence of asubstitution matrix.


